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Abstract 
The equations for the pair distribution functions are derived directly from the second equation of 
the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The derivation is fulfilled within 
the frameworks of the multiscale method. The equations for the pair distribution functions are the 
kinetic foundation for the multimoment hydrodynamics equations. Solutions to the equations for 
the pair distribution functions predetermine the possibility of constructing the hydrodynamics 
equations with an arbitrary number of principle hydrodynamic values specified beforehand. The 
tendency to increase the number of principal hydrodynamic values is caused by the necessity of 
interpreting the behavior of the system after the loss of stability. Solutions to the classic hydrody-
namics equations constructed for only three principle hydrodynamic values are unable to predict 
the direction of instability evolution. Solutions to the multimoment hydrodynamics equations are 
capable of reproducing correctly the phenomenon of emergence and development of instability. 
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1. Introduction 
Possibility to study the unstable phenomena by means of the direct numerical integration of the Navier-Stokes 
equations became feasible comparatively recently. The direct numerical integration of the Navier-Stokes equa-
tions in the problem of a flow around a solid sphere was performed by various numerical methods. Nevertheless, 
the results of all these numerical experiments were absolutely identical (see, review [1]). After some critical 
Reynolds number value Re∗  is reached; the ground axisymmetric stationary solution ( )cal

0U x  loses its stabil-
ity. Nonstationary solution ( )cal

0,1 , ,Ret ∗U x  ensures the transition from the ( )cal
0U x  solution that loses its sta-

bility to the stable stationary nonaxisymmetric solution ( )cal
1U x . The attainment of the second critical Reynolds 
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number value Re Re∗∗ ∗>  is accompanied by the loss of stability of the ( )cal
1U x  solution. Nonstationary solu-

tion ( )cal
1,2 , ,Ret ∗∗U x  ensures the transition from the ( )cal

1U x  solution that loses its stability to the stable nonsta-
tionary limiting cycle ( )cal

2 ,tU x . After attainment of the third critical Reynolds number value Re Re∗∗∗ ∗∗> , the 
( )cal

2 ,tU x  solution loses its stability. Nonstationary solution ( )cal
2,3 , ,Ret ∗∗∗U x  ensures the transition from the 

( )cal
2 ,tU x  limiting cycle that loses its stability to the new stable position about which multiperiodic, that is, al-

most chaotic, ( )cal
3 ,tU x  motion occurs. 

Experiment records two stable medium states presented by the ( )exp
0U x  and ( )exp

1U x , velocity distributions, 
and a stable state of a central type with the ( )exp

2 ,tU x  velocity distribution. The ( )exp
0U x , ( )exp

1U x , and 
( )exp

2U x  stable flows are satisfactorily reproduced by stable solutions ( )cal
0U x , ( )cal

1U x , and ( )cal
2 ,tU x . Be-

sides three stable medium states, experiment records six different nonstationary one-periodic and two-periodic 
vortex shedding modes and one pulsating mode.  

Non-stationary solutions ( )cal
0,1 , ,Ret ∗U x , ( )cal

1,2 , ,Ret ∗∗U x , and ( )cal
2,3 , ,Ret ∗∗∗U x  are aperiodic, and are li-

mited in time. Non-stationary solutions exist only at a critical value of the Reynolds number. These solutions 
cannot be put in correspondence to observed periodic vortex shedding modes exceedingly prolonged along the 
Re scale. Correlation of multiperiodic, that is, chaotic in essence, solution ( )cal

3 ,tU x  with the observed strictly 
periodic vortex shedding modes is hardly possible. So, the ( )cal

2 ,tU x  limiting cycle is likely the only possibili-
ty of establishing correlation between the observed vortex shedding and experiment.  

The idea of bringing the ( )cal
2 ,tU x  stable solution to interpret the six observed vortex shedding modes and 

the pulsation mode in the range Re Re Re∗∗ ∗∗∗< <  initially seems to have no prospects. Moreover, this idea is 
not able to resolve the encountered discrepancies when evaluating the results of the direct numerical integration 
of the Navier-Stokes equations against experiment. Namely, three of six observed vortex shedding regimes are 
the two-periodic modes. The ( )cal

2 ,tU x  one-periodic solution seems to have no prospects to be set in accor-
dance with two-periodic regimes. At some values of Re , the various experiments register qualitatively different 
vortex shedding regimes. The ( )cal

2 ,tU x  solution is incapable of reproducing several different vortex shedding 
modes simultaneously.  

As expected, the idea of bringing the ( )cal
2 ,tU x  solution to interpret the phenomenon of vortex shedding did 

not give the desired result. None of numerical experiments detected the slightest indications of vortex shedding 
on flow pictures presented both by the streamlines and by the streaklines, (see reviews [1] [2]). So, the calcu-
lated ( )cal

2 ,tU x  limiting cycle satisfactorily reproduces the ( )exp
2 ,tU x  stable central-type state but proves a 

complete failure when attempts are made to reproduce the vortex shedding modes. In accordance with interpre-
tation of [1]-[3], the responsibility for the failure of the calculations is laid on the Navier-Stokes equations 
themselves. 

