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Abstract 
This paper describes a characteristics-mix finite element method for the computation of incom-
pressible Navier-Stokes equations with variable density. We have introduced a mixed scheme 
which combines a characteristics finite element scheme for treating the mass conservation equa-
tion and a finite element method to deal with the momentum equation and the divergence free 
constraint. The proposed method has a lot of attractive computational properties: parameter-free, 
very flexible, and averting the difficulties caused by the original equations. The stability of the 
method is proved. Finally, several numerical experiments are given to show that this method is ef-
ficient for variable density incompressible flows problem. 
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1. Introduction 
This paper is devoted to the numerical approximation of incompressible viscous flows with variable density. 
This type of flows is governed by the time-dependent Navier-Stokes equations [1] [2]: 
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where the dependent variables are the density 0ρ > , the velocity field u , and the pressure p . The constant 
ν  is the dynamic viscosity coefficient and f  is a driving external force. In stratified flows we typically have 
f gρ= , where g  is the gravity field. The fluid occupies a bounded domain Ω  in d

  (with 2d =  or 3) 
and a solution to the above problem is sought over a time interval [ ]0,T . The Navier-Stokes system is 
supplemented by the following initial and boundary conditions for u  and ρ : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

0

,0 , , , ,

,0 , , , ,

x x x t a x t

u x u x u x t b x t

ρ ρ ρ −Γ

Γ

 = =


= =
                              (2) 

where Γ = ∂Ω  and −Γ  is the inflow boundary, which is defined by ( ){ }; 0x u x n−Γ = ∈Γ ⋅ < , with n  being 
the outward unit normal vector. Throughout this paper, we assume that the boundary Γ  is impermeable, i.e., 

0u n⋅ =  everywhere on Γ , and −Γ = ∅ . We note that no initial and boundary condition is needed for the 
pressure p which can be viewed as a Lagrange multiplier whose mathematical role is to enforce the incom- 
pressibility condition. 

Compared with the constant density incompressible Navier-Stokes equation, the main difficulty for the simu- 
lation of the system Equation (1)-(2) is that these equations entangle hyperbolic, parabolic, and elliptic features. 
Therefore, how to construct stable and efficient numerical schemes for the system Equations (1) and (2) is 
challenging. 

For developing numerical approximations to this problem, it seems natural to use, as far as possible, the 
techniques established for the solution of constant density incompressible Navier-Stokes equations, viz., the 
fractional step projection method of Chorin [4] [5] and Temam [6] [7]. The method uses a time splitting, solving 
separately the transport equation for the density and the momentum for the velocity, the incompressible con- 
straint being treated through a projection method, see [8]. This is the methodology followed in [3] [9]-[11]. 
Several algorithms have been developed which extend this idea to the situation that concerns us here, see for 
example [1]-[3] [12]-[14]. Caterina introduces an hybrid scheme which combines a finite volume approach for 
treating the mass conservation equation and a finite element method to deal with the momentum equation and 
the divergence free constraint [15]. However, we note also that there is a difficulty which arises with the trans- 
port equation during the process of calculation. Because the transport equation has the hyperbolic nature, it is 
not well adapted to a mere treatment by FE methods, but instead requires a specific approach, like Discon- 
tinuous Galerkin methods, artificial viscosity, sub-grid stabilization procedure as in [3], see also [16], or the 
least-square method as used in [17]. Becase the characteristic methods have proved their efficiency for this kind 
of problems, such as convection-dominated problems [18]-[21], a characteristic stabilized finite element scheme 
is used to deal with the transport equation in this paper. The idea of characteristic methods is to recast the 
governing equations in terms of the Lagrangian coordinates defined by the particle trajectories (or characteristics) 
associated with the problem under consideration. The Lagrangian treatment in these methods greatly reduces the 
time truncation error in Eulerian method [19]. In addition, the characteristic methods have been shown to 
possess remarkable stability properties. 

In this paper, we consider the conserved form for variable density incompressible flows which is introduced 
by Guermond et al. [1] [3]. Because in the formulation, the mass conservation and momentum equations are 
rewritten in a new form that guarantees some control on the 2L -norm of the density and on the kinetic energy of 
the fluid [3]. We henceforth refer to the conserved form. The complete system of equations for developing 
unconditionally stable integration schemes for variable density incompressible flows is written in the following 
system in conserved form  
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zero if 0u∇⋅ = . 
The originality of our work is to use different numerical methods for the transport equation and for evaluating 

the evolution of the velocity driven by the last two equations in the system Equation (1). To be more specific, 
we use a time-splitting, solving the first equation for a given velocity by using a characteristic stabilized finite 
element approach which is efficient when dealing with a pure convection equation, and then, we compute the 
divergence free solution of the last two equations by exploiting the advantages of FE methods, see [22]-[24]. 
Here, we care to preserve the divergence free constraint between the two steps of the splitting. The results show 
that the proposed algorithm is stable and efficient. 

