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Abstract 
To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired par-
ticle swarm optimization algorithm is proposed. In this method, the particles are encoded by the 
probability amplitudes of the basic states of the multi-qubits system. The rotation angles of mul-
ti-qubits are determined based on the local optimum particle and the global optimal particle, and 
the multi-qubits rotation gates are employed to update the particles. At each of iteration, updating 
any qubit can lead to updating all probability amplitudes of the corresponding particle. The expe-
rimental results of some benchmark functions optimization show that, although its single step itera-
tion consumes long time, the optimization ability of the proposed method is significantly higher 
than other similar algorithms. 
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1. Introduction 
In 1999, Dr. Eberhart and Dr. Kennedy proposed particle Swarm Optimization (particle swarm optimization, 
PSO) [1]. As a new optimization tool, it is now widely used in combinatorial optimization [2] and numerical op-
timization [3]. In PSO’s performance improvement, some commonly used strategies are as follows: selecting the 
appropriate control parameters [4]; designing reasonable update rules of the particle velocity and position [5]; 
combining PSO with the other algorithms [6]; and employing quantum computation to design the update strate-
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gy [7]. These approaches enhance the PSO performance in different degrees. Quantum computing is an emerg-
ing interdisciplinary, combining the information science and quantum mechanics, and its integration with intel-
ligent optimization algorithms begun in the 1990s; there is quantum-behaved particle swarm optimization algo-
rithm [8], quantum-inspired evolutionary algorithm [9], quantum-inspired harmony search algorithm [10], 
quantum-inspired immune algorithm [11], quantum-inspired genetic algorithm [12], and quantum-inspired de-
rivative differential evolution algorithm [13]. In the algorithm mentioned above, Ref. [8] applied real-based code 
method; the other references employed single qubit probability amplitude to code individuals. In these kinds of 
coding, the adjustment of a qubit can only change one gene on the individual. However, in the multi-qubits 
probability amplitude-based code, with application of coherence quantum states, simply adjusting a qubit can 
change all probability amplitudes of the ground state in multi-bit quantum superposition states, and then update 
all genes on the individual. In this paper, we propose a new multi-qubits probability amplitude encoding-based 
quantum-inspired particle swarm optimization. Standard function extreme optimization experiments show the 
superiority of the proposed algorithm. 

2. Basic PSO Model 
There is M particles in the n-dimensional space. For the thi  particle, its position iX , velocity iV , self-opti- 
mum position L

iP , global optimum position gP , are written as: ( )1 2, , ,i i i inx x x= X ; ( )1 2, , ,i i i inv v v= V ; 
( )1 2, , ,L

i i i inp p p= P ; ( )1 2, , ,g g g gnp p p= P . The update strategy of particles can be described as follows. 

( ) ( ) ( )( ) ( )( )1 1 2 21 L
i i i i g it w t c r t c r t+ = + − + −V V P X P X                      (1) 

( ) ( ) ( )1i i it t t+ = +X X V                                  (2) 

where 1, ,i M= 
, w  is the inertia factor, 1c  is itself factor, 2c  global factor, 1r , 2r  is an uniformly dis-

tributed random number in (0, 1). 
For convenience of description, Equation (1) can be rewritten as follows. 

( ) ( ) [ ] ( )( )1i i i it w t t+ = + Φ −V V P X                             (3) 

where 
1 21 2

1 11 1 1 1
1 2 1 2 1 2 1 2

1 1 2 1 1 2 1 1 2 1 1 2

diag , , diag , ,Ln n
i i g

n n n n

c r c rc r c r
c r c r c r c r c r c r c r c r

   
= +   

+ + + +   
 P P P           (4) 

[ ] ( )1 2 1 2
1 1 2 1 1 2diag , , n nc r c r c r c rΦ = + +                            (5) 

To make the PSO convergence, all particles must approximation iP . 

3. Multi-Bit Quantum System and the Multi-Bit Quantum Rotation Gate 
3.1. Qubits and Single Qubit Rotation Gate 
What is a qubit? Just as a classical bit has a state—either 0 or 1—a qubit also has a state. Two possible states for 
a qubit are the state 0  and 1 , which as you might guess correspond to the states 0 and 1 for a classical bit. 

