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Abstract 
Fourier series is an important mathematical concept. It is well known that we need too much 
computation to expand the function into Fourier series. The existing literature only pointed that 
its Fourier series is sine series when the function is an odd function and its Fourier series is cosine 
series when the function is an even function. And on this basis, in this paper, according to the func-
tion which satisfies different conditions, we give the different forms of Fourier series and the spe-
cific calculation formula of Fourier coefficients, so as to avoid unnecessary calculation. In addition, 
if a function is defined on [ ]0,a , we can make it have some kind of nature by using the extension 
method as needed. So we can get the corresponding form of Fourier series. 
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1. Preliminary Knowledge  
Definition 1 [1]-[3] Let ( )f x  be an integrable function on [ ],l l− . Then the coefficients na  and nb  are 

calculated by  

( ) ( )

( ) ( )

1 πcos , 0,1,2, ;

1 πsin , 1,2, .

l
n l

l
n l

n xa f x dx n
l l

n xb f x dx n
l l

−

−

= =

= =

∫

∫





 

and are called the Fourier coefficients of ( )f x . 
Definition 2 [1]-[5] Let ( )f x  with the period 2l  be an integrable function on [ ],l l− , trigonometric series 
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with the Fourier coefficient are called Fourier series of ( )f x , denoted by 

( ) 0

1

π πcos sin
2 n n

n

a n x n xf x a b
l l

∞

=

 + + 
 

∑  

Lemma 1 [6] Let ( )f x  be an integrable function on [ ],l l−  with period of 2l , the Fourier coefficients are 

calculated according to period of ( )2kl k N +∈ . The calculation indicates there are same results between Fourier  

series with period of 2l  and ( )2kl k N +∈ . 

2. Calculating Fourier Series According to the Nature of the Function 
Theorem 1 Let ( )f x  be an integrable function on [ ],l l−  and satisfy the condition ( ) ( )f x l f x+ = − , 

then we have 

( ) ( ) ( )
2 1 2 1

1

2 1 π 2 1 π
cos sink k

k

k x k x
f x a b

l l

∞

− −
=
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+ 
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where ( ) ( )
2 1 0

2 1 π2 cos d
l

k

k x
a f x x
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−
= ∫ , ( ) ( )

2 1 0

2 1 π2 sin d
l

k

k x
b f x x

l l−

−
= ∫ , 1, 2,k =  . 

Proof It was clear that the period of ( )f x  is 2l  and we have 

( ) ( ) ( )0
0 0

1 1d d d
l l

l l
a f x x f x x f x x

l l− −
 = = +  ∫ ∫ ∫  

Let x t l= − , then d dx t= . Therefore 
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So we get  
0 0a = . 
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Let x t l= − , then d dx t= . Therefore 
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Therefore, we obtain 
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In the same way, we have  

( ) ( )
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In a word, while n  is an even number, 0n na b= = , and 
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Thus in this case, the expansion reduces to 
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Theorem 2 Let ( )f x  be an integrable function on [ ],l l−  and satisfy the conditions ( ) ( )f x l f x+ = , 
then we have 

( ) 0
2 2
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where ( )2 0

2 2 πcos d ,    0,1, 2,
l

k
k xa f x x k
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2 2 πsin d ,    1, 2,
l

k
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Proof The period of ( )f x  is l , so we can calculate Fouries series of ( )f x  with period of 2l  by Lem-
ma 1. We have 
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Let x t l= − , then d dx t= . Therefore 
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We obtain 
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In the same way, we have 
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Thus in this case, the expansion reduces to 
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( ) 0
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where ( )2 0
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Theorem 3 Let ( )f x  be an integrable function on [ ]0, l . When 
2
l x l< ≤ , it satisfies the condition 

( ) ( )f x f l x= − − . Then we have 

(1) While ( )f x  is an even function in ( ),l l− , then we get 
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(2) While ( )f x  is an odd function in ( ),l l− ，then we get 
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Proof (1) We use the method of periodic extension to ( )f x  with period of 2l . 
Because ( )f x  is an even function, we have 0nb = , 1, 2,n =  . 
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Thus in this case, the expansion reduces to 
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(2) In the same way, we can prove Theorem 3 (2). 
Similarly, we can prove the following Theorem 4. 

Theorem 4 Let ( )f x  be an integrable function on [ ]0, l . When 
2
l x l< ≤ , it satisfies the condition 

( ) ( )f x f l x= − . Then we have 
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(2) While ( )f x  is an odd function in ( ),l l− , then we get 
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3. Conclusion 

Suppose the function is defined on 0,
2
l 

  
, if we use symmetry extension about the point ,0

2
l 

 
 

 and then  

use odd and periodic extension, we can get two forms of Fourier series as Theorem 3. If we use symmetry ex- 

tension about the line 
2
lx =  and then use odd and periodic extension, we can get two forms of Fourier series 

as Theorem 4. Suppose the function is defined on ,0
2
l −  

, we have a similar conclusion. 
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