The paper is organized as follows. In next section, we introduce some notations for this paper. In Section 3, a 
detailed presentation of the new method is given. In Section 4, the stability of the method is proved. In Section 5, 
a series of numerical experiments are given. The last section is devoted to concluding remarks. 

2. Notation 
In this section, we aim to describe some of the notations which will be frequently used in this paper. We con- 
sider the time-dependent variable density Navier-Stokes system Equations (1) and (2) on the finite time interval 
[ ]0,T  and in an open connected and bounded domain dΩ ⊂   ( 2d =  or 3) with boundary Γ , which we 
assume to be sufficiently smooth. More precisely, we assume that Ω  is such that the Stokes operator possesses 
the usual regularization properties (see [22]-[24]). 

Let 0t∆ >  be a time step and let us set nt n t= ∆  for [ ]0 :n N T t≤ ≤ = ∆ . Let E  be a normed space 
equipped with the norm 

E⋅ . The space of functions [ ]: 0,T Eφ →  such that ( )0,t T∈ , the map ( ) E
t tφ→  

is pL -integrable, is indifferently denoted ( )( )0, ;pL T E  or ( )pL E . For any time-dependent function φ , we 
denote ( ):n ntφ φ= , 0,1, 2, ,n N=  . 

No notational distinction is done between scalar or vector-valued functions but spaces of vector-valued 
functions are identified with bold fonts. The space of functions in ( )2L Ω  that have zero average is denoted 

( )2
0L Ω . We use the standard Sobolev spaces ( ),m pW Ω , for 0 m≤ ≤ ∞  and 1 p≤ ≤ ∞  (see [25]-[27]). The 

closure with respect to the norm ,m pW⋅  of the space of C∞ -functions compactly supported in Ω  is denoted  
( ),

0
m pW Ω . To simplify the notation, the Hilbert space ( ),2sW Ω  (resp. ( ),2

0
sW Ω ) is denoted ( )sH Ω  (resp.  

( )0
sH Ω ). The scalar product of ( ) ( )2 0:L HΩ = Ω  is denoted ,⋅ ⋅ . We refer readers to [25] [26] for details on 

these spaces. 
For the mathematical setting of problem Equation (1), we introduce the following Hilbert spaces: 

( ) ( )( ) ( )
21 1 2

0 0,    ,    W H V H M L= Ω = Ω = Ω . 

The spaces W  and V  are equipped with their usual scalar product and equivalent norm ( ),u v∇ ∇ ,  
1
0 0Hu u= ∇  for ,u v V∈ , here, i⋅  and i⋅  denote the usual norm and semi norm of the Sobolev space  

( )iH Ω  or ( )( )diH Ω , respectively, for 0,1, 2i = . We define Au u= −∆ . In particular, there holds  

( ) ( )1 2 1 2, , ,    ,A u A v u v u v V= ∇ ∇ ∀ ∈ .  
We also introduce the following bilinear operator: ( ) ( ),B u v u v= ⋅∇ . Moreover, we define the continuous 

bilinear forms ( ),a ⋅ ⋅  and ( ),d ⋅ ⋅  on V V×  and V M× , respectively, by  

( ) ( ), , ,    ,a u v u v u v Vν= ∇ ∇ ∈  

( ) ( ), , ,    ,  d v q q v v V q M= ∇ ⋅ ∈ ∈  

and a trilinear form on V V V× ×  by  

( ) ( )( ), , , ,    ,  ,  b u v w u v w u V v V w V= ⋅∇ ∈ ∈ ∈  

( ) ( )( ), , , ,    ,  ,  .b u v w u v w u V v V w V= ∇ ⋅ ∈ ∈ ∈  

Obviously, the bilinear ( ),a ⋅ ⋅  is continuous and coercive on V V×  and the bilinear ( ),d ⋅ ⋅  is continuous 
on V M×  and satisfies the well-known inf-sup condition [23] [24]: there exists a positive constant 0 0β >  
such that for all q M∈  
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( )
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0

,
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∈
≥

∇
                                    (4) 

where ( ) ( ), ,d v q q v= ∇ ⋅ . 
Henceforth c  denotes a generic constant whose value may change at each occurrence. This constant may 

depend on the data of the problem and its exact solution, but it does not depend on the discretization parameters 
or the solution of the numerical scheme. 