Notation like  is called the Dirac notation, and we will see it often in the following paragraphs, as it is the 
standard notation for states in quantum mechanics. The difference between bits and qubits is that a qubit can be 
in a state other than 0  or 1 . It is also possible to form linear combinations of states, often called superposi-
tion. 

[ ]Tcos 0 sin 1 cos sinφ θ θ θ θ= + =                           (6) 

where θ  is the phase of φ , cosθ  and sinθ  denote the probability amplitude of φ . 
In the quantum computation, the logic function can be realized by applying a series of unitary transform to the 

qubit states, which the effect of the unitary transform is equal to that of the logic gate. Therefore, the quantum 
services with the logic transformations in a certain interval are called the quantum gates, which are the basis of 
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performing the quantum computation. A single qubit rotation gate can be defined as 

( )
cos sin
sin cos

θ θ
θ

θ θ
∆ − ∆ 

∆ =  ∆ ∆ 
R                               (7) 

Let the quantum state 
cos
sin

θ
φ

θ
 

=  
 

, and φ  can be transformed by ( ) ( )
( )

cos
sin

θ θ
θ

θ θ
 + ∆ 

∆ =  + ∆ 
R . It is obvious  

that ( )θ∆R  shifts the phase of .φ  

3.2. The Tensor Product of Matrix 
Let the matrix A  has m low and n column, and the matrix B  has p low and q column. The tensor product of 
A  and B  is defined as. 

11 12 1

21 22 2

1 2

n

n

m m mn

A A A
A A A

A A A

 
 
 ⊗ =
 
 
 





   



B B B
B B B

A B

B B B

                           (8) 

where ,i jA  is the element of matrix A . 

3.3. Multi-Bit Quantum System and the Multi-Bit Quantum Rotation Gate 
In general, for an n-qubits system, there are 2n  of the form 1 2 nx x x  ground states, similar to the single- 
qubit system, n-qubits system can also be in the a linear superposition state of 2n  ground states, namely 

[ ]
1 2

1 2

1 1 1 T
1 2 1 2 00 0 00 1 11 1

0 0
n

n
n x x x n

x x x
a x x x a a aφ φ φ

= =

= =∑ ∑ ∑
   

                  (9) 

where 
1 2 nx x xa


 is called probability amplitude of the ground state 1 2 nx x x , and to meet the following equa-
tion. 

1 2
1 2

1 1 1 2

0 0
1

n
n

x x x
x x x

a
= =

=∑ ∑ ∑


                               (10) 

Let cos 0 sin 1i i iφ θ θ= + , according to the principles of quantum computing, the 1 2 nφ φ φ  can be 
written as 

1 2

1 1 2
1 2 1 2

1

1 2

cos cos cos
coscos cos cos sin

sin sin
sin sin sin

n

n n
n n

n

n

θ θ θ
θθ θ θ θ

φ φ φ φ φ φ
θ θ

θ θ θ

 
     = ⊗ ⊗ = ⊗ ⊗ =         
 





  

   



     (11) 

It is clear from the above equations that, in an n-qubits system, any one of the ground state probability ampli-
tude is a function of n-qubits phase ( )1 2, , , nθ θ θ , in other words, the adjustment of any iθ  can update all 2n 
probability amplitudes. 

In our works, the n-qubits rotation gate is employed to update the probability amplitudes. According to the 
principles of quantum computing, the tensor product of n single-qubit rotation gate ( )iθ∆R  is n-qubits rota-
tion gate. Namely 

( ) ( ) ( ) ( )2 2i n i nθ θ θ θ θ θ∆ ∆ ∆ = ∆ ⊗ ∆ ⊗ ⊗ ∆R R R R                     (12) 

where ( )
cos sin
sin cos

i i
i

i i

θ θ
θ

θ θ
∆ − ∆ 

∆ =  ∆ ∆ 
R , 1, 2, ,i n=  . 
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Taking 2n =  as an example, the ( )1 2θ θ∆ ∆R  can be rewritten as follows. 

( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

cos cos cos sin sin cos sin sin
cos sin cos cos sin sin sin cos
sin cos sin sin cos cos cos sin
sin sin sin cos cos sin c

θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

θ θ
θ θ θ θ θ θ θ θ
θ θ θ θ θ θ

∆ ∆ − ∆ ∆ − ∆ ∆ ∆ ∆
 ∆ ∆ ∆ ∆ − ∆ ∆ ∆ ∆∆ ∆ =
 ∆ ∆ − ∆ ∆ ∆ ∆ − ∆ ∆


∆ ∆ ∆ ∆ ∆ ∆

R

1 2os cosθ θ







∆ ∆ 

        (13) 

It is clear that 

( )1 2 1 2 1 2
ˆ ˆ ˆ

n n n nθ θ θ φ φ φ φ φ φ∆ ∆ ∆ = ⊗ ⊗ ⊗  R                     (14) 

where ( ) ( )ˆ cos 0 sin 1 .i i i i iφ θ θ θ θ= + ∆ + + ∆  

4. Particle Encoding Method Based on Multi-Bits Probability Amplitudes 
In this paper, the particles are encoded by multi-qubits probability amplitudes. Let N denote the number of par-
ticles, D  denote the dimension of optimization space. Multi-qubits probability amplitudes encoding method 
can be described as follows. 

4.1. The Number of Qubits Needed to Code 
For an n-bits quantum system, there are 2n  probability amplitudes, which can be used directly as a result of an 
individual encoding. In the D-dimensional optimization space, it is clear that 2nD ≤ . Due to the constraint rela-
tion between each probability amplitude (see to Equation (10)), hence 2nD < . For the D-dimensional optimiza-
tion problem, the required number of qubits can be calculated as follows. 

( )log 1n D= +                                      (15) 

4.2. The Encoding Method Based on Multi-Qubits Probability Amplitudes 
First, generating randomly N n-dimensional phase vector iθ , 1, 2, ,i N=  , as follows 

[ ]1 2, , ,i i i inθ θ θ= θ                                    (16) 

where 2π randijθ = × , rand is a random number uniformly distributed within the (0,1), 1, 2, ,j n=  . 
Let cos 0 sin 1ij ij ijφ θ θ= + , using Equation (11), we can obtain following N  n-qubits systems 

11 12 1nφ φ φ , 21 22 2nφ φ φ ,  , 1 2N N Nnφ φ φ . In each of the quantum system, the first D probability am-
plitudes can be regarded as a D-dimensional particle code. 

5. The Update Method Based on Multi-Qubits Probability Amplitudes 
In this paper, the multi-bit quantum rotation gates are employed to update particles. Let the phase vector of the  
global optimal particle be 1 2, , ,g g g gnθ θ θ =  θ , the phase vectors of the ith particle be [ ]1 2, , ,i i i inθ θ θ= θ , and  

the itself optimum the phase vector be 1 2, , ,i i i
bi b b bnθ θ θ =  θ . 

From Equation (11), it is clear that, once iθ  has been updated, all its corresponding probability amplitudes 
will be updated. To improve the search capability, in an iteration, all phases iθ  are updated in turn, which al-
lows all particles are updated n times. Let the 0θ∆  denote the phase update step size, the specific update can be 
described as follows. 

Step 1. Set 1j = , ( ) [ ]T1 2 1 2cos cos cos sin sin sini i i in i i inθ θ θ θ θ θ θ=P    . 
Step 2. Set 1 2 0i i inθ θ θ∆ = ∆ = = ∆ = . 
Step 3. Determine the value of the rotation angle, where the sgn donates the symbolic function. 
If πi

bj ijθ θ− ≤ , then ( ) 0sgnb b
ij ij ijθ θ θ θ∆ = − ∆ . 

If πi
bj ijθ θ− ≤ , then ( ) 0sgnb i

ij bj ijθ θ θ θ∆ = − − ∆ . 
If πgj ijθ θ− > , then ( ) 0sgnb

ij gj ijθ θ θ θ∆ = − ∆ . 
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If πgj ijθ θ− > , then ( ) 0sgng
ij gj ijθ θ θ θ∆ = − − ∆ . 

