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Abstract 
Software development effort estimation is considered a fundamental task for software develop-
ment life cycle as well as for managing project cost, time and quality. Therefore, accurate estima-
tion is a substantial factor in projects success and reducing the risks. In recent years, software ef-
fort estimation has received a considerable amount of attention from researchers and became a 
challenge for software industry. In the last two decades, many researchers and practitioners pro-
posed statistical and machine learning-based models for software effort estimation. In this work, 
Firefly Algorithm is proposed as a metaheuristic optimization method for optimizing the parame-
ters of three COCOMO-based models. These models include the basic COCOMO model and other 
two models proposed in the literature as extensions of the basic COCOMO model. The developed 
estimation models are evaluated using different evaluation metrics. Experimental results show 
high accuracy and significant error minimization of Firefly Algorithm over other metaheuristic 
optimization algorithms including Genetic Algorithms and Particle Swarm Optimization. 
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1. Introduction 
Effort estimation of software development has been a crucial task for software engineering community. Reliable 
effort estimation makes it more dependable to schedule project activities, allocate resources, estimate costs, and 
reduce the probability of project failures or delays. According to the survey in [1], most of the projects face 
overruns of effort or schedules. The survey also claimed that the lack of accurate estimation models is a main 
reason for project overruns. 
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Usually projects seem to be vague at the beginning and become less vague as they progress. At the same time, 
each project has its special nature that makes it much harder to estimate the required effort for completion. Due 
to the uncertain nature of projects, authors in [2] [3] suggested developing models that can adapt to a wide range 
of projects. But for the fact that software project data sets are typically small and the underlying relations are 
inaccurate or missing, the task of prediction becomes more challenging. 

Several effort estimation models have been developed and improved over time for better prediction accuracy 
and thus better development quality [1] [4]-[8]. Such models range from complex calculations and statistical 
analysis of project parameters, to advanced machine learning approaches. 

Heuristic optimization [9] is a method that relies on several attempts to find an optimal solution. Heuristic op-
timizers have been used in software effort estimation [10] as the use of genetic programming in [11] for model 
optimization. Another example is the part that Particle Swarm Optimization took in [12] as a heuristic optimizer. 
Moreover, the hybrid approaches encompass a combination of heuristic algorithms like the use of Genetic Algo-
rithm and Ant Colony [13]. 

Despite a large number of experiments on finding the best prediction model, there is no clear evidence of a 
highly accurate or efficient approach. At the same time it is important to develop a prediction method that is less 
complex and much more useful. For instance, in some prediction models, a large number of variables that are 
used to construct the model do not reflect or improve the accuracy of the prediction model. Thus, collecting ex-
tra or unrelated variables is time-consuming with no significance. It would be more efficient to build a model 
with a minimum number of variables, hopefully finding the most important and common variables for generic 
project development efforts. 

This work presents a study of how Firefly Algorithm improves the overall estimation of the software effort 
estimation. Where the main contributions are: 
• Proving the suitability of Firefly Algorithm as predictor towards a generic prediction model for software ef-

fort estimation. 
• The significant improvement in performance over previously reported methods. 
• The suitability of machine learning approaches for effort prediction using a small number of input variables 

and data set instances. 

2. Related Work 
Many of Machine Learning (ML) approaches in the literature have been applied to improve the software effort 
estimation [2]. ML optimization algorithms that are inspired from nature have received much attention to find 
more accurate estimation for software effort. Nature-inspired ML algorithms include Cuckoo Search [14], Par-
ticle Swarm Optimization (PSO) [15], Bat Algorithm [16], Firefly Algorithm [17], and many others. 

In [18], the authors compared the performance of different soft computing techniques such as PSO-Tuned 
COCOMO, Fuzzy Logic with traditional effort estimation structures. Their results showed that the proposed 
model outperformed traditional effort estimation structures for NASAs software effort data set. In [7], decision 
trees based algorithm was used to perform the software effort estimation. In addition, the authors presented an 
empirical proof of performance variations for several approaches that include Linear Regression, Artificial 
Neural Networks (ANN), and Support Vector Machines (SVM). Also the authors pointed to the suitability of the 
experimented ML approaches in the area of effort estimation. From their performance comparison results with 
other traditional algorithms, their results in terms of the error rate were better than other techniques. 