3. Description of the Numerical Scheme 
3.1. The Time Splitting Method 
Set 0

0ρ ρ= , 0
0u u=  , repeat for 0 n N≤ ≤ : 

Step 1. Solve new density field: 
Find 1n Wρ + ∈  as the solution of  
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                             (5) 

Step 2. Solve new velocity and pressure fields: 
Find ( )1 1,n nu p V M+ + ∈ ×  as the solution of  

( ) ( )

( ) ( )

1
1 1 1 1 1 1

1

,
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, , .

n
n n n n n n n n
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+
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+
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∂ + ⋅∇ +∇ − ∆ − ∇ ⋅ =

∇ ⋅ =
 =
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            (6) 

3.2. Solving the Density Equation by a Characteristics Finite Element Scheme 
The origin of our scheme can be seen by considering the first equation in a space-time framework. First, for 
density field ρ , we denote by ρ  the material time derivative. It is defined by [28] [29] 

( ) ( )( )
( ),

, : , ,
q Q x t

x t X q t t
t

ρ ρ
=

∂
=
∂

                                (7) 

where X  is the motion corresponding to the velocity u  and Q  its reference map. We recall that, according 
to the standard formalism of continuum mechanics, ( ),x X q t=  is the position at time t  of the material point 
q , while the reference map ( ),Q x t  yields the material point located at position x  at time t . Then  

grad .u
t
ρρ ρ∂

= + ⋅
∂

                                        (8) 

Let us introduce the characteristic curves, which are simply the the trajectories of the motion associated with 
the velocity field u . Thus, for given ( ) [ ], 0,x t T∈Ω×  the characteristic curve through ( ),x t  is defined as 
the vector function  

( ) ( )
( )

2, ; : 0, ,

, , ,

l x t T R

x t
χ

τ χ τ

⋅ →

→
                                     (9) 

which can be obtained by solving the initial value problem  

( ) ( )( )
( )

, ; , ; , ,

, ; .

x t u x t

x t t x

χ τ χ τ τ
τ
χ

∂ =
∂

 =

                              (10) 
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It represents the trajectory described by a material point that is placed at position x  at time t  and is driven 
by the velocity field u . More precisely, ( ) ( )( ), ; , ,x t X Q x tχ τ τ= . 

By using function χ , we can write an alternative expression for the material time derivative of density field 
ρ  at ( ),x t . Indeed, we have 

( ) ( )( )
( )

( )( )
,

, : , , , ; , .
q Q x t t

x t X q t t x t
t τ

ρ ρ ρ χ τ τ
τ= =

∂ ∂  = =  ∂ ∂
                  (11) 

For the time variable, the solution will be approximated at times nt , 1, 2, ,n N=  . Throughout this work, 
we use the standard notation ( )n xψ  to denote an approximation of ( ), nx tψ . 

In order to discretize the material time derivative in Equation (5), we use the following first order backward 
Euler formula, namely, 

( ) ( ) ( )
( )

1
1 .

n n
n

y t y t
y t O t

t

+
+

−
′ = + ∆

∆
                          (12) 

Moreover, for x∈Ω  let ( )n xχ  be defined by  

( ) ( )1: , ; ,    0,1, 2, , 1.n n nx x t t n Nχ χ += = −                        (13) 

So, let us introduce the following characteristics scheme for time semidiscretization of problem Equation (5)  
1 1

.
2

n n
n n nu

t
ρ ρ ρ χ

+ +

+ ∇ ⋅ =
∆

                                (14) 

Now, multiplying Equation (14) by a test function w , integrating in Ω  we easily get the following weak 
formulation for the density equation. 

Find 1n Wρ + ∈ , such that 

( ) ( )
1

11 d d d ,    .
2

n
n n n nw x u w x w x w W

t
ρρ ρ χ

+
+

Ω Ω Ω
+ ∇ ⋅ = ∀ ∈

∆ ∫ ∫ ∫               (15) 

We define finite element space hW  as follows:  

( ) ( ){ }0
2 ,

Kh h hhW w C w P K K= ∈ Ω ∈ ∀ ∈                        (16) 

where hK ∈ , ( )2P K  is spaces of polynomials with degree 2. Let hu  be a given function defined on Ω , so 
the standard finite element approximation formulation of Equation (15) is given as follows: 

Find 1n
h hWρ + ∈ , such that  

( ) ( )
1

11 d d d ,    .
2

n
n n n nh
h h h h h h h hw x u w x w x w W

t
ρ

ρ ρ χ
+

+

Ω Ω Ω
+ ∇ ⋅ = ∀ ∈

∆ ∫ ∫ ∫                 (17) 

3.3. Solving the Velocity Equation by a FE Method 
In the numerical simulation of the Navier-Stokes Equation (6), a major difficulty is that the velocity and the 
pressure are coupled by the incompressibility constraint. Many researchers have done a lot of work about Navier- 
Stokes system with constant density, for example [30]-[33]. Here, we can try to use these methods to the varia- 
ble density Navier-Stokes equation. 