Step 4. Compute the rotation angles, and update all particles according to the following equation, 
1 2b g

ij ij ijr rθ θ θ∆ = ×∆ + ×∆ , ( ) ( ) ( )1 2, , ,i n i i in iP R Pθ θ θ θ θ= ∆ ∆ ∆ . where r1 and r2 denote random numbers 
between the interval (0, 1). 

Step 5. If j n< , then 1j j= + , back to step 2. 

6. Quantum-Inspired Particle Swarm Optimization Algorithm Encoded by 
Probability Amplitudes of Multi-Qubits 

Suppose that, N denote the number of particles, D  denote the number of optimization space dimension. For 
multi-qubits probability amplitudes encoding quantum-inspired particle swarm optimization, called MQPAP-SO, 
the optimization process can be described as follows. 

1) Initialize the particles swarm 
According to Equation (15) to determine the number of qubits n, according to Equation (16) initialize phase 

of each particle, according to Equation (11) to calculate the probability amplitude of 2n  each particle, where 
the first D probability amplitudes are the coding of the particles. Set the thj  probability amplitude of the thi  
particle be ijx , coding result can be expressed as the following equation. 

[ ]
[ ]

[ ]

T
1 11 12 1

T
1 21 22 2

T
1 2

, , ,

, , ,
 

, , ,

D

D

n N N ND

P x x x

P x x x

P x x x

 =

 =


 =









                                (17) 

Initialization phase update step 0θ∆ , the limited number of iteration G. Set the current iteration step 1t = . 
2) Calculation of the objective function value 
Set the j-dimensional variable range be Min ,Maxj jX X   , because of the probability amplitude ijx  values 

in the interval [0, 1], it is need to make the solution space transformation. The transformation equation is below. 

( ) ( )1 Max 1 Min 1
2ij j ij j ijX X x X x = + + −                           (18) 

where 1,2, ,i N=  , 1, 2, ,j D=  . 
Calculate the objective function values of all particles. Let the ith particle phase be [ ]1 2, , ,i i i inθ θ θ= θ , the  

objective function value is if , global optimal particle phase be 1 2
ˆ ˆ ˆ ˆ, , ,g g g gnθ θ θ =  θ , global optimal objec-  

tive function value be ĝf , the thi  particle itself optimal phase is î i=θ θ , Its optimal objective function value 
is î if f= . 

3) Update the particle position 
For each particle iP , accordance to step 1 - step 5 in Section 5, update repeatedly n times. Using the Equation 

(11) to calculate the probability amplitude, using Equation (18) to implement the solution space transformation 
and calculate the value of the objective function. Let the objective function value of the thi  particle be if . If 

ˆ
i if f< , then î if f= , ˆ

g gθ θ= . 
4) Update the global optimal solution 
Let the optimal particle phase be 1 2, , ,g g g gnθ θ θ =  θ , the corresponding objective function value be gf . 

If ˆ
g gf f< , then ĝ gf f= , ĝ gθ θ= , otherwise ˆ

g gf f= , ˆ
g gθ θ= . 

5) Examine termination conditions 
If t G< , 1t t= +  back to (3), otherwise, save ĝθ  and ĝf , end. 

7. Comparative Experiment 
In this study, the 20 standard test functions are employed to verify the optimization ability of MQPAPSO, and 
compare with the general particle swarm optimization (PSO) [14], quantum delta potential-well particle swarm 
optimization, QDPSO [15], shuffled frog leaping algorithm, SFLA [16]. All functions belong to minimum opti-
mization, where D is the number of independent variables, Ω is the solution space, ∗X  is the exact minimum 
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point, ( )f ∗X  is the corresponding minimum. 

