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Abstract 
The main aim of this paper is to apply the Hermite trigonometric scaling function on [0, 2π] which 
is constructed for Hermite interpolation for the linear Fredholm integro-differential equation of 
second order. This equation is usually difficult to solve analytically. Our approach consists of re-
ducing the problem to a set of algebraic linear equations by expanding the approximate solution. 
Some numerical example is included to demonstrate the validity and applicability of the presented 
technique, the method produces very accurate results, and a comparison is made with exiting re- 
sults. An estimation of error bound for this method is presented. 
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1. Introduction 
In this paper we solve the Fredholm Linear Integro-Differential Equations as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
0 1 2 0 10

, d , 0 1, 0 , 1x x u x x u x g x k x t u t t x u u u uµ µ µ′ ′′+ + = + ≤ ≤ = =∫         (1) 

where ( )i xµ , ( )f x , and ( ),lK x t  are given functions that have suitable derivatives, and 0u  and 1u  are 
given real constans. In most situations, it is difficult to obtain exact solution of the above integration. Hence 
various approximation method have been proposed and studied. The purpose of the present paper is to develop a 
trigonometric Hermite wavelet approximation for the computing of the problem [1]. 
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Systems of integro-differential equations have a major role in the fields of science, physical phenomena, and 
engineering, such as nano-hydrodynamics, glass-forming process, dropwise condensation, wind ripple in the de- 
sert, and modeling the competition between tumor cells and the immune system. The concept of a system of 
integro-differential equations has motivated a huge amount of research work in recent years. Alot of attention 
has been devoted to the study of differential-difference equations, e.g. equations containing shifts of the un- 
known function and its derivates, and also integro-differential-difference equations. For instance, see [2] [3]. 
There are several numerical methods for solving system of linear integro-differential equations, for example, the 
rationalized Haar functions method [4], Galerkin methods with hybrid functions [5], the spline approximation 
method [6], the Chebyshev polynomial method [7], the spectral method [8], the CAS wavelet method [9], Ruge- 
Kutta methods [10], the Adomian decomposition methods [11], and the interested reader can see [12] [13] for 
more published research works in the subject. 

Our approach consists of reducing the problem to a set of linear equations by trigonometric scaling functions 
which is constructed for Hermite interpolation. A difficulty of using wavelet for the representation of integral 
operators is that quadrature leads to potentially high cost with sparse matrix. This fact particularly encourages us 
in efforts to devote to some appropriate wavelet bases to simplify the computation expense of the reoresentation 
matrix, which is importent to improve the wavelet method. Recently, the trigonometric interpolant wavelet has 
arisen in the approximation of operators [14]-[16]. Quack [17] has constructed a multiresolution analysis (MRA). 
Chen [18] [19] presented the feasibility of trigonometric wavelet numerical methods for stokes problem and 
Hadamard integral equation. 

The organization of the rest of this paper is as follows: Section (0) describe the trigonometric scaling function 
on [ ]0,2π , and construct the operational matrix of derivative for these function. Section (0) summarizes the 
application of trigonometric scaling functions to the solution of Problem (1). Thus, a set of linear equations is 
formed and a solution of the considered problem is introduced. In Section (0), we report our computational 
results and demonstrate the accuracy of the proposed numerical schemes by presenting numerical examples. 
Note that we have computed the numerical results by MATLAB programming. 

2. Interpolatory Hermite Trigonometric Wavelets 
In this section, we will give a brief introduction of Quak’s work on the construction of Hermite interpolatory 
trigonometric wavelets and their basic properties. More details can be found in (see [17]). 

For all { }0j∈ =   , two scaling functions ( )0
,0j xϕ  and ( )1

,0j xϕ  are defined as 
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where the Dirichlet kernel ( )lD x  and its conjugate kernel ( )lD x  are defined as 
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Obviously, ( ) ( ),l l lD x D x T∈ , where lT  is the linear space of trigonometric polynomials with degree not  

exceeding l. The equally spaced nodes on the interval [ )0,2π  with a dyadic step are denoted by ,
π

