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Abstract 
In this study, the influence of geometrical parameters on the curve veering phenomenon in a tor-
sional system with stepped shaft is investigated. Three approximate solutions including finite 
element, Rayleigh-Ritz and discretization methods, along with an exact solution are employed to 
obtain the natural frequencies of the structure. The study reveals that, under specific circums-
tances, the results obtained by approximate methods are very close to the exact solution. The 
curve veering behavior is manifested irrespective of the method employed. It is concluded that for 
the structure studied the curve veering behavior is not because of the approximate techniques 
used to compute the natural frequencies, and is an inherent behavior of the structure. 
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1. Introduction 
Curve veering is defined as an abrupt veering of the natural frequency plots, when plotted against some system 
parameters [1]. This phenomenon was reported by Warburton [2], for the first time. Curve veering was observed, 
when variation of natural frequencies of the rectangular plate against side ratio was plotted. Leissa [3] observed 
curve veering in the vibration of square plates. When the variation of natural frequencies against aspect ratio 
was plotted, it was observed that the curves change smoothly everywhere except in some regions, where they 
show sudden changes. Leissa called these regions “transition zones” and showed that this behavior is attributed 
to approximate solution employed for finding the natural frequencies of the structure. The curve veering disap-
peared when an exact solution was employed. Schajer [4] reported an interesting feature of curve veering in vi-
bration analysis of the vibrating string with a spring support. The study showed that curve veering is not limited 
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to approximate solutions, and it may be an inherent behavior of some vibrating systems. Curve veering as an in-
herent property of the structure may be seen in rotating disks and plates [5], clamped beams on intermediate 
elastic supports [6] and vibration of disordered systems [7]. The significance of curve veering derives from the 
fact that, a small variation of frequency in the transition zone may yield a sudden change in the vibrational mode. 
If an external force excites the ith natural frequency of the structure in the transition zone, a small change of ex-
citation frequency causes the (i+1)th frequency of the structure to be excited. As a result, a small change in ex-
citation frequency yields a sudden change in the normal mode of the structure, and the satisfactory performance 
of the structure may be severely affected. The effect of frequency curve veering in instability of mechanical 
structures has been widely addressed. For example, mode localization reported in shallow arch [8], engineering 
structures [9] and cantilever beam [10] may be regarded as a result of curve veering in these structures. Moreo-
ver, estimation and veering analysis of imperfect structures such as cracked plate [11], nonlinear beam with 
geometry imperfection [12] and system with gyroscopic coupling [13] have been reported in the literature. It is 
worth noting that, frequency curve veering may cause localized buckling [14] or wrinkling in specific structures 
[15]. 

In high speed rotating machinery, a considerable number of studies have been carried out on the natural fre-
quencies and mode shapes. Most often, in view of the complex geometry of the rotor systems, they are treated as 
lumped rotors mounted on shafts. In many practical situations, the shafts may have different cross sections and 
may have stepped configuration. Accurate determination of the natural frequencies is imperative in order to en-
sure that the system does not operate near resonant frequencies and particularly in the vicinity of curve veering 
ranges. Exact solutions are possible only in the case of well-defined uniform shaft geometries, and for practical 
rotors with many cross sectional changes, approximate techniques such as the discretization method, the Ray-
leigh Ritz method, finite element method are used. The first general theory for free vibration analysis of torsion-
al systems was reported by Beddoe [16]. A one dimensional wave equation was employed to derive equation of 
motion of the structure. Maltbeak [17] [18] and Rao [19] studied free torsional vibration of uniform shafts with 
discrete inertias. Maltbeak assumed a sinusoidal angular displacement along the shaft. Wilson [20] utilized ef-
fective inertia method to analyze torsional vibration of a complicated system. To this end, the main structure was 
divided into some simple sub models, and the sub models were analyzed individually. Finally, Wilson found 
frequency characteristics of the main structure using a combination of the results obtained from the sub models. 
Leissa and So [21] applied three dimensional solution for estimation of natural frequencies of the shaft structure.  