Since we aim at using a FE method, it is convenient to write the variational formulation of Equation (6). Let 
1nρ +  be a given function defined on Ω . We aim at solving the following problem: 

Find ( ) ( )1 1,n nu p V M+ + ∈ ×  such that for any ( ),v q V M∈ ×  

( ) ( ) ( ) ( ) ( )( )
( ) ( )
( )

1 1 1 1 1 1 1 1 1

1

1

1 1, , , , , , , ,
2

1, , ,
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n n
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u v b u u v a u v d v p b u u v
t

f v u v
t

d u q
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+ + + + + + + + +

+

+

 + + + −∆
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 ∆

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  (18) 
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The domain Ω  is approximated by a computational domain hΩ , discretized by a conforming and isotropic 
set of triangles h , with mesh-size h . To construct a Galerkin approximation of Equation (18), we introduce  

FE spaces ( )( )21
0h hV H⊂ Ω  for the velocity hu  and ( )1

0h hM L⊂ Ω  for the pressure hp . We choose the pair  

of spaces ( ),h hV M  which satisfies a discrete inf-sup condition to discretize the velocity and the pressure. So, 
we define  

( )( ) ( )( ){ }
( ) ( ){ }

2 20
2

0
1

,  and 0 ,

, ,

K h

K

h h h hh h

h h h hh

V v C v P K K v

M q C q P K K

∂Ω
= ∈ Ω ∈ ∀ ∈ =

= ∈ Ω ∈ ∀ ∈




 

where for all hK ∈ , ( )2P K  and ( )1P K  are spaces of polynomials with degree 2 and 1, respectively. Now, 
when 1n

h hWρ + ∈  approximating 1nρ + , given the approximations nu , we obtain the following standard finite 
element(FE) approximation formulation of the equations. 

Find ( ) ( )1 1,n nu p V M+ + ∈ ×  such that for any ( ),v q V M∈ ×   

( ) ( ) ( ) ( )( ) ( )

( )

1
1 1 1 1 1 1 1 1

1

1, , , , ( , ) , , , , ,
2

, 0.

n n
n n n n n n n n n

n

u u
v b u u v a u v d v p b u u v f v

t

d u q

ρ ρ ρ
+

+ + + + + + + +

+

 −
  + + + + = ∆ 


=



   (19) 

In the next section, we will prove that the above algorithm is stable. 

4. Stability Analysis of the Method 
In this section, we recalls some useful Propositions and stability hypothesis assumptions for the characteristics- 
mix finite element method for the incompressible flow with variational density [34]. The approximation method 
is used to approximate the mass conservation returns 1k

hρ
+  and that this algorithm satisfies the following stability 

hypothesis:  

( ) ( )1 1

1

0 1

inf ,    sup ,

max .

k k
h hx x

k k
h h

k N
L

x x

M

χ ρ ρ ρ

ρ ρ
χ

τ

+ +

∈Ω ∈Ω

+

≤ ≤ − ∞

≤ ≤

−
≤

                           (4.1) 

Moreover, we also need the following results [34] to prove the stability of the discrete method presented. 
Propositon 4.1. For φ , u  and v  regular enough and v  such that 0n v

Γ
⋅ =  we have 

( )1, , 0.
2

u v v u v vφ ρ⋅∇ + ∇ ⋅ =                             (4.2) 

Next, we start with the stability proof of the system. To avoid irrelevant technicalities, we assume that there is 
no external driving force, i.e., 0f = . 

Lemma 4.2. Let ( )1 1,k k
h hu p+ +  be the solution of (19). Then, there holds that 

( )

2 2 2 21 1 1

0 0 0 0

1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

0 0 0

,

2 2

n n n n n n
h h h h h h

n n n n
h h h h

u u u M u

p u M u

τν σ σ τχ

β τ τ ν σ τ χ

+ + +

∗ + − − −

∇ + ≤ +

≤ + + 
           (4.3) 

where k k
hσ ρ= . 

Proof: Taking 12 n
h hv uτ +=  and 2h hq pτ=  in Equation (19) and using the identity  

( ) ( )22 22a a b a b a b⋅ − = − + − , we obtain 

( ) ( ) 22 21 1 1 1 1 1 1 1

0 0 0
, 2 .n n n n n n n n n n n

h h h h h h h h h h hu u u u u u uρ σ σ σ+ + + + + + + +− = − + −             (4.4) 

Using (4.1), implies that  
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( )2 2 21 1

0 0 0
2 1

0
2 2

0 0

,

               ,

               .

n n n n n n n
h h h h h h h

n n n n n
h h h h hL

n n n
h h h

u u u

u u

u M u

σ σ ρ ρ

σ ρ ρ

σ τχ

∞

+ +

+

= + −

≤ + −

≤ +

                        (4.5) 

Substituting above inequality into (4.4) and using (4.1), yields 

( )
( )

22 21 1 1 1 1

0 0 0
22 2 21 1 1 1

0 0 0 0
.