Classic kinetics and classic hydrodynamics are direct corollaries to the first equation of the BBGKY hierarchy. 
The Boltzmann hypothesis of molecular chaos “Stosszahlansatz” closes kinetic equation [4]. The classic hydro-
dynamics equations follow directly from the Boltzmann equation and, quite naturally, involve the error inherent 
in the derivation of the classic kinetic equation. The physical meaning of the Boltzmann hypothesis was dis-
closed in [2] [3] and [5]. It was found that just the Boltzmann hypothesis allowed us to construct the classic hy-
drodynamics equations for only three lower principle hydrodynamic values. It follows that the use of the 
Boltzmann hypothesis excludes higher principle hydrodynamic values from the participation in the formation of 
classic hydrodynamic equations.  

The problems encountered by classic hydrodynamics when interpreting the unstable phenomena were not un-
expected. They were predicted in [6]. The possibility of improvement of classic hydrodynamics equations is 
sought on the way toward an increase in the number of principle hydrodynamic values [1]-[3]. The formalism of 
[5] allows hydrodynamics equations to be derived with an arbitrary number of principle hydrodynamic values 
specified beforehand. The multimoment hydrodynamics equations were used in [6]-[9] to study the phenomenon 
of instability appearance and development in the problem of a flow around a solid sphere at a wide range of 
Reynolds number values. The multimoment hydrodynamics equations follow directly from the equations for 
pair distributions functions. The equations for pair distribution functions were previously derived heuristically in 
[10]. These equations were derived immediately from the Liouville equation in [11]. The derivation [11] was 
fulfilled in terms of conditional possibilities. In the present work the equations for pair distribution functions are 
derived directly from the second equation of the BBGKY hierarchy within the frameworks of the multiscale 
method. The common ideology of the multiscale method is given in [12]. The common ideology [12] is used to 
derive the kinetic equation for one-particle distribution function in Section 2. The equations for pair distribution 
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functions are derived in Section 3.  

2. Equations for One-Particle Distribution Functions on the Kinetic Stage 
The s-particle distribution function ( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ  is specified in [4]. The  

( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ  function has a meaning of the probability that at some time t  one particle, say 
particle 1, finds itself within an unit element of phase space near point 1 1,  x ξ , another particle, say particle 2, 
within an unit element near point 2 2,  ,  x ξ   and particle s -near point ,  s sx ξ , regardless of the position in 
phase space of the remaining N s−  particles. The ( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ  function obeys the s -equa- 
tion of the BBGKY hierarchy 

( )

( ) ( )

,
1 1 2 2

1 1 , 1

, 1
1 1 1 2 2 1 1 1 1

1

+ + , , , , , , ,

  , , , , , , , d d ,

s s s
i j

s s si
i i j i ji i

s
i s

s s s s s
i i

F t
t m

N s F t
m

= = ≠ =

+
+ + + + +

=

  ∂ ∂ ∂
   ∂ ∂ ∂  

  ∂
= − −   ∂ 

∑ ∑ ∑

∑∫

Φ
ξ x ξ x ξ x ξ

x ξ

Φ
x ξ x ξ x ξ x ξ

ξ





            (2.1) 

The BBGKY hierarchy is closed by the Liouville equation for ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ . In the thermo-
dynamic limit, N →∞ , V →∞ , yet N V  is a finite, V  is the volume of the system.  

Analyzing the hierarchy (2.1), N. Bogolyubov [13] introduced a concept of characteristic intervals (scales) in 
gas medium. Three temporal intervals were distinguished in [13]: 0τ , kτ , and hτ . Interval 0τ  is equivalent to 
the characteristic time of particle collisions 0θ . The spatial scale 0l  corresponding to it is identical to the cha-
racteristic radius of interparticle interaction potential d . Interval kτ  is identical to the characteristic time be-
tween collisions τ . The spatial interval kl  corresponding to it is identical to the characteristic free path length 
λ . Temporal interval hτ  and spatial interval hl  corresponding to it are equivalent to the characteristic tem-
poral scale of flow Θ  and the characteristic spatial scale of flow L respectively. The above three intervals spe-
cify three Bogolyubov accuracy stages of gas description: initial 0l -stage, kinetic kl -stage, and hydrodynamic 

hl -stage. Initial stage equations are the most detailed. The solutions to these equations describe the system at the 
finest initial stage as well as at the kinetic and hydrodynamic stages. Passage to less detailed kinetic description 
stage is implemented by neglecting the information about a sharp change of the distribution functions on the ini-
tial scale. Namely, the distribution function governed by the equations of kinetic description stage, varies 
slightly on 0l -scale. After transition to the most coarse hydrodynamic description stage the distribution function 
varies strongly on hl -scale only.  

