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Abstract 
This paper concentrates on the differential transform method (DTM) to solve some delay differen-
tial equations (DDEs). Based on the method of steps for DDEs and using the computer algebra sys-
tem Mathematica, we successfully apply DTM to find the analytic solution to some DDEs, including 
a neural delay differential equation. The results confirm the feasibility and efficiency of DTM. 
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1. Introduction 
The differential transform method (DTM) is a semi analytical-numerical technique depending on Taylor series 
for solving integral-differential equations (IDEs). The method was first introduced by Pukhov [1] for solving 
linear and nonlinear initial value problems in physical processes. Zhou, at the same time, had also introduced 
DTM to study electrical circuits [2]. Since the main advantage of this method is that it can be applied directly to 
nonlinear ordinary and partial differential equations without requiring linearization, discretization or perturba- 
tion, it has been studied and applied during the last two decades widely. DTM has been used to obtain numerical 
and analytical solutions of ordinary differential equations [3], partial differential equations [4], eigenvalue pro- 
blems [5], differential algebraic equations [6] [7], integral equations [8] and so on. 

Delay differential equations (DDEs) arise in many applied fields, such as control technology, communication 
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networks, and biological population management, and hence they have attracted considerable attention. There 
are many papers devoted to the problem of approximate solution of DDEs [9]-[15]. Recently, F. Karako and H. 
Bereketoğlu [13] extend the method of differential transformation for solving the following two types of 
DDEs: 

( ) ( ) ( )( )
( ) 0

, , ,    0 ,

0 ,

y t f t y t y at t T

y y

 ′ = ≤ ≤


=
                                 (1) 

and 

( ) ( ) ( )( )
( ) 0

, , ,    0 ,

0 ,

y t f t y t y t t T

y y

τ ′ = − ≤ ≤


=
                               (2) 

with 0 1a< <  and 0τ >  and the constant 0T > . 
It should be pointed out that the solution to DDEs (2) maybe be non-unique (see Section 2 in [16]). So usually, 

researchers pay more attention to the following DDEs, instead of (2) 

( ) ( ) ( )( )
( ) ( )

, , , 0 ,

, 0,

y t f t y t y t t T

y t g t t

τ ′ = − ≤ ≤


= ≤
                               (3) 

where ( )g t  is a given function, called initial function. 
In this paper, we will apply DTM to find the analytic solution to DDEs (3) with the help of the computer 

algebra system Mathematica. Thus, in some sense, our work can be viewed as a supplement to [13]. 

2. Differential Transform 
The basic theory of differential transform can be found in [1] [2], in this section we will state it in brief. 

Consider a function ( )y t  be analytic in the time domain I , and let 0t I∈ . The function ( )y t  is then  
represented by one series whose center is located at 0t . The differential transform of the function ( )y t  is the 
form  

( ) ( )

0

d1
! d

k

k
t t

y t
Y k

k t
=

=                                       (4) 

where ( )Y k  is the transformed function of the original function ( )y t . 
Differential inverse transformation of ( )Y k  is defined as follows:  

( ) ( )( )0
0

k

k
y t Y k t t

∞

=

= −∑                                      (5) 

From (4) and (5), it is easy to see that the concept of the differential transformation is derived from the Taylor 
series expansion. By our assumption, 0t  is taken as zero, then the function ( )y t  is expressed by a finite series 
and (5) can be written as  

( ) ( )
0

k

k
y t Y k t

∞

=

= ∑  

In this study, we use the lower case letters to represent the original functions and upper case letters to stand 
for the transformed functions (T-functions). The fundamental mathematical operations performed by differential 
transform method are listed in Table 1. 

3. DTM for DDEs (3) 
There are many methods to deal with the delay differential Equation (3). For example, linear multistep (LM) 
methods, Runge-Kutta (RK) methods, waveform relaxation (WR) methods, etc. However, the basic idea to solve 
the DDE (3) is to solve the following system of ODEs step by step: 
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Table 1. Estimates of 0τ , 0λ , and 1λ  from simulated data.                                                    