A hybrid approach was adopted in [19] for parameter selection and model optimization. The authors used 
Genetic Algorithms (GA) for optimizing a Support Vector Regression model. The authors clarified the impact of 
using GA in feature selection and parameter optimization of the effort estimation model. The results of their ap-
proach showed that GA is applicable to improve the performance of the SVR model compared to other ap-
proaches. A generic framework is proposed in [20] for software effort estimation. The framework tries to simu-
late the human way of thinking to resolve the effort estimation by adopting fuzzy rules modeling. Therefore the 
generated models take advantage of experts knowledge, interoperable, and could be applied to various problems 
as risk analysis or software quality prediction. ANNs gained noticeable attention by researchers for effort esti-
mation as illustrated by the review in [21], but it is insufficient to generalize the applicability of ANN in effort 
estimation. The authors stated that it is required to have further thorough investigation. The authors in [22] relied 
on seven evaluation measures to assess the stability of 90 software effort predictors over 20 data sets. According 
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to the empirical results it was found that analogy-based methods or regression trees outperformed in terms of 
stability. Such conclusions open the door for extensive research towards a superior and generic prediction ap-
proach regarding the software effort estimation issue. 

3. Firefly Algorithm 
Firefly Algorithm (FA) is a multimodal optimization algorithm, which belongs to the nature-inspired field, is 
inspired from the behavior of fireflies or lightning bugs [17]. FA was first introduced by Xin-She at Cambridge 
University in 2007 [17]. FA is empirically proven to tackle problems more naturally and has the potential to 
over-perform other metaheuristic algorithms. 

FA relies on three basic rules, the first implies that all fireflies are attracted to each other with disregard to 
gender. The second rule states that attractiveness is correlated with brightness or light emission such that bright 
flies attract less bright ones, and for absence of brighter flies the movement becomes random. The last main rule 
implies that the landscape of the objective function determines or affects the light emission of the fly, such that 
brightness is proportional to the objective function. 

 
Algorithm 1. Pseudo-code of firefly algorithm. 

Objective function ( )f x  
( )= 1, ,x x xd T  

Generate initial population of fireflies ( )= 1,2, ,ix i n  
Light intensity iI  at ix  is determined by ( )if x  
Define light absorption coefficient γ  
while (t < MaxGeneration) do 

for 1i = : n  all n  fireflies do 
for 1j = : i  all n fireflies do 

if ( >j iI I ) then 
Move firefly i towards j in d-dimension; 

end if 
Attractiveness varies with distance r  via [ ]exp rγ  
Evaluate new solutions and update light intensity 

end for 
end for 
Rank the fireflies and find the current best 

end while 
Post-process results and visualization 

 
The attractiveness among the flies in FA has two main issues that are; the modeling of attractiveness and the 

various light intensities. For a specific firefly at location X brightness I is formulated as ( )I X  ( )f Xα . While 
attractiveness β is proportional to the flies and is related to the distance ,i jR  between fireflies i and j. Equation 
(1) shows the inverse square of light intensity ( )I r  in which 0I  represents the light intensity at the source. 

( ) 2

0e
rI r I γ−=                                      (1) 

Assuming an absorption coefficient of the environment γ , intensity is represented in Equation (2) in which 
0I  is the original intensity. 

( ) 0
2=

1
II r

rγ+
                                     (2) 

Generally the Euclidean distance is illustrated in Equation (3), which represents the distance between a firefly 
at location iX  and another at location jX . In which ,i kX  is the thk  component of the spatial coordinate 

iX . 

( )2
, ,

=1
= =

d

ij i j i k j k
k

R x x x x− −∑                               (3) 



N. Ghatasheh et al. 
 

 
136 

A firefly i attracted to a brighter one j as illustrated in Equation (4) where attraction is represented by 

( )2
e

rij
j ix x

γ
β − , and 1

2
randα  − 
 

 represents the randomness according to the randomization parameter α. 

( )2
e

1
2rij

i i j ix x x x rand
γ

β α  = + − + − 
 

                           (4) 

Furthermore, variations of attractiveness are determined by γ which on its turn affects the behavior and con-
vergence speed of FA. 