Following common ideology of the multiscale method [12], let us begin to study the evolution of ( )1 1 1, ,F t x ξ  
and ( )2 1 1 2 2, , , ,F t x ξ x ξ  functions. Let us consider only the case of rarefied gas, where the characteristic free 
path substantially exceeds the characteristic size of particles d λ . Presuming that a particle may be present at 
all phase space locations with equal probabilities, recast the first of Equations (2.1) in terms of dimensionless 
variables. On the initial 0l -scale, the first equation can be specified in terms of dimensionless time and coordi-
nates as  

( ) ( )1 1 1 1
1

ˆ ˆ , , 0ˆ ˆ
F t O

t
ν

 ∂ ∂
+ + = ∂ ∂ 
ξ x ξ

x
                         (2.2a) 

( ) ( )1,2 2,1
1 2 2 1 1 2 2

1 2 1 2

ˆ ˆ
ˆ ˆ ˆ , , , , 0ˆ ˆˆ ˆ ˆ ˆ ˆ

F t O
t m m

ν
    ∂ ∂ ∂ ∂ ∂ + + + + + =       ∂ ∂ ∂ ∂ ∂    

Φ Φ
ξ ξ x ξ x ξ

x x ξ ξ
         (2.2b) 

here, 

( ) ( ) ( )3 2 6
1 1 2 2

ˆ ˆ ˆ ˆ1 ,   1  ,    ,    i iF Vc F F V c F t d c t d= = = =x x  

( )2
ˆ

ˆ ,     ,     1,     , 1, 2
ˆ

i, j i, j
i ic c d d i j

m m
ν λ

  
 = = = =      



Ф Ф
ξ ξ  

c  is the characteristic velocity of a particle, and the hat appears above the dimensionless quantities. At the de-
rivation of Equations (2.2), N was estimated as ratio of the system volume V to the characteristic volume 2d λ  
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occupied by a single particle, i.e., the dimensionality [ ] 2~V N d λ . 
According to Equation (2.2а), the one-particle distribution function ( )1 1 1, ,F t x ξ  remains unchanged with 

time along a rectilinear particle trajectory to within ( )O ν  in the 6-dimensional phase space at the times, pro-
portional to d c . So, the variation of the distribution function in the order of own magnitude along the particle 
trajectory occurs only at longer times, proportional to cλ . Similarly, in accordance with Equation (2.2b), the 

( )2 1 1 2 2, , , ,F t x ξ x ξ  distribution function with the error ( )O ν  does not change along the trajectory of two par-
ticles in the 12-dimensional phase space at the times, proportional to d c . 

Let us switch from phase coordinates 1 1 2 2,  ,  ,  x ξ x ξ  of two particles first to phase coordinates 1x , 1ξ , 
1 2= −ρ x x , 1 2= −v ξ ξ , and then to phase coordinates ( )1 2 2= +x x x , 1 2= −ρ x x , ( )1 2 2= +G ξ ξ ,  
1 2= −v ξ ξ . Then, 

( ) ( ) ( )2 1 1 2 2 2 2 1 1, , , , , , , , , , , ,F t F t F t= =x ξ x ξ x G ρ v x ξ ρ v

                      (2.3) 

Let us recast the second equation of the BBGKY hierarchy (2.1) in terms of two-particle distribution func-
tions ( )2 1 1, , , ,F t x ξ ρ v

 , written in 1x , 1ξ , 1 2= −ρ x x , 1 2= −v ξ ξ  variables. Let us integrate the second equ-
ation with respect to ρ  and v . The integration with respect to ρ  is limited by the 0C  interaction domain of 
two particles: 

( ) ( ) ( )

( ) ( )

0

0 0

1 2 1 1 2 1 1 2 1 1
1

1,2 1,3
2 1 1 3 3 3

1 1

, , , , d d , , , , , , , , d d d

  , , , , d d 2 d d d d ,

d d

C

С C

F t v F t F t b b
t

F t N F
m m

ε+ − ∂ ∂  + + −    ∂ ∂ 

   ∂ ∂
+ = − −   ∂ ∂   

∫∫ ∫

∫∫ ∫ ∫

v vξ x ξ ρ v ρ v x ξ ρ v x ξ ρ v v
x

Ф Ф
x ξ ρ v ρ v x ξ v ρ

ξ ξ

  

  





     (2.4) 

In Equation (2.4), the vectors d−
vρ  and d+

vρ  have the cylindrical coordinates ,  ,  b dε −  and ,  ,  b dε +  
respectively in the reference frame with the z  axis parallel to the v  vector, b  is the impact parameter, and 
ε  is the azimuthal angle. The ( )2 1 1, , , ,dF t +

vx ξ ρ v

  function in the second term on the right hand side of Equa-
tion (2.4) corresponds to a pair of particles 1 and 2, which leave the interaction domain 0C  ( )+d= vρ ρ  at ve-
locities 1ξ  and 2ξ , Figure 1. The ( )2 1 1, , , ,dF t −

vx ξ ρ v

  function in the second term on the left hand side of 
Equation (2.4) corresponds to a pair of particles 1 and 2, which enter the interaction domain 0C  ( )d−= vρ ρ  at 
velocities 1ξ  and 2ξ . 