0λ  1λ  Sample Size 
MLE LSE 

0τ  0λ  1λ  0τ  0λ  1λ  

0.3 0.1 100 2.8 0.33 0.150 3.925 0.239 0.159 

  200 2.701 0.315 0.156 5.117 0.233 0.157 

  300 2.979 0.312 0.147 5.917 0.222 0.155 

0.25 0.15 100 2.809 0.271 0.173 3.860 0.234 0.188 

  200 2.93 0.263 0.176 3.808 0.254 0.184 

  300 3.146 0.262 0.171 4.232 0.251 0.182 

0.2 0.15 100 3.44 0.208 0.161 4.136 0.212 0.169 

  200 3.403 0.208 0.159 4.72 0.225 0.166 

  300 3.261 0.208 0.158 5.111 0.242 0.164 

 

( ) ( ) ( )( ) ( )1, , ,    1, 2, ,    1 ,i i iy t f t y t y t i t i iτ τ τ−′ = − = ∈ −                       (6) 

with ( ) ( )0y t g t= . In brief, this idea is to shift the interval from ( )1 ,i iτ τ−    to ( ), 1i iτ τ+    and extend the 

solution from [ ]0, iτ  to ( )0, 1i τ+    by using the component in the current interval. This procedure can, in  

principle, be continued as far as desired. It is called, quite naturally, the method of steps [16]. 
Using the basic idea of the method of steps, first, we apply the DTM to find the solution to the following 

ODEs: 

( ) ( ) ( )( )1 1, ,y t f t y t g t τ′ = −  

with [ ]0,t τ∈ . 
Suppose the approximate solution is given by 

( ) [ ]1 1
0

,    0,k
k

k
y t a t t τ

∞

=

= ∈∑  

If Tτ > , ( )1y t  is the solution to (3). Otherwise, we should continue to find the solution in the interval 

[ ], 2τ τ . At this time, we should solve the following ODEs 

( ) ( ) ( )( ) [ ]2 2 1, , ,    , 2y t f t y t y t tτ τ τ′ = − ∈  

Applying the DTM to the differential equation above again, we will obtain the following solution 

( ) ( ) [ ]2 2
0

,    , 2k
k

k
y t a t tτ τ τ

∞

=

= − ∈∑  

Of course, we should go on if 2 Tτ <  holds also. In generally, applying the DTM to ODEs (6), we can 
obtain the analytic solution 

( ) ( ) ( )1
0

,    , 1k
n nk

k
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∞

+
=

= − ∈ +  ∑  

until for some n , ( )1n T nτ τ< ≤ + . In fact, after necessary steps, we have the following solution to (3) 
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Remark 1 If ( ) ( )1y t g t= , we can conclude that ( )y g t=  is the analytic solution to (3) directly. 
Remark 2 If ( ) ( )1i iy t y t+ =  for some integer i , we can conclude that the analytic solution (3) is  

( )

( ) [ ]

( ) ( ) ( )
( ) ( )

1

1

, 0, ,
   

, 2 , 1 ,

, 1 , .
i

i

y t t

y t y t t i i

y t t i T

τ

τ τ

τ
−

 ∈

=  ∈ − −  
 ∈ −  



 

Remark 3 If we want to improve the accuracy of the approximate solution in each interval, we can combine 
the above method with the multi-step method given by [17]. 

Remark 4 In fact, the DTM based on the method of steps can also be applied to solve the following neutral 
delay differential equations  

( ) ( ) ( ) ( )( )
( ) ( )

, , , , 0 ,

, 0.

y t f t y t y t y t t T

y t g t t

τ τ ′ ′= − − ≤ ≤


= ≤
 

4. Numerical Experiments 
In this section, four examples are given to show the performance of the DTM based on the method of steps. First, 
we want to solve the following simple but classical DDE to further illustrate the process of DTM. 

Example 4.1 Consider the DDE [18]  

( ) ( )
( )

1 , 0,
1, 1 0.

y t y t t
y t t
′ = − − ≥

 = − ≤ ≤
                                 (7) 

First, since 1τ = , we apply the DTM to obtain the solution in the interval [ ]0,1 . In this interval, (7) can be 
written as ( ) 1y t′ = − , and the initial condition is ( )0 1y = . Taking the differential transform, we have  

( ) ( ) ( ) ( )1 1 ,    0 1k Y k k Yδ+ + = − =  

It is easy to get  

( )
1, 0,

1, 1,
0, 2.

k
Y k k

k

=
= − =
 ≥

 

Thus we have the analytic solution ( ) 1y t t= −  of (7) defined on [0,1] . 
Second, we should continue to solve the following DDE: 

( ) ( )
( )