n n n n n n n
h h h h h h h

n n n n n n n n
h h h h h h h h

u u u u

u u M u u u

σ σ σ

σ σ τχ σ

+ + + + +

+ + + +

− + −

≥ − − + −
 

So, we have  

( ) 22 2 2 21 1 1 1 1

0 0 0 00
2 .n n n n n n n n n

h h h h h h h h hu u u u u M uσ σ τν σ τχ+ + + + ++ − + ∇ ≤ +            (4.6) 

Similarly, 

( ) ( )
( ) ( )

( )

2 21 1 1 1 1

0 0

2 21 1 1

0 0

2 2 21 1

0 0 0

                             

                             .

n n n n n n n n n n
h h h h h h h h h h

n n n n n n n
h h h h h h h

n n n n n
h h h h h

u u u u u

u u u

M u u u

σ σ σ σ σ

ρ ρ σ σ

τχ σ σ

+ + + + +

+ + +

+ +

− = − + +

≥ − − −

≥ − +

               (4.7) 

Substituting above inequality into (4.4) again, leads to 
2 2 2 2 2 2 21 1 1 1 1

0 0 0 0 0 0 0
2 0.n n n n n n n n n n n

h h h h h h h h h h hu u M u u M u u uσ σ τχ τν τχ σ σ+ + + + +− − + ∇ + − − ≤  

So, we have 
2 21

0 0

n n n
h h hu uτν σ+∇ ≤  

which together with (4.6), we can easily obtain the following result 
2 2 2 21 1 1

0 0 0 0
.n n n n n n

h h h h h hu u u M uτν σ σ τχ+ + +∇ + ≤ +                      (4.8) 

Next, set 0q = , 1n
hv u += , using inf-sup condition yields 

( )

( )

1
1

0
0

1
1 1 1

0 0

1 1 2 1 1 1 1

0 0

1 1 2 1 1 1 1

0 0 0

1 1 2

div ,
sup

                

                

                

                

n
h hn

h
v X

n
n n nh
h h h

n n n n
h h h h

n n n n n
h h h h h

h

v p
p

v

u u u

u u u

u u u

β

ρ
ν

τ
τ ρ σ ν

τ ρ σ σ ν

τ ρ σ

+
∗ +

∈

+
+ + +

− + + + +

− + + + +

−

≤
∇

≤ − + ∇

≤ − + ∇

≤ + + ∇

≤

( )

1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2

0 0 0 0

1 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2

0 0 0
                ,

n n n n n n n
h h h h h h

n n n n n
h h h h h

u M u u u

u M u u

τ ρ χ τ ρ σ τ ν σ

τ ρ σ τ ρ χ τ ρ τ ν σ

+ + − − −

− + + − − −

+ + +

≤ + + +

 

and using the (4.8), a simple derivation leads to 

( ) ( )
( )

1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2

0 0 0 0 0

1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

0 0
                2 2 .

n n n n n n n
h h h h h h h

n n n
h h h

p u M u M u u

u M u

β τ ρ σ τ χ τ ρ χ τ ρ τ ν σ

τ ρ τ ν σ τ ρ χ

∗ + − − − −

− − −

≤ + + + +

= + +
 (4.9) 

Finally, we obtain the desired stability result.                                                    
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Theorem 4.3. Let ( )1 1,k k
h hu p+ +  be the solution of (19). Then, there holds that  

2 2 2 21 1 1 1 0 0 0
1 20 0 0 0 0

n n n n
h h h h h h hu u p C u C uσ σ+ + + ++ ∇ + ≤ + ∇                  (4.10) 

where 0 0
hσ ρ= . 

Proof: Taking 12 n
h hv uτ +=  and 2h hq pτ=  in Equation (19) and using the identity  

( ) ( )22 22a a b a b a b⋅ − = − + − , we obtain  

( ) ( ) 22 21 1 1 1 1 1 1 1

0 0 0
, 2 .n n n n n n n n n n n

h h h h h h h h h h hu u u u u u uρ σ σ σ+ + + + + + + +− = − + −           (4.11) 

Using (4.1), implies that  

( )2 2 21 1

0 0 0
2 1

0
2 2

0 0

               

               .

n n n n n n n
h h h h h h h

n n n n n
h h h h hL

n n n
h h h

u u u

u u

u M u

σ σ ρ ρ

σ ρ ρ

σ τχ

∞

+ +

+

= + −

≤ + −

≤ +

                            (4.12) 

Substituting the above inequality into (4.11) and using (4.1), yields 

( ) 22 2 2 21 1 1 1

0 0 0 00
0.n n n n n n n n n

h h h h h h h h hu u M u u u uσ σ τχ σ ν+ + + +− − + − + ∇ ≤  

So, we have  

( ) 22 2 2 21 1 1 1

0 0 0 00
.n n n n n n n n n

h h h h h h h h hu u u u u M uσ σ ν σ τχ+ + + ++ − + ∇ ≤ +                (4.13) 