Express the ( )2 1 1, , , ,dF t +
vx ξ ρ v

  function in terms of the two-particle distribution function at the entrance to 
the domain 0C . To do this, it is expedient to pass from function 2F  to function 2F  written in x , ρ , G , v  
variables. In accordance with Equation (2.2b), ( )2 , , , ,F t x G ρ v  experiences changes of about ( )O ν  due to 
triple collisions of particles, as particles 1 and 2 travel in the domain 0C  along the 12-dimensional phase tra-
jectory: 

( ) ( )2 1 1 2 1 2 0 1 0, , , , , , , , , , , , 1
2 2

d d
d d dF t F t F t Oτ τ ν

+ +
+ + −

′

   
′= = − = − = − − +      

   
v v

v v v
ρ ρ

x ξ ρ v x x G ρ v x x G G ρ v

    (2.5) 

here, 0τ  is the time within which the particles traverse the interaction domain 0C , The cylindrical coordinates 
of the d−

′vρ  vector are ,  ,  b dε −  in the reference frame with the z  axis parallel to 1 2′ ′ ′= −v ξ ξ . If particles 1 
and 2 enter the 0C  at velocities ( )1 1 2, , ,b ε′ξ ξ ξ  and ( )2 1 2, , ,b ε′ξ ξ ξ , 1 2′ ′ ′= −v ξ ξ , then they have velocities 

1ξ  and 2ξ  respectively at the exit of the 0C , Figure 1.  
Further transformation of relations (2.5) gives:  

( )2 0 1 0 2 1

2 1 1

, , , , , , , , 1
2 2

                                                              , , , , 1
2 2 2

d d
d d

d d
d

F t F t O
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 ( ) ,ν  

    (2.6) 

The 2 0 1 0, , , ,
2

d
dF t τ τ
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v
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ρ
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x x G G ρ v  remains inva- 



I. V. Lebed 
 

 
80 

 
Figure 1. The interaction domain of a pair of particles C0.               

 
riant along the trajectory of the center of mass of a pair of particles to within ( )O ν  at the times, proportional to 
d c . Weak dependence of the ( )2 , , , ,dF t −

′ ′vx G ρ v  function on 0l -scale at the boundary of interaction domain 
0C  is specified by weak dependence of the ( )2 , , , ,p dF t −

′ ′vx G ρ v  function on 0l -scale, see Equations (3.10) and 
(3.11). Boundary condition (3.6) connects functions 2

pF  and 2F .  
Apply Equation (2.2b) to penetrate the domain 0C . Let vector η

vρ  specifies any respective location of par-
ticles in pair within the 0C  domain, Figure 1. The η

vρ  vector has the cylindrical coordinates ,  ,  b ε η , 
d dη− ≤ ≤ +  in the frame of reference with the z  axis parallel to the v  vector. Then,  

( ) ( ) ( )
12 2 0 0 1, , , , , , , , 1η dF t F t τ τ O ν−′ ′= − − +  v vx G ρ v x G G ρ v                    (2.7) 

The pair of particles with the parameters 1b  and ε  enters the domain 0C  at time 0t τ ′−  ( )0 0ττ ′ <  at ve-
locity ( )1 , ,b εv v  and reaches the location η

vρ  by the time t , Figure 1.  

Let us apply the operator 
t
∂ ∂ ∇ = + ∂ ∂ 

G
x

 upon Equation (2.7). Function ( )12 0 0 1, , , ,dF t τ τ −′ ′− − vx G G ρ v  

corresponds to a pair of particles, which enter the interaction domain 0C  ( )d−
′= vρ ρ . In accordance with the 

aforesaid, function ( )12 0 0 1, , , ,dF t τ τ −′ ′− − vx G G ρ v  remains invariant along the trajectory of the center of mass of  

a pair of particles to within ( )νO  at the times, proportional to d c . After action of the operator ∇ , the left 
side of Equation (2.7) assumes the form: 

( ) ( )2
ˆˆ , , , , 0ˆ ˆ

ηF t O
t

ν∂ ∂ + + = ∂ ∂ 
vG x G ρ v

x
                          (2.8) 

Equation (2.8) is specified in terms of dimensionless time and coordinates on the initial scale. Recast Equa-
tion (2.8) in terms of distribution function ( )2 1 1, , , ,F t x ξ ρ v

 , written in 1x , 1ξ , ρ , v  variables, then  

( ) ( ) ( )1 2 1 1 2 1 1
1 1

ˆ ˆˆˆ , , , , , , , , 0ˆ ˆ ˆ2
η ηF t F t O

t
ν

 ∂ ∂ ∂
+ − + = ∂ ∂ ∂ 

v v
vξ x ξ ρ v x ξ ρ v

x x
 

                (2.9) 

Upon substituting the third term on the left hand side of Equation (2.4) into the force term of the first equation 
of hierarchy (2.1), this equation assumes the form:  

( ) ( ) ( ) ( )

( ) ( ) ( )( )
0 0

1 1 1 1 2 1 1 2 1 1
1

1,3
1 2 1 1 3 3 3

1 1

, , 1 , , , , , , , , d d d

  1 , , , , d d 1 2 d d d d ,ˆ

d d

C C

F t N v F t F t b b
t

N F t N N F
t m

ε+ − ∂ ∂  + − − −    ∂ ∂ 
   ∂ ∂ ∂

= − + + − −   ∂ ∂ ∂  

∫

∫ ∫ ∫

v vξ x ξ x ξ ρ v x ξ ρ v v
x

Ф
ξ x ξ ρ v ρ v x ξ v ρ

x ξ

 

 





   (2.10) 

Let us bring Equation (2.10) into the dimensionless form and assess the order of magnitudes of its constituent 
terms. In accordance with Equation (2.2а), ( )1 1 1, ,F t x ξ  varies only slightly with time along the 1ξ -particle 
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trajectory on the initial scale. Then, the ( )1 1 1, ,F t x ξ  function varies in the order of own magnitude along this 
trajectory exclusively at the times, proportional to cλ , i.e., the first term on the left hand side of Equation 
(2.10) is of order ( )31 Vc c λ . So is the second term on the left hand side of Equation (2.10).  