2j l j

lt = , for  
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any 0j∈  and 1= 0,1, , 2 1jl + − , where 0  is the set of all non-negative integers. Let 
( ) ( ), ,0 ,

s s
j l j j lx x tϕ ϕ= − , for 0,1s = , and 10,1, , 2 1jl += − . 
Lemma 1 (See [17].) For 0 ,j∈  we have 
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and their derivations are given by 
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Theorem 1 (Interpolatory properties of the scaling functions). (See [17]) For 0j∈ , the following inter- 
polatory properties hold for each 1, 0,1, , 2 1jl k += −  

( ) ( )( )
( ) ( )( )

0 0
, , , , ,

1 1
, , , , ,

, 0,

0, .

j l j k k l j l j k

j l j k j l j k k l
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ϕ δ ϕ

ϕ ϕ δ

′= =

′= =
                              (4) 

From above we can take wavelet functions ( ) ( )0 1 1
, ,, , 0,1, , 2 1j

j l j lx x lϕ ϕ += −  as scaling functions. Now, we 
can define the scaling function spaces jV . Then we have 

Definition 2 (Scaling functions space). For all 0j∈  define the wave space jV  as follows 

( ) ( ){ }0 1 1
, ,, , 0,1, , 2 1j

j j n j nV span t t nϕ ϕ += = −  

As a first step of studying the spaces jV , the following result identifies the trigonometric polynomials which 
from alternative bases of these spaces. 

Now a Hermite-type project operator can be introduced by means of the scaling functions. For all 0j∈  
the Hermite projection operators jL  mapping any real-valued differentiable 2π -periodic function f into the 
space jV  is defined as 

( ) ( ) ( ) ( )
12 1

0 1 T
, ,

0

j

j k j k k j k
k

f x L f x a x b x Cϕ ϕ
+ −

=

 + = Φ ∑                      (5) 

where ( ),k j ka f t= , ( ),k j kb f t′= , C, and Φ  are vectors with dimension 22 1j+ × . The following properties 
of the operators jL  are therefore obvious: 

12 jjL T +∈  

( ) ( ) ( ) ( ) ( ), , , ,and ,j j k j k j j k j kL f x f x L f x f x k′ ′= = ∈  
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for all .j jL f f f V= ∈  

Theorem 3 Let ( ) 2
2πf x L∈ , and its trigonometric wavelet approximation is JL f , then we have 

( ) ( ) ( )
2
2π

2 12 J
J L

f x L f x C − +− ≤  

where C is a positive constant value. 
Proof. See [17]. 
Lemma 2 (The operational matrix of scaling function derivative). (See [20]) The differentiation of vector Φ  

in 5 can be expressed as [20] 

Dφ′Φ = Φ  

where Dφ  is 2 22 2J J+ +×  operational matrix of derivative for trigonometric scaling function. Suppose 
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where 10,1, , 2 1jm += −  and 0,1s = . So the matrix Dφ  can be respresented as a block matrix as 
0 0

1 1

A B
D

A B
 

=  
 

 

where sA  and sB  are 1 12 2j j+ +×  matrices. The entries of matrices sA  and sB  may be find by using 
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where 0A  is a 1 12 2j j+ +×  zero matrix, 1A  is a 1 12 2j j+ +×  identity matrix. Using ,
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Using 7 and ( ) ( )( ) ( )( ), , , ,0 , 0,1s s s s
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and 
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for 1, 0,1, , 2 1jk m += − .  

3. Procedure Solution Using the Trigonometric Scaling Function 
In this section, we first give the computational schemes for Equation (1) with the Newton-Cotes formulas. For 
either one of these rules, we can make a more accurate approximation by breaking up the interval [ ]0,1  into 
some number N of subintervals. This is called a composite rule, extended rule, or iterated rule. For example, the 
composite trapezoidal rule for the discretization form of (1) can be stated as 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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where the subintervals have the form ( ), 1kh k h+   , with 1h
N

=  and 0,1, , 1k N= − . By introducing a 

basis { },j kφ  for the subspace JV , the coefficients vector ( )u x  of the discrete solution is defined by 
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where C is 22 1J + ×  unknown vector defined similar to (5). By substituting ( )jL u x  and using Lemma (2) in (1) 
we have a linear system. Now for determining unknown coefficients vector C or ka  and kb , we choose collo- 
cation method with choosing collocation points as 
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By using Lemma 2 and after summarizing Equation (13) can be rewritten as the matrix form ZX F=  where 
10,1, , 2 1Jk += − , 1, 1, , 2Ji j +=  , and 20,1, , 2 1Jτ += − . Now, let us calculate the entries  

,
, , , 1, 2m s
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where the matrix 0A , 1A , 0B , and 1B  defined in Lemma (2), and I is a 1 12 2j j+ +×  identity matrix. So the 
unknown function ( )Ju x  can be found. Note that we find these function by MATLAB. 