1 , 1 2,
1 , 0 1,

y t y t t
y t t t
′ = − − ≤ ≤

 = − ≤ ≤
 

or equivalently,  
( ) ( )2 1 1 ,    1 2y t t t t′ = − = − + − ≤ ≤                                (8) 

with initial condition ( )1 0y = . 
From (8), we have the following differential transform  

( ) ( ) ( ) ( ) ( )1 1 1 ,    0 0k Y k k k Yδ δ+ + = − + − =  

It is easy to get  
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k
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Y k
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Thus we have the analytic solution 

( ) ( ) ( ) ( )2 21 1
1 1 ,    1 2

2 2
t t

y t t t t
− −

= − − + = − + ≤ ≤  

Now, if we want to obtain the solution in the interval [2, 3], we should deal with the following DDE:  

( ) ( )

( ) ( )2

1 , 2 3,

1
1 , 1 2.

2

y t y t t

t
y t t t
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 −

= − + ≤ ≤


 

or equivalently,  

( ) ( ) ( )22
2 ,    2 3

2
t

y t t t
−

′ = − − ≤ ≤  

with the initial condition ( ) 12
2

y = − . 

Then we have the following differential transform  
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Thus the analytic solution defined on [2, 3] is given by  

( ) ( ) ( ) ( ) ( )2 3 2 32 2 1 21 1 ,    2 3
2 2 6 2 6

t t t t
y t t t

− − − −
= − + − = − + − ≤ ≤  

The DTM can be proceed till the desire solution is obtained. 
Example 4.2 Consider the nonlinear DDE of third-order [11] [13] 

( ) ( ) ( )
( ) ( ) ( ) ( )

0.30.3 e , 0 1,
0 1, 0 1, 0 1, e , 0.

x

x

y x y x y x x
y f y y x x

− +

−

′′′ = − − − + ≤ ≤
′ ′′= = − = = ≤

                       (9) 

Since 0.3τ = , according to the foregoing, we have the following ODE, defined in the interval [0, 0.3]  

( ) ( )1 1y x y x′′′ = −  

Thus, applying DTM to the equation above, we obtain  

( )( )( ) ( ) ( )1 2 3 3k k k Y k Y k+ + + + = −  

The initial conditions lead to ( )0 1Y = , ( )1 1Y = − , and ( ) 12
2

Y = . It is easy to have ( ) ( ) ( )
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 0
!

k

Y k k
k
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Thus we have the solution  
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k

∞
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Noting that ( ) ( )1 e xy x g x −= = , Remark 1 tells us ( ) e xy x −=  is the analytic solution to (9) in the whole 
interval [0,1] . 

Remark 5 In [13], F. Karako and H. Bereketoğlu also apply DTM to DDE (9) where the initial function 
( ) e xy x −= , 0x ≤  is omitted, i.e. 

( ) ( ) ( )
( ) ( ) ( )

0.30.3 e , 0 1,
0 1, 0 1, 0 1, 0.

xy x y x y x x
y f y x

− +′′′ = − − − + ≤ ≤
′ ′′= = − = ≤

                         (10) 

It’s worth pointing out that, using the method given in [13], only approximate solution can be obtained. On 
the other hand, for DDEs (3), the initial function has the vital role. Without it, the DDEs may have un-unique  
solution. In fact, Example 4.2 shows that ( ) e xy x −=  is a solution to (10). Let’s suppose ( ) ( )e xy x f x−= +  is  
also a solution to (10), then ( )f x  should satisfy the following DDEs  

( ) ( ) ( )
( ) ( ) ( )

0.3 , 0 1,
0 0 0 0, 0.

f x f x f x x
f f f x
′′′ = − − − ≤ ≤

′ ′′= = = ≤
                            (11) 

Figure 1 shows the solution to (11), together with it’s first and second derivative value on [ ]0,1 , with the  
initial function ( ) 3g x x= , which satisfies the initial conditions in (10) obviously. It can be seen ( ) 0f x ≠ , 

then ( ) ( )e xy x f x−= +  is also the solution to (11). So, (11) has infinite solutions. Maybe, the authors “happen  
to” get the approximate solution of ( ) e xy x −= . 

Example 4.3 Consider a single delay equation with a stiffness parameter [10] 

( ) ( ) ( )3π sin
2

y t Ay t y t A t ′ = + − − 
 

                               (12) 

with ( )0 1y = , ( ) ( )e sinpty t t= + , 3π ,0
2

t  ∈ −  
. 