To assess the order of magnitude of the first term on the right hand side of Equation (2.10) we use the Equa-
tion (2.9). Generally, there are no reasons to believe that the ( )2 1 1, , , ,F t x ξ ρ v

  function varies slightly with 1x  
on the scale of particle size d , therefore, let us save for the first term on the right side of Equation (2.10) the 
order of ( )31 Vc c λ . The order of the second term on the right hand side of Equation (2.10), allowing for triple 
collisions, is ( )3 21 Vc cd λ . 

Expand the dimensionless one-particle distribution function in a perturbation theory series in terms of the 
virial parameter ν : 

( ) ( ) ( )1 1 1 1 1 1
0

ˆ ˆ, , , ,kk

k
F t ν F t

∞

=

= ∑x ξ x ξ                            (2.11) 

Following Equation (2.11), expand functions 2

ˆ
F  and 3̂F  in a perturbation theory series. Substitute received 

series into the dimensionless Equation (2.10). Take into account the aforesaid estimates of the terms. Equating 
the multipliers at equal degrees of ν , let us specify the equation for ( ) ( )0

1 1 1
ˆ , ,F t x ξ . Omitting the superscript of 

distribution functions and going back to the dimensional quantities, one obtain: 

( ) ( ) ( ) ( )1 1 1 1 2 1 1 1 2 2 1 1 1 2 2 1
1

, , 1 , , , , , , , , d d dd dF t N v F t F t b b
t

ε+ − ∂ ∂  + = − − − − + ∆   ∂ ∂ 
∫ v vξ x ξ x ξ x ρ ξ x ξ x ρ ξ ξ

x
  (2.12) 

( ) ( )
0

1 2 1 1 1 2 2
1

1 , , , , d d
2C

N F t∂
∆ = − −

∂∫
v x ξ x ρ ξ ρ ξ

x
 

The transition (Equations (2.5) and (2.6)) from the 2F  function at the outlet of the 0C  interaction domain to 
that at the inlet of this domain in the first term on the right hand side of Equation (2.12) enables one to recast 
Equation (2.12) differently:  

( ) ( ) ( ) ( )1 1 1 1 2 1 1 1 2 2 1 1 1 2 2 1
1

, , 1 , , , , , , , , d d dd dF t N v F t F t b b
t

ε− −
′

 ∂ ∂  ′ ′ ′ ′+ = − − − − + ∆   ∂ ∂ 
∫ v vξ x ξ x ξ x ρ ξ x ξ x ρ ξ ξ

x
 (2.13) 

1 1 2 2

d d+ −
′ 

′ = − − 
 

v vρ ρ
x x  

In accordance with Equation (2.2а), ( )1 1 1, ,F t x ξ  varies slightly along the 1ξ -particle trajectory at the times, 
proportional to d c . However, there are no reasons to believe that the ( )1 1 1, ,F t x ξ  function varies slightly on 
the initial 0l -scale in space and with time separately. Assume that 

( ) ( )

( ) ( )

1 1 1 1 1 13

2 1 1 1 2 2 1 1 1 23

1, , , , d ;

1, , , , , , , , d .

W

W

F t F t
l

F t F t
l

= +

− = + −

∫

∫

x ξ x a ξ a

x ξ x ρ ξ x a ξ x + a ρ ξ a
               (2.14)  

The spatial integration in Equation (2.14) is performed within the W  region having the characteristic linear 
size l , d l λ  . Averaging (2.14) removes the term 1∆  on the right side of Equations (2.12) and (2.13) 
from the main order of magnitude. The averaged ( )1 1 1, ,F t x ξ  and ( )2 1 1 1 2, , , ,F t −x ξ x ρ ξ  functions weakly 
change on the scale of particle size d . Because ( )1 1 1, ,F t x ξ  and hence, ( )1 1 1, ,F t x ξ  change only slightly 
with time along the particle trajectory on the initial 0l -scale, ( )1 1 1, ,F t x ξ varies slightly with time also on the 
initial scale. Analogously, the ( )2 1 1 1 2, , , ,dF t −− vx ξ x ρ ξ  function varies slightly in space on the initial 0l -scale. 
The particles described by the ( )2 1 1 1 2, , , ,dF t −− vx ξ x ρ ξ  function don’t enter the domain of their interaction 0C  
( )d−= vρ ρ . Thus, in accordance with Equation (2.2b), the ( )2 1 1 1 2, , , ,dF t −− vx ξ x ρ ξ  function varies slightly with 
time also on the initial scale. 