4. Numerical Example 
To support our theoretical discussion, we applied the method presented in this paper to several examples. The 
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main objective here is to solve these two examples using the trigonometric scaling function and compare our 
results with exact solution. 

Example 4 Consider the second-order the Fredholm Linear Integro-Differential Equation 

( )
( ) ( )

( )
4 21

3 202 2

8 14 2 d
1 1

x ty x xy y t t
x x

+′′ ′+ = − −
+ +

∫  

with the mixed conditions ( )0 1y =  and ( ) 11
2

y = . The exact solution of this problem is ( )( )12 1x
−

+ . We  

apply the suggested method with 1J =  and 2J = . The behavior of the approximate solution using the 
proposed method with 1J = , 2J =  and the exact solution are presented in Figure 1. In Table 1, we give the 
errors JE  of matrix A for different values of J. From this figure, it is clear that the proposed method can be 
considered as an efficient method to solve the linear integral equations. From Table 1 we see the errors decrease 
rapidly as J increase. 

In Table 2 we compare the new method with 1J = , 2J =  and 3J =  together with the exact solution. For 
the purpose of comparison we defined the meximum error for ( )Ju x  as 

( ) ( ) ( ) ( ){ }max ,J J JE u x u x u x u x a x b
∞

= − = − ≤ ≤  

Example 5 Consider the following second-order the Fredholm Linear Integro-Differential Equation 

( )
( )

( ) ( )
1

12 2
0

1 e50 50 35 e e d
1

x
x xtx u x xu x x u t t

x

+−′′ ′+ = + − +
+ ∫  

with the initial conditions ( )0 1u = , ( )1 eu =  and exact solution ex . This problem is solved by the same me- 
thods applied in example (4). Results are shown in Figure 2. From this figure, it is clear that the proposed 
method can be considered as an efficient method to solve the linear integral equations. For the purpose of com- 
parison in Table 3 we give the errors JE  of matrix A for different values of J. From Table 4 we see the errors 
decrease rapidly as J increase. In Table 4 we compare the new method with J = 1, J = 2 and J = 3 together with 
the exact solution. 
 
Table 1. The maximum error matrix A from Example 4.                                                           

J 1J =  2J =  3J =  4J =  5J =  

JE  32.5 10−×  53.5 10−×  65.2 10−×  72.6 10−×  85.8 10−×  

 
Table 2. Error analysis and numerical results of Example 4.                                                       

it  Exact solution for 1ju J =  for 2ju J =  for 3ju J =  

0 1.00000000 00e −  1.00000000 00e −  1.00000000 00e −  1.00000000 00e −  

0.125 9.84643786 01e −  9.81250761 01e −  9.84057813 01e −  9.84643237 01e −  

0.2500 9.41218794 01e −  9.4075171 01e −  9.41102894 01e −  9.41218075 01e −  

0.3750 8.76735484 01e −  8.76170942 01e −  8.76731207 01e −  8.76730782 01e −  

0.5000 8.00001246 01e −  8.00180793 01e −  8.00080476 01e −  8.00001107 01e −  

0.6250 7.19101507 01e −  7.18017064 01e −  7.19852079 01e −  7.19101672 01e −  

0.7500 6.40018961 01e −  6.31094827 01e −  6.4180973 01e −  6.40018843 01e −  

0.8750 5.66434082 01e −  5.50789164 01e −  5.66027815 01e −  5.66434729 01e −  

 
Table 3. The maximum error matrix A from Example 5.                                                         

J 1J =  2J =  3J =  4J =  5J =  

JE  52.9 10−×  65.2 10−×  75.9 10−×  72.2 10−×  81.2 10−×  
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Figure 1. Result EX.4 for J = 1 and N = 7; Result EX.4 for J = 2 and N = 7.            