In the present study, a stepped shaft supporting a rotating disk at the tip is analyzed for its curve veering be-
havior by computing the natural frequencies by different methods. The effect of geometric parameters of the 
stepped shaft disk system on the curve veering phenomenon is investigated. Although approximate solutions ex-
hibit curve veering in the structure, an exact method is also employed to confirm this phenomenon as an inherent 
property of the structure. 

2. Mathematical Formulation 
An isotropic, homogeneous torsional system composed of a stepped shaft with a lumped disk at the tip, as de-
picted in Figure 1, is used in the study. The length and diameter of upper and lower shafts are 1L , 1d  and 2L , 

2d , respectively, and total length of the stepped shaft is L. Moreover, M and d denote the mass and diameter of 
the lumped disk. 

2.1. Exact Solution 
The equation of motion of the shaft is given by: 

2 2

2 2

G
t x
θ θ

ρ
 ∂ ∂

=  ∂ ∂ 
                                       (1) 

where ρ , G  and θ  are density, shear modulus and twist angle of the shaft, respectively. The solution of 
Equation (1) may be found as follows [22]: 

( ) ( ) ( ) [ ] ( ) ( ), sin cos sin cosx t A G x B G x C t D t x f tθ ω ρ ω ρ ω ω = + + = Θ              (2) 

where ω  is the frequency of vibration and A, B, C and D are unknown coefficients. The characteristic equation  
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Figure 1. Stepped shaft connected 
to disk.                          

 
is obtained by substituting the boundary conditions as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

1 1 2 1 2 1 2
2 2

2 2 2

sin cos sin 0
cos sin cos 0

0 cos sin sin cos 0
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p p
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I L I L I L A

J L GI L J L GI L B

λ λ λ
λ λ λ

ω λ λ λ ω λ λ λ

 − −    
     − =    

    + −     

          (3) 

where Gλ ω ρ=  and 1 2,  p pI I  and J are polar moment of inertia of upper shaft, polar moment of inertia of 
lower shaft and polar mass moment of inertia of the disk, respectively, and 2A , 1B  and 2B  are unknown 
coefficients. For non-trivial solutions, the determinant of the matrix should be set to zero which will yield the 
natural frequencies. 

2.2. The Rayleigh-Ritz Method 
In the Rayleigh-Ritz solution, displacement field of a structure is defined as linear combination of admissible 
functions. In this study, the deflection shape is considered as: 

( ) ( ) ( )1 1 2 2x c x c xθ θ θ= + +                                 (4) 

where ( )i xθ  are admissible functions satisfying at least the geometrical boundary conditions and ic  are ar-
bitrary coefficients. For a shaft with distributed mass and elasticity, the kinetic and potential energy expressions 
are given by: 

2

max 0

1 d d
2 d

L
pU GI x

x
θ =  

 ∫                                    (5) 

( )2 2
max 0

1 d
2

L
pT I x xρ ω θ= ∫                                  (6) 

where ω  is the frequency of vibration. For harmonic vibrations, we have: 

max maxU T=                                              (7) 

The conditions for the stationary of the natural frequencies with respect to the arbitrary coefficients in the as-
sumed deflection expression formulate the eigenvalue problem of the structure. It is well-known that the natural 
frequencies obtained by the Rayleigh-Ritz method are the upper bound. In this study, the following formulation 
is employed to obtain orthogonal admissible functions [23]. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2; ; i i i i ix x x x B x x x B x C xθ θ θ θ θ θ− −= = − = − −                  (8) 
where 
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It should be noted that, increasing the number of admissible functions improves the convergence of the re-
sults. 

2.3. Discretization Method 
Discretization technique may be regarded as the simplest, and the least accurate method that is used to find the 
fundamental frequency of the structure quickly. In this solution, the stiffness constants of the upper and lower 
shafts are found, individually. Total stiffness of the stepped shaft is obtained as a series combination of these 
two shaft segments. It should be noted that, solving the problem using this approach necessitates assuming linear 
torsional deflection through the stepped shaft, while the exact solution reveals trigonometric functions for the 
shaft deflection. The stiffness constants of the upper and lower shafts are 

,    1, 2pi
i

i

GI
K i

L
= =                                   (11) 

where ,  piG I  and iL  are shear modulus, polar moment of inertia and length of each shaft, respectively. Total 
stiffness of the stepped shaft is given by: 

( )1 2 1 2eqK K K K K= +                                 (12) 

Finally, fundamental frequency of the structure is obtained as: 

eqK Jω =                                         (13) 

where J  is polar mass moment of inertia of the disk. 