The 1x  argument of the ( )1 1 1, ,F t x ξ  distribution function is the coordinate of particle 1. The 1x  argument 
of the ( )1 1 1, ,F t x ξ  distribution function isn’t the coordinate of individual particle. The 1x  argument of the 
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( )1 1 1, ,F t x ξ  distribution function marks the place in space in the vicinity of which a set of particles is concen-
trated within an unit volume. Multiply the ( )1 1 1, ,F t x ξ  function by the number of ways in which a pair of par-
ticles can be selected from an ensemble of N  particles:  

( ) ( )1 1 1 1 1 1, , , ,f t NF t=x ξ x ξ                              (2.15) 

The one-particle distribution function ( )1 1 1, ,f t x ξ  has the meaning of the probable number of particles si-
tuated at time t  in an unit volume element near point 1x  and having velocities in an unit interval near the 1ξ  
point. Multiply Equations (2.12) and (2.13) by N , and average these equations over 1x  within region W : 

( ) ( ) ( )1 1 1 1 1 1
1

, , 1 , ,f t N N J t
t

 ∂ ∂
+ = − ∂ ∂ 
ξ x ξ x ξ

x
                      (2.16) 

( ) ( )1 1 1 1 2 2, , , , , dJ t J t= ∫x ξ x ξ ξ ξ  

In Equation (2.16) collision integral assumes the form: 

( ) ( ) ( )1 1 2 2 1 1 1 2 2 1 1 1 2, , , , , , , , , , , d dd dJ t v F t F t b b ε+ − = − − − ∫ v vx ξ ξ x ξ x ρ ξ x ξ x ρ ξ          (2.17a) 

( ) ( ) ( )1 1 2 2 1 1 1 2 2 1 1 1 2, , , , , , , , , , , d dd dJ t v F t F t b b ε+ −
′

 ′ ′= − − − ∫ v vx ξ ξ x ξ x ρ ξ x ξ x ρ ξ          (2.17b) 

Recast collision integral ( )1 1 2, , ,J t x ξ ξ  (2.17b) in terms of two-particle distribution functions 2F , written in 
1x , ρ , G , v  variables:  

( ) ( ) ( )1 2 1 2 1, , , , , , , , , , , d dd dJ t v F t F t b b ε− −
′

 ′= − ∫ v vx G v x G ρ v x G ρ v                 (2.18) 

( ) ( )1 1 1 2, , , , , ,J t J t=x G v x ξ ξ  

The velocity G  of the center of mass of pair particles and the modulus v  of the relative velocity of par-
ticles, v = v , are invariants of a binary particle collision. The enumeration of all the admissible target parame-
ter values b  and ε  and the directions of relative motion velocity v  at a fixed G  and v  values then gives 
all the possible velocity directions ′v . It follows that a collision-caused decrease in the number of pairs of par-
ticles from an unit phase volume interval near the 1,  ,  x G v  point characterized by all the admissible b  and 
ε  parameter values and relative motion v  orientations is strictly balanced by a collision induced increase in 
the number of pairs of particles in this interval with these parameters, 

( ) 2
1, , , d 0J t Ω =∫ x G v                               (2.19)  

here 2d sin d dθ θ ϕΩ = , and θ  and ϕ  are the spherical coordinates of the v  vector. 
Suppose that ( ) ( )2 ,n vϕ G , 0,1,n =  , is an arbitrary weight function of velocities G  and v . The pair 

properties of the ( ) ( )2 ,n vϕ G , 0,1,n =  , are invariants of a particle binary collision. Let us multiply the 
( )1, , ,J t x G v  collision integral determined by Equation (2.18) by ( ) ( )2 ,n vϕ G , 0,1,n =  , and integrate the 

result with respect to velocities. By virtue of Equation (2.19), we then have, 
( ) ( ) ( )2 1, , , , d d 0n v J tϕ =∫ G x G v G v                         (2.20) 

This means that particle collisions cannot influence the formation of hydrodynamic values constructed on the 
properties of the ( ) ( )2 ,n vϕ G , 0,1,n =  , pair. In other words, particle collisions cannot tune the distributions of 
all these hydrodynamic values to distributions of some other hydrodynamic values. That is, the set of hydrody-
namic values constructed on the property of ( ) ( )2 ,n vϕ G , 0,1,n =  , 

 

 
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1, 1 , , , , , d d d d

n

n n d
i iM t N N v vF t b bτ ϕ ε−= − ∫ vx G x G ρ v G v


             (2.21) 

is a set of the principal hydrodynamic values. The ( )1N N τ−  proportionality coefficient allows discovering 
the correspondence between the ( ) ( )