7.1. Test Function 

(1) ( ) 2
1 1

D
iif x

=
= ∑X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X

 
(2) ( )2 1 1

DD
i ii if x x

= =
= +∑ ∏X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X

 
(3) ( ) ( )2

3 1 1
D i

ji jf x
= =

= ∑ ∑X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X
 

(4) ( ) ( )4 1
max ii D

f x
≤ ≤

=X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X
 

(5) ( ) ( ) ( )( )2 21 2
5 11 100 1D

i i iif x x x−
+=

= − + −∑X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X
 

(6) ( ) ( )( )4
6 1 1 random 0,1D

iif ix
=

= +∑X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X
 

(7) ( ) ( )2
7 10cos 2π 10i if x x = − + X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X

 

(8) ( ) ( )2
8 1 1

1 120exp 0.2 exp cos 2π 20 eD D
i ii if x x

D D= =

   = − − − + +       
∑ ∑X ; [ ]100,100 D= −Ω ;  

[ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X  

(9) ( ) 2
9 1 1

1 cos 1
4000

DD i
ii i

x
f x

i= =

 
= − + 

 
∑ ∏X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X

 

(10) ( ) ( )4 2
10 1

1 16 5 78.3323314D
i i iif x x x

D =
= − + +∑X ; [ ]100,100 D= −Ω ; 2.903534ix∗ = − ; ( ) 0.f ∗ =X  

(11) ( ) ( )( ) ( )11 11
2

4 1
1

6

D
D

i i ii
i

D D D
f x x x −=

=

+ −
= + − −∑ ∑X ; 2 2,

D
D D = − Ω ; 2.903534ix∗ = − ; ( ) 0f ∗ =X .

 

(12) ( ) ( ) ( ) ( )( ) ( ) ( )2 212 2
12 1 11 1

π 10sin π 1 1 10sin π 1 ,10,100.4D D
i i D ii if y y y y u x

D
−

+= =
 = + − + + − + ∑ ∑X ;  

( )
( )

( )

, ;
, , , 0 ;

, .

m
i i

i i
m

i i

k x a x a
u x a k m a x a

k x a x a

 − >
= − ≤ ≤


− − < −

 ( )11 1
4i iy x= + + ; [ ]100,100 D= −Ω ; [ ]1, 1, , 1∗ = − − −X  ,  

( ) 0.f ∗ =X
 

(13) ( ) ( ) ( )( )1 2 2
13 1 11 2 0.3cos 3π cos 4π 0.3D

i i i iif x x x x−
+ +=

= + − +∑X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ;  

( ) 0.f ∗ =X

 
(14) ( ) ( ) ( ) ( ) ( )2 2 4 44

14 4 3 4 2 4 1 4 4 2 4 1 4 3 41 10 5 2 10 10D
i i i i i i i iif x x x x x x x x− − − − − −=

 = + + − + − + + ∑X ; 

[ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X

 
(15) ( ) ( ) ( ) ( ) ( ) ( )( )0.25 0.11 2 2 2 2 2

15 1 11 , , , sin 50 1D
i i Dif g x x g x x g x y x y x y−

+=
 = + = + × + +  ∑X ;  

[ ]100,100 D= −Ω ; [ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X
 

(16) ( ) ( )( )2
16 110 10cos 2πD

i iif D y y
=

= + −∑X ; 
( )

, 1 2;
round 2 2 1 2.

i i
i

i i

x x
y

x x
 <=  ≥

; [ ]100,100 D= −Ω ;  

[ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X
 

(17) ( ) ( )( ){ } ( )( )max max
17 1 0 0cos 2π 0.5 cos πD k kk k k k

ii k kf a b x D a b
= = =

 = + − ∑ ∑ ∑X ; 0.5a = ; 0.3b = ; max 30k = ; 
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[ ]100,100 D= −Ω ; [ ]0,0, ,0∗ =X  ; ( ) 0.f ∗ =X

 (18) ( )
2 4

2
18

1 1 1
0.5 0.5

D D D

i i i
i i i

f x ix ix
= = =

   = + +   
   

∑ ∑ ∑X ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X

 

(19) ( )
( )
( )

2 2 2
1 1

19 22 21
1 1

sin 100 0.5
0.5

1 0.001 2

D i i

i
i i i i

x x
f X

x x x x

− +

=
+ +

 + − = + 
+ − + 

 

∑ ; [ ]100,100 D= −Ω ; [ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X
 

(20) ( )
( ) ( )

2 21 1 1 2 2
20 1 1

1

0.5
exp cos 4 0.5 1;

8

D i i i i
i i i i

i

x x x x
f x x x x D

− + +
+ +

=

  − + +
  = − × + + + −
  

  
∑X  [ ]100,100 D= −Ω ; 

[ ]0,0, ,0∗ = X ; ( ) 0.f ∗ =X  

7.2. The Experimental Scheme and Parameter Design 
The dimension of all test functions is set to 50D =  ( 14f  for 52D = ) and 100D = . Population size of these 
four algorithms is set to 50N = . For PSO, QPSO and SFLA, the limited iteration number is set to 100G =  
and 1000G = , respectively, and for MQPAPSO, set to 100G = . 