3. Results and Discussion 
In this study, the following base line values are assumed in the analysis: shear modulus of the structure is 79.3 
Gpa, density is 7800 kg/m3, 1L , 2L , 1d , 2d , d and M are chosen to be 1 m, 1 m, 0.1 m, 0.05 m, 0.5 m and 
100 kg, respectively. It should be noted that, all natural frequencies are given in rad/s. 

3.1. Comparison of the Results 
The exact solution for the fundamental frequency of the structure is obtained as 121.022 rad/s. The results ob-
tained by the Rayleigh-Ritz solution reveal that, using one term of admissible function gives fundamental fre-
quency of the structure as 256.88 rad/s. It should be noted that, the admissible functions satisfy the geometric 
boundary condition, along with continuity of the angular displacement and torque at the point of step change in 
the shaft cross section. Table 1 shows convergence of the fundamental frequency when the admissible functions 
satisfy only the geometric boundary conditions. The results given in Table 1 indicate that, they converge to the 
exact value, although the rate of convergence is poor. 
 

Table 1. Variation of fundamental frequency versus the number 
of admissible functions in Rayleigh-Ritz method, when d1 = 0.1 
m, d2 = 0.05 m, d = 0.5 m and M = 100 kg.                     

Number of admissible functions First frequency 

1 
2 
3 
4 
5 
6 
7 
8 

256.868 
165.885 
137.485 
136.992 
130.562 
130.562 
127.832 
127.790 
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Just using two elements in the finite element model yields the same result as obtained by the exact solution. It 
is interesting to note that the discretization technique gives fundamental frequency of the structure equal to 
121.056 rad/s. The discretization technique considered the displacement field of the structure as a linear function, 
while the exact solution uses trigonometric functions to describe the displacement field. This is attributed to the 
magnitude of λ in the exact solution, which has a very small value. In fact, in this order of λ, ( )sin λ  may be 
assumed to be equal to λ; as a result, the frequency obtained by linear deflection assumption is the same as that 
of the exact solution. In order to clarify this behavior, another example is presented. In this example, all para-
meter values of the structure remain unchanged except the density, which is assumed to be 378000000 kg mρ = . 
In this case, λ  does not have a small value and ( )sin λ λ≠ . The fundamental frequency obtained by the exact 
solution is 40.8408 rad/s, while the frequency obtained using discretization technique is equal to 121.056 rad/s. 
Moreover, the Rayleigh-Ritz method—using one admissible functions satisfying geometric boundary condition 
and continuity of torque and displacement—yields 46.7483 rad sω = . The difference between these results de-
rives from the fact that, for higher values of λ , the assumption of linear deflection through the shaft is incorrect. 
In this case, more terms in the Rayleigh-Ritz method is required to obtain accurate results. 

3.2. Curve Veering 
When the variation of natural frequencies against length ratio ( )1L L  is plotted, the curves change smoothly 
everywhere except in some regions, where they show sudden changes. As mentioned earlier, Leissa [2] called 
these regions “transition zones”. This behavior was reported as a result of approximate solution method used to 
solve the problem, but in the present study curve veering is present whether the results are obtained by the exact 
method or the approximate methods. Hence, the curve veering may be regarded as an inherent behavior of the 
system. Figure 2 shows the variation of the first five natural frequencies against length ratio, when 1 0.1 md = , 

2 0.01 md = , 0.5 md =  and M = 100 kg. It is observed that, the variation of the fundamental frequency of the 
structure against length ratio is not significant. In fact, the curve veering does not occur, when the structure vi-
brates in the first vibrational mode. The curve veering may be observed in other modes of vibration. The graph  
 

 
Figure 2. Variation of first five frequencies of the structure versus length ratio when d1 = 0.1 m, d2 = 0.01 m, d = 0.5 m and 
M = 100 kg.                                                                                                
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shows that the number of transition zones increases when mode number increases. For instance, there is just one 
transition zone in the second mode of vibration, while three, five and seven transition zones may be observed in 
the third, fourth and fifth vibrational modes, respectively. In order to understand the curve veering phenomenon, 
transition zone corresponding to the fourth and fifth modes has been magnified. It can be seen that, natural fre-
quencies approach each other and veer away in this region. This behavior is of great significance for the design-
ers. 