1 1,
n

n
i iM t x


  moments and the moments of the one-particle distribution func-
tion. Set (2.21) contains not only the lower function ( )2 1, , , ,dF t −

vx G ρ v  moments but also all the higher mo-
ments without exception. To summarize, the analysis of the properties of the ( )1, , ,J t x G v  collision integral 
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reveals the existence of an infinite number of principal hydrodynamic values. 
The equation for the ( )1 1 1, ,f t x ξ  one-particle distribution function (2.16) is written in a six-dimensional 

phase space of one particle ( µ  space). The dimension of the µ  space allows only the properties of a particle 
( ) ( )1 1
nϕ ξ , 0,1,n =  , to be accommodated in it; binary particle collision invariants, that is, ( ) ( )2 ,n vϕ G , 

0,1,n =  , do not fit into the µ  space. Let us sequentially accommodate the properties of a particle ( ) ( )1 1
nϕ ξ , 

0,1,n =  , in the µ  space. We then have: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1
1

, , d 1 , , dn nf t N N J t
t

ϕ ϕ
 ∂ ∂

+ = − ∂ ∂ 
∫ ∫ξ x ξ ξ x ξ ξ

x
              (2.22) 

It follows [3] that the integrals in the right hand side of (2.22) that contain the lower particle properties 1, 1ξ  
and 2

1ξ  as weight functions are strictly reduced to the integrals with the 1, G , ( )2 2 4+G v  weight functions 
belonging to ( ) ( )2 ,n vϕ G 0,1,n =  , invariants. It follows that, according to Equation (2.20), these integrals are 
strictly zero. The integrals of all the other higher properties of a particle ( ) ( )1 1

nϕ ξ  different from 1, 1ξ  and 2
1ξ  

are not zero [3]. 
It follows that, when we pass to the hydrodynamic stage from the phase space of one particle, such hydrody-

namics equations cannot be constructed using more than three lower principal hydrodynamic values corres-
ponding to the 2

1 11,  ,  ξ ξ  particle properties. The transition to the hydrodynamic stage from the phase space of 
one particle excludes higher principal hydrodynamic values (2.21) from participation in the construction of hy-
drodynamics equations. However, there is no rigorous passage to hydrodynamics from the µ  space. This pas-
sage is closed because Equation (2.16) is not closed.  

The use of the Boltzmann hypothesis (“Stosszahlansatz”) opens up the possibility of approximate passage to 
hydrodynamics. Following Boltzmann, let us factorize two-particle distribution functions in the ( )1 1 2, , ,J t x ξ ξ  
collision integral (2.17b): 

( ) ( ) ( )

( ) ( ) ( )
2 1 1 1 2 1 1 1 1 1 2

2 1 1 1 2 1 1 1 1 1 2

, , , , , , , , ;

, , , , , , , , .

d

d

F t F t F t

F t F t F t

−

−
′

− =

′ ′ ′ ′− =

v

v

x ξ x ρ ξ x ξ x ξ

x ξ x ρ ξ x ξ x ξ
                   (2.23) 

Boltzmann hypothesis (2.23) closes Equation (2.16). The obtained classic kinetic equation for the ( )1 1 1, ,f t x ξ  
one-particle distribution function is called the Boltzmann equation [4]: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2
1

, , , , , , , , , , d d df t v f t f t f t f t b b
t

ε
 ∂ ∂ ′ ′+ = −    ∂ ∂ 

∫ξ x ξ x ξ x ξ x ξ x ξ ξ
x

      (2.24) 

So, the physical meaning of the error introduced by the Boltzmann hypothesis (2.23) into hydrodynamics is as 
follows. It follows that just Boltzmann hypothesis allows us to construct hydrodynamics on only three lower 
principal hydrodynamic values. It follows that the use of the Boltzmann hypothesis excludes higher principal 
hydrodynamic values (2.21) from the participation in the formation of classic hydrodynamics equations. To in-
clude the higher principal hydrodynamic values, we must find passage to hydrodynamics from the phase space 
capable of accommodating the whole set of binary particle collision ( ) ( )2 ,n vϕ G , 0,1,n =  , invariants. 

3. Equations for Pair Distribution Functions 
The second equation of the BBGKY hierarchy (2.1), like the first one, is not closed. The integral term of the 
second hierarchy equation contains a three-particle distribution function responsible for interaction of particles 1 
and 2 with some third particle 3. The absence of closeness of the second hierarchy equation prevents us from the 
direct transition to the hydrodynamic stage from the phase space of two particles.  

Let us recast the second equation of the BBGKY hierarchy (2.1) in the trajectory form. Let particles 1 and 2 
are located beyond the interaction domain 0С , then: 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

0

2 1 1 2 2 2 0 1 1 0 1 2 2 0 2

13
3 1 1 1 2 2 2 3 3 3 3

1

23
3 1 1 1 2 2

2

, , , , , , , ,

                               2 , , , , , , d d d

                               2 , , ,

t

t

F t F t t t t t

N F s t s t s s
m

N F s t s t
m

= − − − −

∂
− − − − − −

∂

∂
− − − − −

∂

∫ ∫

x ξ x ξ x ξ ξ x ξ ξ

Φ
x ξ ξ x ξ ξ x ξ x ξ

ξ

Φ
x ξ ξ x ξ

ξ
( )( )

0

2 3 3 3 3, , , d d d ,
t

t

s s−∫ ∫ ξ x ξ x ξ

   (3.1) 
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In accordance with Equation (3.1), under absence of collisions with particle 3, particles 1 and 2, which at the 
time 0t  was located with a probability 2F  within an unit element of the phase space near the point  