For SFLA, according to Ref. [16], the biggest jump step is set to max 5D = . Because of the sub-group number 
of SFLA is related to the specific problem, we consider some different a variety of groupings, and the best re-
sults are used to compare with other algorithm. Specifically, we take the following six cases: 

1 50 2 25 5 10 10 5 25 2 50 1N = × = × = × = × = × = × , 

where the first number denotes the number of sub-group and the second number denotes the number of frog in 
sub-group. For each of combination, the SFLA is independent run 30 times, and the average optimization result 
over 30 runs and the average time of a single iteration are recorded. In these six groups, the best optimization 
results and the corresponding average time of a single iteration are regarded as a comparison index. 

For PSO, according to Ref. [14], 0.7298w = , 1 2 1.49618c c= = . For QDPSO, according to Ref. [15], the 
control parameters is set to 1.2λ = . For MQPAPSO, phase update step take 0 0.05πθ∆ = . Each function is op-
timized independently 30 times by these three algorithms, and the average optimization results and the average 
time of a single iteration are taken as a comparison index. 

7.3. Comparative Experiment Results 
Experiments conducted using Matlab R2009a. Taking 100G =  as an example, the average time of a single ite-
ration, the results of such comparison are shown in Table 1, the average optimization results for 50D =  and 

100D = , are shown in Table 2 and Table 3. 
For the function if , let the average time of four algorithms for a single iteration be M

iT , Q
iT , P

iT , S
iT , 

respectively, and the average optimization results be M
iQ , Q

iQ , P
iQ , S

iQ , respectively. To facilitate compari-
son, taking MQPAPSO and QDPSO as an example, the ratio of the average time of a single iteration and the ra-
tio of the average optimal results are defined as follows. 

20 20
1 1

,    
20 20

M M
i i
Q QM Mi i

i i
Q Q

T Q
T QT Q

T Q

= =

= =
∑ ∑

                           (19) 

For four algorithms, the ratios of the average time of a single iteration are shown in Table 4, and the ratios of 
the average optimization results are shown in Table 5. 

From Table 1 and Table 4, for single iteration mean time, MQPAPSO is nearly 10 times longer than QDPSO, 
PSO, and SFLA. To make the comparison fair, we must further investigate the optimization results under the 
same running time. This is the fundamental reason why the iteration steps of for QDPSO, PSO, SFLA are set to 

100G =  and 1000G = . From Table 2 and Table 3, the average results of MQPAPSO are far less than the 
other three algorithms in both 100D =  and 1000D = , where shows that the use of multi-bit probability  
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Table 1. The average time contrast of single iteration for the four algorithms (unit: seconds). 

fi 
MQPAPSO QDPSO PSO SFLA 

D = 50 D = 100 D = 50 D = 100 D = 50 D = 100 D = 50 D = 100 

f1 0.0186 0.0290 0.0011 0.0019 0.0009 0.0016 0.0014 0.0020 
f2 0.0187 0.0292 0.0012 0.0020 0.0012 0.0016 0.0017 0.0025 
f3 0.0248 0.0428 0.0064 0.0127 0.0099 0.0227 0.0068 0.0168 
f4 0.0188 0.0296 0.0011 0.0019 0.0009 0.0016 0.0014 0.0024 
f5 0.0230 0.0397 0.0049 0.0095 0.0016 0.0025 0.0022 0.0043 