4. Effort Estimation Models 
One of the Famous and widely used effort estimation models is the Constructive Cost Models COCOMO and its 
extension COCOMOII. COCOMO is used as cost, effort, and schedule estimation model in the process of plan-
ning new software development activity, also known as COCOMO 81. COCOMO was defined between the late 
1970s and early 1980s [23]. Where COCOMOII is a later extension of the previously defined model. This re-
search work tries to optimize the parameters of three variations of the COCOMO model. The first is the basic 
COCOMO model which is represented in Equation (5). 

( )KLOC ib
iE a=                                    (5) 

E is the effort in person-months, KLOC represents the thousand (K) lines of code included in a software 
project. Typically, the coefficient ai and the exponent bi are chosen based on COCOMO pre-set parameters that 
depend on the software project details. 

The other two models are extensions of the basic COCOMO model which are proposed by A. Sheta in [24]. 
Both models consider the effect of methodologies (ME) as supposed to be linearly related to the software effort. 
These models are represented in Equations (6) and (7) and named Model I and Model II respectively. 

( ) ( )KLOC MEib
i iE a c= +                                (6) 

( ) ( )KLOC MEib
i i iE a c d= + +                             (7) 

This work tries empirically to optimize the constants ai, bi, ci and di using FA, GA and PSO. 

5. Data Set and Evaluation Measures 
This research considers a famous and public data set in order to produce comparable results; namely NASA 
projects' effort data set. The data set is challenging due to the small number of instances and limited number of 
analyzed variables. However, regarding the objectives of this research the data set is considered to be adequate. 
The data set is split into two parts; training set of about 60% and testing set of about 30% instances. 

NASA data set [6] consists of 18 software projects for which this research considers three main variables that 
are the project size in thousand Lines of Code (KLOC), Methodology (ME), and Actual Effort (AE). Training 
data set has 13 instances and the records from 14 till 18 are for testing the model. Table 1 shows the actual val-
ues of the training and testing data sets. 

In order to check the performance of the developed models, the computed measures are the Correlation Coef-
ficient (R2), 

( ) ( )

( )

2 2

2 1 1

2

1

ˆ
n n

i i i i
i i

n

i i
i

y Y y y
R

y y

= =

=

− − −
=

−

∑ ∑

∑
                            (8) 

the Mean Squares Error (MSE), 

( )2

1

1 ˆMSE
n

i
y y

n =

= −∑                                  (9) 
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Table 1. NASA data set. 

Project No. KDLOC ME Measured Effort 

1 90.2 30 115.8 

2 46.2 20 96 

3 46.5 19 79 

4 54.5 20 90.8 

5 31.1 35 39.6 

6 67.5 29 98.4 

7 12.8 26 18.9 

8 10.5 34 10.3 

9 21.5 31 28.5 

10 3.1 26 7 

11 4.2 19 9 

12 7.8 31 7.3 

13 2.1 28 5 

14 5 29 8.4 

15 78.6 35 98.7 

16 9.7 27 15.6 

17 12.5 27 23.9 

18 100.8 34 138.3 

 
the Mean Absolute Error (MAE), 

1

1 ˆMAE
n

i i
i

y y
n =

= −∑                                   (10) 

the Mean Magnitude of Relative Error (MMRE), 

1

ˆ1MMRE
n

i i

i i

y y
n y=

−
= ∑                                  (11) 

and the Variance-Accounted-For (VAF). 

( ) ( )( )
( )( )

ˆvar
VAF 1 100%

var
y t y t

y t

 −
= − × 
  

                          (12) 

These performance criteria are used to measure how close the predicted effort to the actual values, where y is 
the actual value, ŷ  is the estimated target value, and n is the number of instances. 

6. Experiments and Results 
The experiments apply FA, GA and PSO for optimizing the coefficients of the basic COCOMO model, 
COCOMO Model I and COCOMO Model II based on the training part of NASA data set. For FA, the Matlab 
implementation developed by X.-S. Yang [9] is applied. Number of flies, particles and population size is unified 
and set to 100 in all the algorithms. The number of iterations is set to 500. The rest of the parameters of FA, GA 
and PSO are set as listed in Tables 2-4. MAE criteria are used as an objective function which is shown in Equa-
tion (10). In order to carry out meaningful evaluation results, each algorithm is applied 25 times then the average 
of the evaluation results is reported. In each run, the optimized models are evaluated based on the testing data 
using VAF, MSE, MAE, MMRE, RMSE and R2 evaluation metrics. 