Table 2 shows the variation of the first five resonant frequencies of the structure, when d1 = 0.1 m, d2 = 0.01 
m, d = 0.5 m and M = 100 kg and 10.05 0.25L L< < . For the range of 1L L  considered, the shaft behaves, 
approximately, as a slender bar of d2 = 0.01 m; as a result, the fundamental natural frequency of the structure 
becomes very low, in the range of 3 - 4 rad/s. The bold frequencies indicate the curve veering point in the transi-
tion zones. In Figure 3 the variation of the first five natural frequencies versus length ratio of the structure is 
shown when d1 = 0.1 m, d2 = 0.05 m, d = 0.5 m and M = 100 kg. In this case, the curve veering is observed. 
Figure 4 shows an analogous study on the structure, when d2 = 0.095 m. It may be seen that variation of length 
ratio does not show a drastic change in the frequencies. It is attributed to the diameter of upper and lower shafts, 
which have almost the same magnitudes. 
 
Table 2. Variation of first five frequency of the structure versus length ratio, when d1 = 0.1 m, d2 = 0.01 m, d = 0.5 m and M 
= 100 kg.                                                                                                   

L1/L First Second Third Fourth Fifth 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 

3.640 
3.660 
3.679 
3.700 
3.720 
3.741 
3.762 
3.783 
3.806 
3.828 
3.851 
3.874 
3.897 
3.897 
3.945 
3.970 
3.996 
4.022 
4.048 

5329 
5386 
5444 
5504 
5565 
5628 
5692 
5757 
5824 
5893 
5963 
6035 
6108 
6184 
6261 
6340 
6421 
6505 
6590 

10657 
10771 
10888 
11008 
11130 
11255 
11383 
11514 
11648 
11785 
11925 
12069 
12215 
12365 
12482 
11924 
11383 
10888 
10435 

15985 
16157 
16332 
16512 
16695 
16883 
17074 
17270 
17467 
16694 
15652 
14732 
13914 
13183 
12562 
12682 
12844 
13010 
13181 

21313 
21542 
21776 
22015 
22260 
22501 
20869 
19265 
17680 
17889 
17893 
18104 
18325 
18551 
18873 
19020 
19264 
19514 
19771 

 
Frequency (rad/s) 

 
L1/L

      
Figure 3. Variation of first five frequencies of the structure versus length ratio when d1 = 0.1 m, d2 = 0.05 m, d = 
0.5 m and M = 100 kg.                                                                              
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Figure 4. Variation of first five frequencies of the structure versus length ratio when d1 = 0.1 m, d2 = 0.095 m, d = 
0.5 m and M = 100 kg.                                                                             

4. Conclusion 
This study deals with an analysis on the curve veering phenomenon in a torsional structure, which consists of a 
stepped shaft and a rotating disk. Different approximate techniques including the Rayleigh-Ritz, finite element 
and discretization methods, along with the exact solution were employed to extract natural frequencies of the 
structure. The results reveal that curve veering in this structure is not due to application of approximate solution, 
and it appears even if an exact solution is employed. As a result, the curve veering may be regarded as an inhe-
rent behavior of the structure. The geometric parameters affect the curve veering, noticeably. Moreover, a com-
parison of the results obtained by approximate solutions and those of the exact one was carried out. It was rea-
lized that, under some specific geometries and material properties, the frequencies obtained from approximate 
solutions are as accurate as the exact solution. Under such conditions, the trigonometric functions which de-
scribe angular displacement field can be replaced by a linear function. 
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