f6 0.0235 0.0387 0.0018 0.0031 0.0028 0.0048 0.0019 0.0032 

f7 0.0187 0.0291 0.0013 0.0021 0.0016 0.0022 0.0014 0.0024 

f8 0.0191 0.0295 0.0015 0.0023 0.0019 0.0028 0.0024 0.0036 

f9 0.0234 0.0382 0.0016 0.0024 0.0019 0.0028 0.0017 0.0027 

f10 0.0193 0.0301 0.0019 0.0031 0.0028 0.0048 0.0017 0.0028 

f11 0.0234 0.0383 0.0016 0.0024 0.0016 0.0025 0.0017 0.0027 

f12 0.0262 0.0441 0.0096 0.0173 0.0054 0.0089 0.0033 0.0070 

f13 0.0193 0.0298 0.0020 0.0030 0.0025 0.0041 0.0017 0.0030 

f14 0.0233 0.0372 0.0048 0.0089 0.0028 0.0044 0.0024 0.0033 

f15 0.0256 0.0449 0.0031 0.0057 0.0051 0.0096 0.0038 0.0060 

f16 0.0248 0.0418 0.0065 0.0124 0.0028 0.0048 0.0027 0.0043 

f17 0.0378 0.0706 0.0246 0.0486 0.1116 0.2192 0.0292 0.0651 
f18 0.0234 0.0382 0.0017 0.0024 0.0019 0.0025 0.0022 0.0028 
f19 0.0206 0.0314 0.0028 0.0037 0.0038 0.0054 0.0033 0.0041 
f20 0.0212 0.0320 0.0028 0.0039 0.0041 0.0057 0.0043 0.0052 

 
Table 2. The average optimization results contrast for four algorithms (D = 50). 

fi 
MQPAPSO QDPSO PSO SFLA 

G = 100 G = 100 G = 1000 G = 100 G = 1000 G = 100 G = 1000 

f1 1.9E−08 1.5E+03 3.4E−05 3.4E+03 6.0E−05 8.5E+02 0.00108 

f2 1.3E−04 9.4E+10 33.1953 3.8E+15 1.3E+02 2.8E+02 2.6E+02 

f3 3.7E−09 3.9E+04 1.1E+04 6.7E+04 1.6E+04 6.3E+03 2.5E+03 

f4 0.00101 36.9364 10.2029 61.9675 54.6625 12.1258 9.71406 

f5 73.2154 1.2E+08 1.3E+02 2.7E+08 2.0E+02 1.1E+07 4.8E+02 

f6 4.1E−11 7.2E+07 2.1E+02 3.7E+08 1.5E+05 1.2E+04 2.3E−09 

f7 7.9E−06 1.9E+03 2.9E+02 3.3E+03 3.7E+02 1.4E+03 1.0E+03 

f8 3.3E−05 21.1629 20.5964 21.2778 21.1744 17.0524 15.7169 

f9 4.9E−10 11.1857 0.00352 23.6757 0.03275 2.00564 0.01209 

f10 18.5824 2.7E+04 10.5743 6.5E+04 23.4260 1.8E+03 12.7798 

f11 2.8E+04 1.6E+06 8.4E+04 5.1E+06 4.2E+05 9.7E+05 2.4E+04 

f12 0.18150 2.9E+07 0.28276 6.5E+07 1.65872 1.1E+04 17.3770 

f13 7.6E−07 4.2E+03 0.00231 1.0E+04 4.00830 3.2E+03 13.9008 

f14 3.9E−11 2.9E+06 7.3E+04 3.9E+07 4.5E+07 8.1E+05 3.4E+04 

f15 0.25413 2.3E+02 26.5175 3.0E+02 1.7E+02 1.7E+02 1.5E+02 

f16 2.2E−06 1.9E+03 3.5E+02 3.5E+03 3.9E+02 1.3E+03 1.0E+03 

f17 0.51201 67.3310 47.5805 78.8131 75.8892 48.0274 33.5393 
f18 1.1E−05 8.0E+04 4.1E+04 1.2E+05 9.8E+04 8.0E+03 5.4E+03 
f19 1.5E−04 0.49997 0.49959 0.49999 0.49998 0.49469 0.49168 
f20 1.1E−06 46.2759 34.4948 47.2014 45.7578 44.0433 43.4175 
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Table 3. The average optimization results contrast for four algorithms (D = 100). 