Carrying out the experiments, the average convergence curves for FA, GA and PSO are shown in Figures 1-3 
respectively for the three variations of COCOMO model. 
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Table 2. Firefly algorithm parameter settings. 

Parameter Value 

Maximum iterations 500 

Number of fireflies 100 

Alpha 0.4 

Betamin 1 

Gamma 0.4 

 
Table 3. GA parameter settings. 

Parameter Value 

Maximum iterations 500 

Population size 100 

Selection method Tournament selection 

Crossover probability 80% 

Mutation probability 5% 

 
Table 4. PSO parameter settings. 

Parameter Value 

Maximum iterations 500 

Particles 100 

Acceleration constant [2.1, 2.1] 

Inertia weight [0.9, 0.6] 

Maximum velocity 100 

 

 
Figure 1. Convergence of FA, GA and PSO in optimizing the basic COCOMO model. 
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Figure 2. Convergence of FA, GA and PSO in optimizing Model I. 

 

 
Figure 3. Convergence of FA, GA and PSO in optimizing Model II. 



N. Ghatasheh et al. 
 

 
140 

The evaluation results for training and testing cases are shown in Tables 5-7. Based on Table 5 and Table 6 it 
can be noticed that Firefly outperforms GA and PSO in optimizing the basic COCOMO model and the Model I 
by means of all evaluation metrics. For the Model II, Firefly and PSO are very competitive and have very close 
results. On the other hand GA has the lowest results and it has the slowest convergence. 

In summary, FA as a metaheuristic optimization algorithm over-performs GA and PSO in terms of higher es-
timation accuracy for the software effort COCOMO based models. 
 
Table 5. Basic COCOMO model. 

 Training Testing 

 Firefly GA PSO Firefly GA PSO 

VAF 93.82% 93.72% 93.73% 98.16% 97.97% 97.98% 

MSE 104.88 107.28 107.15 59.14 63.96 63.68 

MAE 7.04 7.03 7.03 5.65 6.06 6.04 

MMRE 0.24 0.24 0.24 0.11 0.13 0.12 

RMSE 10.24 10.36 10.35 7.67 8.00 7.98 

R2 0.9367 0.9352 0.9353 0.9781 0.9763 0.9765 

 
Table 6. COCOMO Model I. 

 Training Testing 

 Firefly GA PSO Firefly GA PSO 

VAF 96.78% 92.94% 96.96% 98.62% 97.97% 98.52% 

MSE 56.05 127.70 54.16 47.74 98.17 60.07 

MAE 5.42 8.94 5.16 5.56 7.70 5.63 

MMRE 0.41 0.53 0.39 0.24 0.29 0.23 

RMSE 7.48 10.95 7.36 6.82 9.39 7.72 

R2 0.9662 0.9229 0.9673 0.9823 0.9637 0.9778 

 
Table 7. COCOMO Model II. 

 Training Testing 

 Firefly GA PSO Firefly GA PSO 

VAF 96.95% 92.42% 97.48% 98.63% 97.60% 98.70% 

MSE 53.74 129.37 45.28 45.02 114.79 52.85 

MAE 5.36 8.20 4.43 5.57 7.83 5.29 

MMRE 0.38 0.40 0.30 0.24 0.27 0.21 

RMSE 7.26 11.05 6.72 6.62 9.86 7.19 

R2 0.9676 0.9219 0.9727 0.9833 0.9575 0.9805 
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7. Conclusion and Future Work 
This work investigated the efficiency of applying the Firefly Algorithm as a metaheuristic optimization technique 
to optimize the parameters of different effort estimation models. These models are three variations of the Con-
structive Cost Model COCOMO which are the basic COCOMO model, and other two extensions of the basic 
model that were proposed previously in the literature. The optimized models are assessed according to different 
evaluation criteria and compared with models optimized using other metaheuristic algorithms which are Genetic 
Algorithm and Particle Swarm Optimization. Evaluation results show that developed models using the Firefly 
Algorithm have higher accuracy in estimating software effort. Further future work is intended to overcome the 
instability issues, a more generic prediction model that is not highly affected by the size and the type of data set, 
and preferably an enhancement to the Firefly Algorithm itself. Moreover, it would be important to work towards 
a hybrid approach that encompasses the best characteristics of different prediction schemes. 
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