Similarly, we should solve the following DDE limited in the interval 3π0,
2

 
  

: 

( ) ( ) ( ) ( )
3 π

2e e cos sin
p

pty t Ay t t A t
−

′ = + + −  

Thus applying DTM to this equation, we obtain  

( ) ( ) ( )
3 π

2 1 π 1 π1 1 e cos sin
! ! 2 ! 2

p kp k kk Y k AY k A
k k k

−    + + = + + −   
   

 

 

 
Figure 1. ( ) ( ),  f x f x′  and ( )f x′′  of (11) with ( ) 3g x x= .                
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The initial values lead to ( )0 1Y = . With the help of Mathematica, we have 

( )

( ) ( )
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2 2

3 π 3 π 3 π
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3 π 3 π 3 π
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p
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−
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4! 4!

15 e e e
120

1 1        e ,
5! 5! 5!

16 e e
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p
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A p

Y A A A p A p Ap p

A A p
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Y A A A p A p A p
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−
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−
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−
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−

= + + + + 4 5

3 π6 6 6
21        0 e ,
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A A p
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−
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Then, we obtain the solution to (12): 

( )

( )

( ) ( )

3 π3 5
2

0 0

3 π
2

0 0

3 π
2

1e
1! 3! 5! ! !

e       sin e
! !

e       sin e e e .

pk k k
k k

k k

p
k k

At k k

k k

p

At At pt

t t t A A py t t t
k k A p

A pt t t
A p k k

t
A p

∞ ∞−

= =

−
∞ ∞

= =

−

  −
= − + + + +  − 

 
= + + − −  

= + + −
−

∑ ∑

∑ ∑



 

This is the analytic solution to (12). Particularly, if 
3 π

2e
p

A p
−

= − , then the above solution can be simplified 

to ( ) ( )e sinpty t t= + , which coincides with the definition on 3π ,0
2

 −  
. So in this case, ( ) ( )e sinpty t t= +  

is the analytic solution to (12) in the whole interval [ ]0,∞ . 
As the last example, we apply the DTM based on the method of steps to solve a neutral delay differential 

equations. 
Example 4.4 Consider the neutral delay differential equation  

( ) ( ) ( )1 ,    0 1y x y x y x x′ ′= − − ≤ ≤                                (13) 
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with the initial function ( ) ( )siny x x= , 0x ≤  
According to the idea of the method of steps, DDE (13) becomes 

( ) ( ) ( )cos 1 ,    0 1y x x y x x′ = − − ≤ ≤  

Applying DTM to this equation, we have  

( ) ( ) ( )1 π1 1 cos 1
! 2

kk Y k Y k
k

 + + = − − 
 

 

From the initial function, we get ( )0 0y = , so ( )0 0Y = . With the help of Mathematica, we have 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

sin 111 cos 1 , 2 cos 1 sin 1 , 3 , 4 0,
2! 3!

cos 1 sin 115 , 6 cos 1 sin 1 , 7 , 8 0,
5! 6! 7!

cos 1 cos 1 sin 1 sin 1
9 , 10 , 11 , 12 0,

9! 10! 11!
      

Y Y Y Y

Y Y Y Y

Y Y Y Y

= = − + = − =

= = − + = − =

− +
= = = − =



 

Then, the solution to (13) is  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

4 1 4 2 4 3

0 0 0
cos 1 sin 1 cos 1 sin 1

4 1 ! 4 2 ! 4 3 !

sin sinh cos cosh sin sinh
        cos 1 sin 1 cos 1 sin(1)

2 2 2
1 1        e sin 1 cos 1 cos 1 sin 1 .
2 2

k k k

k k k

x

x x xy x
k k k

x x x x x x

x x

+ + ++∞ +∞ +∞

= = =

−

= + − −
+ + +

+ − + − +
= + − −

= − + − − −

∑ ∑ ∑

 

5. Conclusion 
Although the theory of differential transform method is not complete yet, it has been successfully applied to 
solve ordinary differential equations, partial differential equations, integral-differential equations, differential- 
algebraic equations and etc. In this paper, we apply DTM based on the method of steps to solve some delay 
differential equations, including neutral delay differential equations, successfully. Numerical experiments show 
that DTM is feasible and efficient for them. We believe that the operations of DTM presented in this paper also 
can be used to solve some partial delay differential equations (PDDEs), which is worth while studying in the 
future work. 
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