H. Safdari, Y. E. Aghdam 
 

 
142 

 
 

 
Figure 2. Result EX.5 for J = 1 and N = 7; Result EX.5 for J = 2 and N = 7.            
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Table 4. Error analysis and numerical results of Example 5.                                                      

it  Exact solution for 1ju J =  for 2ju J =  for 3ju J =  

0 1.00000000 1.00104921 1.00002430 1.00000013 

0.125 1.13310019 1.13048310 1.13307891 1.13310007 

0.2500 1.28400186 1.28178029 1.28314720 1.28400134 

0.3750 1.45500374 1.45304829 1.45456781 1.45500352 

0.5000 1.64870391 1.64910273 1.64820756 1.64870372 

0.6250 1.86820582 1.86705912 1.86835405 1.86820565 

0.7500 2.11704076 2.11078316 2.11527804 2.11704052 

0.8750 2.39893108 2.39719802 2.39884240 2.39893214 

5. Conclusion 
Our results indicate that the method with the trigonometric scaling bases can be regarded as a structurally simple 
algorithm that is conventionally applicable to the numerical solution of IDEs. In addition, although we have re- 
stricted our attention to linear Fredholm IDEs, we expect the method to be easily extended to more general IDEs. 
the presented method which is based on the trigonometric scaling function is proposed to find the approximate 
solution. A comparison of the exact solution reveals that the presented method is very effective and convenient. 
Nevertheless, as Figure 1 and Figure 2 illustrate, the error of the trigonometric scaling bases shows that the ac-
curacy improves with increasing J, hence for better results, using number J is recommended. Also form the ob-
tained approximate solution, we can conclude that the proposed method gives the solution in an excellent agree- 
ment with the exact solution. All computations are done using MATLAB programming. 

Acknowledgements 
The authors are very grateful to the editor for carefully reading the paper and for their comments and sugges- 
tions which have improved the paper. 

References 
[1] Desmond, R.A., Weiss, H.L., Arani, R.B., Soong, S.-J., Wood, M.J., Fiddian, P., Gnann, J. and Whitley, R.J. (2002) 

Clinical Applications for Change-Point Analysis of Herpes Zoster Pain. Journal of Pain and Symptom Management, 23, 
510-516. http://dx.doi.org/10.1016/S0885-3924(02)00393-7 

[2] Wazwaz, D.D., Dimitrova, M.B. and Dishliev. A.B. (2000) Oscillation of the Bounded Solutions of Impulsive Diffe-
rential-Difference Equations of Second Order. Applied Mathematics and Computation, 114, 61-68. 
http://dx.doi.org/10.1016/S0096-3003(99)00102-2 

[3] Gulsu, M. and Sezer, M. (2006) A Taylor Polynomial Approach for Solving Differential-Difference Equations. Journal 
of Computational and Applied Mathematics, 186, 349-369. http://dx.doi.org/10.1016/j.cam.2005.02.009 

[4] Maleknejad, K., Mirzaee, F. and Abbasbandy, S. (2004) Solving Linear Integro-Differential Equations System by Us-
ing Rationalized Haar Functions Method. Applied Mathematics and Computation, 155, 317-328. 
http://dx.doi.org/10.1016/S0096-3003(03)00778-1 

[5] Maleknejad, K., Tavassoli, M. and Kajani, M. (2004) Solving Linear Integro-Differential Equation by Galerkin Me-
thods with Hybrid Functions. Journal of Computational and Applied Mathematics, 159, 603-612. 
http://dx.doi.org/10.1016/j.amc.2003.10.046 

[6] Ganesh, M. and Sloan, I.H. (1999) Optimal Order Spline Methods for Nonlinear Differential and Integro-Differential 
Equations. Applied Numerical Mathematics, 29, 445-478. http://dx.doi.org/10.1016/S0168-9274(98)00067-1 

[7] Dascoglua, A. and Sezer, M. (2005) Chebyshev Polynomial Solutions of Systems of Higher-Order Linear Fredholm- 
Volterra Integro-Differential Equations. Journal of the Franklin Institute, 342, 688-701. 
http://dx.doi.org/10.1016/j.jfranklin.2005.04.001 

[8] Faour, A.L. and Saeed, R.K. (2006) Solution of a System of Linear Volterra Integral and Integro-Differential Equations 
by Spectral Method. Journal of Al-Nahrain University/Science, 62, 30-46. 