Then using the Poincare inequality, we obtain 

( ) 22 2 2 21 1 1 1

0 0 0 00
.n n n n n n n n n

h h h h h h h h hu u u u u cM uσ σ ν σ τχ+ + + ++ − + ∇ ≤ + ∇  

Therefore, we can easily get  
2 2 2 21 1 0 0 0

1 20 0 0 0
.n n n

h h h h h hu u C u C uσ σ+ + + ∇ ≤ + ∇                                (4.14) 

Next, using the above inequality and Poincare inequality again, we have  
2 2 20 0 0

1 20 0 0
.n

h h h hu C u C uσ≤ + ∇                                            (4.15) 

Also, combining (4.14), (4.15) with (4.9), we obtain the desired stability result. 

5. Numerical Simulations 
In this section, we present four series of numerical results to illustrate the theoretical analysis of the algorithm 
proposed in this paper. 

5.1. Rates of Convergence Study 
In order to test the accuracy of the algorithm proposed in this paper, we consider a problem with a known analy- 
tical solution. We solve the variable density Navier-Stokes equations Equations (1) and (2) in the unit square  

[ ] [ ]0,1 0,1Ω = ×  in 2R , having the exact solution 

( ) ( )( ) ( )( )

( ) ( )
( )

( ) ( ) ( ) ( )

, , 2 cos sin sin sin ,

cos
, , ,

cos

, , sin sin sin ,

x y t x t y t

y t
u x y t

x t

p x y t x y t

ρ = + +

− 
=  
 

=  
so that the right-hand side to the momentum equation is  
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( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

2

2

, , sin cos cos sin sin
.

, , sin cos sin cos sin

x y t y t x t x y t
f

x y t x t y t x y t

ρ

ρ

 − +
 =
 − + + 

 

We use the ( )2 2 1, ,P P P  approximation for the density, the velocity, and the pressure, respectively. We per- 
form the accuracy tests with respect to τ , h  and Re. The mesh partition of Ω  into triangular element. 

First, we solve the above mentioned problem for 0.5T = . The time step is chosen small enough so that the 
error from the discretization in time is negligible compared to the space error. We give our results for different 
mesh size maxh h= , where maxh  is the length of the largest edge of the mesh. We considered Re 1000= . The 
results are given in Table 1. The accuracy and convergence rate of results are displayed by means of the h . 
From the Table 1, we can see that we obtained a better convergence rates compared with the results presented in 
the literature [15]. 

Secondly, computation are made on a fixed mesh size for different Reynolds number (Re = 1000, 3000, 5000,  

8000, 10000). Taking 
1
8

h = , 
1

16
h = , 1

24
h = , 

1
32

h = , the results is presented in Figure 1. From the Figure 1, 

we can see that the stability still keeps well when the Reynolds number increases. These demonstrate that our 
method is very effective for high Reynolds number. 

Next, computation are made on a fixed mesh size and a fixed Reynolds number with different time steps. The 
computation has been performed for 0 1t≤ ≤ . The mesh size is chosen small enough so that the error from the 
discretization in space is negligible compared to the time stepping error. The convergence results with respect to 

t∆  are plotted in Table 2. From the Table 2, we can see that the simulation results coincided with the theory. 

5.2. Rayleigh-Taylor Instability 
In this Subsection we illustrate the performance of the method on a realistic problem, namely we investigate a 
Rayleigh-Taylor instability. The problem has been considered in [1] [3] [15] starting from the results and com- 
ments in [35]. We compute the development of a Rayleigh-Taylor instability in the viscous regime as docu- 
mented in [35]-[38]. This problem consists of two layers of fluid initially at rest in the gravity field. It occupies 
the domain 
 
Table 1. Rates of convergence and error with different mesh size.                                                        

1
h

 0

0

hρ ρ
ρ
−

 Order 0

0

hu u
u
−

 Order 1

1

hu u
u
−

 Order 0

0

hp p
p
−

 Order 

8 1.13557e−4 /  1.52491e−4 /  4.40802e−3 /  4.63947e−3 /  

16 2.13e−5 2.4145 2.58284e−5 2.5617 1.46433e−3 1.5899 1.12825e−3 2.0399 

24 6.23631e−6 3.0294 7.29882e−6 3.1168 6.19744e−4 2.1206 4.84383e−4 2.0854 

32 2.43546e−6 3.2684 2.79238e−6 3.3399 3.06827e−4 2.4437 2.65326e−4 2.0923 

 
Table 2. Rates of convergence and error in time.                                                                      