fi 
MQPAPSO QDPSO PSO SFLA 

G = 100 G = 100 G = 1000 G = 100 G = 1000 G = 100 G = 1000 

f1 5.7E−08 2.3E+04 1.2E+02 3.9E+04 2.7E+02 3.3E+03 5.48043 

f2 6.3E−04 1.0E+20 6.0E+02 5.4E+25 1.2E+15 5.9E+02 5.7E+02 

f3 2.2E−08 1.9E+05 1.1E+05 3.0E+05 2.4E+05 2.4E+04 1.4E+04 

f4 0.00133 67.7123 44.9334 85.5049 85.4186 15.2185 13.0471 

f5 1.3E+02 4.1E+09 5.3E+05 9.4E+09 6.5E+07 3.0E+07 1.0E+05 

f6 1.6E−09 4.0E+09 2.2E+08 1.5E+10 5.9E+08 2.4E+06 28.1635 

f7 2.5E−05 2.1E+04 1.4E+03 4.3E+04 2.5E+03 4.4E+03 3.7E+03 

f8 5.4E−05 21.2627 21.0887 21.4234 21.3745 18.4078 17.1200 

f9 1.5E−08 1.4E+02 1.42371 2.4E+02 2.74191 18.7604 0.22863 

f10 21.6660 4.7E+05 1.0E+02 9.4E+05 6.7E+03 2.6E+03 16.4156 

f11 2.4E+05 2.0E+08 2.1E+07 4.9E+08 1.1E+08 3.0E+08 1.8E+06 

f12 0.25614 1.8E+09 2.7E+03 4.2E+09 1.3E+07 7.5E+04 26.5760 

f13 1.6E-06 6.9E+04 7.8E+02 1.1E+05 1.0E+03 1.0E+04 58.7252 

f14 9.6E−11 9.3E+07 4.4E+06 1.0E+09 1.5E+09 3.8E+06 3.3E+05 

f15 0.67362 6.7E+02 3.5E+02 8.1E+02 5.5E+02 3.8E+02 3.4E+02 

f16 1.0E−05 2.2E+04 1.4E+03 4.3E+04 3.2E+03 3.9E+03 3.7E+03 

f17 1.06924 1.4E+02 1.1E+02 1.7E+02 1.6E+02 1.2E+02 1.0E+02 

f18 1.3E−05 1.9E+05 1.4E+05 3.0E+05 2.4E+05 2.1E+04 1.9E+04 

f19 0.00127 0.49999 0.49998 0.49999 0.49999 0.49774 0.49830 

f20 0.00222 96.3208 83.6293 97.0198 95.6162 92.8530 90.5664 

 
Table 4. The ratio of single iteration average time for four algorithms. 

D M QT T  M PT T  M ST T  

50 9.863512 9.800094 9.620418 

100 9.785713 10.03969 9.752004 

AVG 9.824613 9.919894 9.686211 

 
Table 5. The ratio of average optimization results for four algorithms. 

D 
100

M Q
GO O=  100

M P
GO O=  100

M S
GO O=  

210G =  310G =  210G =  310G =  210G =  310G =  

50 0.001361 0.165868 0.000671 0.067214 0.002587 0.140945 

100 0.000623 0.012133 0.000510 0.000795 0.001124 0.073973 

AVG 9.92E-04 0.089001 5.91E-04 0.034004 0.001856 0.107459 
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amplitude coding and evolutionary mechanisms can indeed improve the optimization capability. From Table 5, 
in the same iteration steps, the optimization result of MQPAPSO is only one thousandth of that of QDPSO. On 
the other hand, in the same running time, the optimization result of MQPAPSO is only nine percent of QDPSO. 
Experimental results show that multi-bit probability amplitude coding method can indeed significantly improve 
the optimization ability of the traditional PSO algorithm and other similar algorithms. 

8. Conclusion 
In this paper, a quantum-inspired particle swarm optimization algorithm is presented encoded by probability 
amplitudes of multi-qubits. Function extreme optimization results show that under the same running time, the 
optimization ability of proposed algorithm has greatly superior to the traditional methods, revealing that the 
multi-qubits probability amplitude encoding method indeed greatly enhances the ability of traditional particle 
swarm optimization performance. 
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