http://dx.doi.org/10.1016/S0885-3924(02)00393-7
http://dx.doi.org/10.1016/S0096-3003(99)00102-2
http://dx.doi.org/10.1016/j.cam.2005.02.009
http://dx.doi.org/10.1016/S0096-3003(03)00778-1
http://dx.doi.org/10.1016/j.amc.2003.10.046
http://dx.doi.org/10.1016/S0168-9274(98)00067-1
http://dx.doi.org/10.1016/j.jfranklin.2005.04.001


H. Safdari, Y. E. Aghdam 
 

 
144 

[9] Danfu, H. and Xufeng, A.S. (2007) Numerical Solution of Integro-Differential Equations by Appling CAS Wavelet 
Operational Matrix of Integration. Applied Mathematics and Computation, 194, 460-466. 
http://dx.doi.org/10.1016/j.amc.2007.04.048 

[10] Baker, C. and Tang, A. (1997) Stability of Continuous Implicit Runge-Kutta Methods for Volterra Integro-Differential 
Systems with Unbounded Delays. Applied Numerical Mathematics, 24, 153-173. 
http://dx.doi.org/10.1016/S0168-9274(97)00018-4 

[11] El-Sayed, S., Kaya, D. and Zarea, S. (2004) The Decomposition Method Applied to Solve High Order Linear Volterra- 
Fredholm Integro-Differential Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 52, 
105-112. 

[12] Sezer, M. and Gulsu, M. (2007) Polynomial Solution of the Most General Linear Fredholm-Volterra Integro Differential- 
Difference Equations by Means of Taylor Collocation Method. Applied Mathematics and Computation, 185, 646-657. 
http://dx.doi.org/10.1016/j.amc.2006.07.051 

[13] Sezer, M. and Gulsu, M. (2005) A New Polynomial Approach for Solving Difference and Fredholm Integro-Difference 
Equations with Mixed Argument. Applied Mathematics and Computation, 171, 332-344. 
http://dx.doi.org/10.1016/j.amc.2005.01.051 

[14] Chui, C.K. and Mhaskar, H.N. (1993) On Trigonometric Wavelets. Constructive Approximation, 9, 167-190. 
http://dx.doi.org/10.1007/BF01198002 

[15] Prestin, J. (2001) Trigonometric Wavelets. In: Jain, P.K., et al., Eds., Wavelet and Allied Topics, Narosa Publishing 
House, New Delhi, 183-217. 

[16] Themistoclakis, W. (1999) Trigonometric Wavelet Interpolation in Besov Spaces. Facta Univ. (Nis) Ser. Math. Inform, 
14, 49-70. 

[17] Quak, E. (1996) Trigonometric Wavelets for Hermite Interpolation. Department of Mathematics, Texas A. M. Univer-
sity, 65, 683-722. 

[18] Chen, W.S. and Lin, W. (1997) Hadamard Singular Integral Equations and Its Hermite Wavelet Methods. Proceedings 
of the 5th International Colloquium on Finite Dimensional Complex Analysis, Beijing, 13-22. 

[19] Chen, W.S. and Lin, W. (2002) Trigonometric Hermite Wavelet and Natural Integral Equations for Stockes Problem. 
International Conference on Wavelet Analysis and Its Applications, Guangzhou, 73-86. 

[20] Lakestani, M. and Saray, B.N. (2010) Numerical Solution of Telegraph Equation Using Interpolating Scaling Func-
tions. Computer and Mathematics with Application, 60, 1964-1972. http://dx.doi.org/10.1016/j.camwa.2010.07.030 

http://dx.doi.org/10.1016/j.amc.2007.04.048
http://dx.doi.org/10.1016/S0168-9274(97)00018-4
http://dx.doi.org/10.1016/j.amc.2006.07.051
http://dx.doi.org/10.1016/j.amc.2005.01.051
http://dx.doi.org/10.1007/BF01198002
http://dx.doi.org/10.1016/j.camwa.2010.07.030

	Numerical Solution of Second-Order Linear Fredholm Integro-Differetial Equations by Trigonometric Scaling Functions
	1. Introduction
	2. Interpolatory Hermite Trigonometric Wavelets
	3. Procedure Solution Using the Trigonometric Scaling Function
	4. Numerical Example
	5. Conclusion
	Acknowledgements
	References