t∆  0

0

hρ ρ
ρ
−

 Order 0

0

hu u
u
−

 Order 1

1

hu u
u
−

 Order 0

0

hp p
p
−

 Order 

0.1 3.9601e−3 /  1.7513e−2 /  0.45137 /  0.118272 /  

0.05 2.2643e−3 0.8065 8.7673e−3 0.9982 0.224569 1.0072 0.0530867 1.1557 

0.025 1.3818e−3 0.7125 4.3543e−3 1.0097 0.110574 1.0221 0.0244584 1.1180 

0.0125 8.0274e−4 0.7836 2.1559e−3 1.0141 0.054659 1.0165 0.0115745 1.0794 

0.00625 3.5149e−4 1.1914 1.0798e−3 0.9975 0.027380 0.9973 0.0059369 0.9632 

0.003125 1.6324e−4 1.1065 5.5062e−4 0.9717 0.013947 0.9732 0.0030605 0.9560 
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Figure 1. Effect of varying h at different Reynolds number. (a) L2 
error for the density; (b) L2 error for the velocity; (c) L2 error for the 
pressure.                                                           

 
( ) ( )2, 2 2 ,2d d d dΩ = − × −  

which splits into two region with varying density, the heavier fluid superposed to the light one. The interface is 
slightly smoothed since we set at time 0t = : 

( ) ( )
0 , tanh

2 2 0.01
m M M m y x

x y
d

ηρ ρ ρ ρ
ρ

− + −
= +  

 
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with 0M mρ ρ> > , and ( ) ( )0.1 cos 2πx d x dη =  the initial position of the perturbed interface. The difficulty 
of the problem essentially depends on: 

1) the density ratio between the light and the heavy fluid, which is measured by the so-called Atwood number 

= M m

M m

At
ρ ρ
ρ ρ

−
+

; 

2) the Reynolds number, defined as 
3 2 1 2

Re md gρ
µ

= ; 

where 0µ >  is the dynamic viscosity of the fluid (supposed to be constant in the whole domain) and g  is the 
gravitational acceleration. For 0t >  the system evolves under the action of a vertical downward gravity field of 
intensity g ; the source term in the momentum equation is downward and equal to gρ . 

The equations are made dimensionless by using the following references: mρ  for the density, d  for lengths, 
and 1 2 1 2d g  for time. So, the reference velocity is 1 2 1 2d g . We assume that the symmetry of the ini- tial 
condition is maintained during the time evolution. The no-slip condition is enforced at the bottom and top walls 
and symmetry is imposed on the two vertical sides. 

Next, we compare the solutions obtained at different Atwood numbers. 
• A low Atwood number problem: Setting 0.5At = ( )3, 1M mρ ρ= = , Re 1000= . The time evolution of the 

interface of the density field is displayed in Figure 2 at times 0.0, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 
0.7, 0.8. The results are very close to those in [15] [37] [38]. Coming to the comparison of the structure, there 
is satisfactory agreement of the global characteristics of the flow in the early stage and we can observe some 
slight difference only at large times of the calculation. 

 

 
Figure 2. The density field, Re = 1000, At = 0.5. (a) t = 0.0; (b) t = 0.2; (c) t = 0.3; (d) t = 0.35; (e) t = 0.4; (f) t = 0.45; (g) t = 
0.5; (h) t = 0.55; (i) t = 0.6; (j) t = 0.65; (k) t = 0.7; (l) t = 0.8.                                                             
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• A high Atwood number problem: Setting 0.75At = ( )7, 1M mρ ρ= = , Re 1000= . For this situation, The 
time evolution of the interface of the density field is plotted in Figure 3 at times 0.2, 0.3, 0.35, 0.4, 0.45, 0.5. 
Compared with the above test, we can observe the similar structure and the global characteristics of the flow 
in the early stage. At the same time, we found that the heavy fluid falls faster compared with the low Atwood 
number problem. The simulation results coincided with the law of physics and are very close to the results 
presented in the literature [15] [37] [38]. 

• A very high Atwood number problem: Setting 0.9At = ( )19, 1M mρ ρ= = , Re 1000= . As the Atwood 
value increases, the sensitiveness of the calculation to the numerical instabilities grows. The downward mo- 
tion of the heavy fluid increases with the density difference. The time evolution of the interface of the den- 
sity field is plotted in Figure 4. It seems that the evolution of the interface configuration does not change sig- 
nificantly. But notice that at 0.9At =  it is very difficult to continue the simulation in the literature. A series 
of numerical experiments are given to show that this method is highly efficient. 

5.3. Rising Bubble Test 
To investigate the capability of our method to work with larger density variations, we give the computational 
results for rising bubble test. This simulation is inspired from [15] [36]-[38]. A light “droplet” rise through a 
heavy fluid and impacts into the plane surface of the heavy fluid in a cavity. The computational domain is 
( ) ( )0, 0,2d d× , where 1d =  and at 0t =  the fluid is at rest with density: 

( )
100, if  0 1, or  0.2 ;

,
1, if  1 2 or 0 0.2

y r
x y

y r
ρ

≤ ≤ <
=  < ≤ ≤ ≤

 

 

 
Figure 3. The density field, Re = 1000, At = 0.75. (a) t = 0.2; (b) t = 0.3; (c) t = 0.35; (d) t = 0.4; (e) t = 0.45; (f) t = 0.5.            
 

 
Figure 4. The density field, Re = 1000, At = 0.9. (a) t = 0.2; (b) t = 0.3; (c) t = 0.35; (d) t = 0.4; (e) t = 0.45; (f) t = 0.5.             
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where ( ) ( )2 20.5 0.3r x y= − + − . As in [15] [36], the equations are made dimensionless by using the follow-  

ing references: mρ  for density, d for length, d g  for time, then, the reference velocity is dg . In the di- 
mensionless equations, the gravity term is ( )0,f ρ= −  and the Reynolds number is defined as in above 
subsection. In our test, the viscosity of the fluid is supposed to be constant in the whole domain and we have 
Re 1000= . 

The results are displayed in Figure 5. The figure contain snapshots of the fluid interface. The snapshots show 
how the “droplet” travels up through a heavy fluid and merges with a light fluid above. As the “droplet” rise, its 
shape remains spherical due to the surface tension and the viscosity. As the droplet hits the interface, it merges 
with the light fluid above and creates waves on the surface. The simulation results are satisfactory agreement 
with the results presented in the literature [15] [36] [37]. 

5.4. Sloshing Tank 
To investigate the capability of our method to work with very large density variations, a two-fluid flow in a 
sloshing tank is considered next. The setup of the test case follows the description [37] [39]. The domain 

[ ] [ ], ,L L H HΩ = − × −  is a container, where 0.5 mL =  and 0.75 mH = . The interface separating the two 
phase is initially given as  

( )0.26 0.1sin π .y x= +  

The densities of the fluids are 3
1 1.0 kg mρ =  and 3

2 1000.0 kg mρ = , and the dynamic viscosities are  
( )1 0.001 kg msµ =  and ( )2 1.0 kg msµ = . The lighter fluid superposed to the heavy one. No surface tension  

is considered here, so the volume force is ( )T20, 0.1 m sf = − . Slip-boundary conditions are prescribed along  

the walls of the tank, and a zero velocity field is initially assumed. The time-step length is 0.015 st∆ =  and the 
situation is observed for ( )0 s,  20 s .t =  
 

 
Figure 5. The density field, Re = 1000. (a) t = 0.0; (b) t = 0.045; (c) t = 0.055; (d) t = 0.065; (e) t = 0.07; (f) t = 0.075; (g) t = 
0.08; (h) t = 0.09; (i) t = 0.15.                                                                                    
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Figure 6. Sloshing tank: the density field at different times. (a) t = 0.0; (b) t = 0.3; (c) t = 0.6; (d) t = 0.9; (e) t = 1.2; (f) t = 
1.5; (g) t = 1.8; (h) t = 2.1; (i) t = 2.4; (j) t = 2.7; (k) t = 3.0; (l) t = 3.3.                                                    
 

The results are displayed in Figure 6. The evolution of the interface at selected points in time. For confir- 
mation, these patterns may be compared to the respective patterns displayed in Figure 9 in [37] and Figure 15 in 
[39], the numerical results are in very good agreement. 

6. Conclusions 
In this paper, we proposed a characteristics-mix finite element method to the case of incompressible viscous 
flows with variable density. The originality of our approach is to use different numerical methods for the trans-
port equation and evaluating the evolution of the velocity pressure. The new method uses a time splitting, solv-
ing separately the transport equation and the momentum equation. To be more specific, we solve the first equa-
tion for a given velocity by using a characteristic stabilized finite element approach which is efficient when 
dealing with a pure convection equation, and then, we compute the divergence free solution of the last two equa-
tions by exploiting the advantages of FE methods. The stability proof of the method we proposed for variable 
density flows was given in the paper. 

To verify the correctness of the method, it has been applied to the test cases previously considered in the lite-
rature. The spatial approximation is performed by means of Lagrangian finite elements with P2 interpolation for 
density and velocity and P1 interpolation for pressure. First, the rates of convergence of the method were proved 
to be in accordance with the theoretical expected ones, leading so to an accurate solver. Then, the simulation of 
the viscous Rayleigh-Taylor instability was also investigated. We obtained very good results, even for rather 
high Atwood numbers. Finally, we considered the rising bubble test and sloshing tank to investigate the robust-
ness property of the scheme with regard to high density ratios. The simulation results coincided with the law of 
physics are very close to the results presented in the literature. Compared with some established methods, the 
numerical results show that the new method exhibits good stability behavior even large time steps or the high 
Atwood numbers are used in computation. 
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