( ) ( )1 1 0 1 2 2 0 2,  ,  ,  t t t t− − − −x ξ ξ x ξ ξ , will be at time t  within an unit element of the phase space near the 
point 1 1 2 2,  ,  ,  x ξ x ξ . The second and the third terms on the right-hand side of Equation (3.1) are responsible for 
the interaction of particles 1 and 2 with particle 3 respectively. The second term on the right hand side of Equa-
tion (3.1) has the meaning of probability that particle 1 experiences a collision with particle 3 during the time 
interval 0t t−  ( )0t t l c−  . The third term on the right hand side of Equation (3.1) has the meaning of proba-
bility that particle 2 experiences a collision with particle 3 during the time interval 0t t−  ( )0t t l c−  . Based 
on the generally accepted assumption that a particle may be present at all phase space locations with equal 
probabilities, evaluate the contribution of the second and the third terms on the right side of Equation (3.1): 

( ) ( ) ( )( )2 1 1 2 2 2 0 1 1 0 1 2 2 0 2, , , , , , , , 1 lF t F t t t t t O
λ

  = − − − − +     
x ξ x ξ x ξ ξ x ξ ξ             (3.2) 

In accordance with Equation (3.2), the distribution function 2F  varies slightly along the trajectory of the two 
particles in 2µ -space on the scale of particle size ( )l d . As the time interval 0t t−  grows, the error 
( )O l λ  monotonically increases. On the scale of free path ( )l λ , the error reaches the order of magnitude of 

the 2F  function itself. The arbitrariness in the location of particle 3 with respect to particles 1 and 2 in the 
second and the third terms on the right-hand side of Equation (3.1) is the cause of monotonic increase of the er-
ror (3.2). When evaluating the order of magnitude of the terms in Equation (3.1), the assumption that a particle 
may be present at all phase space locations with equal probabilities was used for any position in space of par-
ticles 1 and 2. However, there exist such mutual arrangements of particles 1 and 2, for which the assumption on 
equality of probabilities gives a wrong estimation of the order of the second and the third terms on the right side 
of Equation (3.1). 

Let us evaluate the typical number of particles 1N , which experience a binary collision within an unit space 
volume at any time moment t :  

[ ]
0

2
1 2 1 2d d d

C

N N F
 
 
  
∫ ∫ ξ ξ ρ  

In accordance with this estimation, the order of magnitude of 1N  is [ ] 2
1 1N dλ∼ . Two particles take part in a 

collision, so the typical number of collisions 1N  within an unit space volume at any time t  is 1 1 2N N= . If 
the duration of the collision is 0τ  ( )d c , then the typical number of particles, which experience a binary col-
lision within an unit space volume during the time of free path ( )cλ  equals 2N . The order of magnitude of 

2N  is [ ] [ ]2 1N N dλ∼ , i.e., [ ] 2
2 1N d λ∼ . Therefore, the typical number of collisions 2N  within an unit 

space volume during the time of free path is 2 2 2N N= . Let us multiply the second term on the right hand side 
of Equation (3.1) by N  and integrate it with respect to 2 2,  x ξ  and 1ξ . The 2N  value should be used to as-
sess the order of magnitude of the received expression on the time scale, proportional to cλ . 

In accordance with ideas of the kinetic theory of gases [14], the characteristic space volume per particle of gas 
medium ( )V N  is identified with a characteristic volume, which the particle covers during the time of free 
path ( )2d λ . Then, during the time of free path ( )cλ , 3N  particles in average experience a collision within 
the volume, proportional to 2d λ , [ ] [ ]( )2

3 2N N d λ . That is, during the time between collisions ( )cλ , only 
one particle in average [ ]( )3 1N   experiences a collision within the space volume per one medium particle 
[ ] [ ]( )2

21V N N d λ  . Then, during the time between collisions ( )cλ , 4N  particles in average experience 
a collision within the volume V  ( [ ] [ ]4 3N N N , i.e., 4 ~N N ). That is, during the time, proportional to cλ , 
each of medium particles in average experiences one collision. The error of the estimation 4δN  does not ex-
ceed the typical number of triple collisions in medium during the time, proportional to cλ  ( )4N Ndδ λ∼ . 
Competition of the fluctuation error 4δN  is insignificant, 4δN N

  [15], 4 4δN δN

  for 1N  . The 
number of binary collisions within the volume V  during the time, proportional to cλ , equals 2N . 

In accordance with observations formed the ideas of the kinetic theory of gases on a free path, in a rarefied 
gas at each time moment, each particle after its last collision moves toward the next collision. This means that 
every particle 1 in a rarefied gas simultaneously flies away from some particle 2 with which it collided last at 
point D (Figure 2(a)) and approaches some particle 2 with which it is to collide next at point B (Figure 2(b)). 

Let particles 1 and 2 are located so that at time t  the vector 1 2= −x xρ  does not extend beyond the colli- 
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Figure 2. Graphic representation of a pair of particles.                   

 
sion cylinder C+ , ( ), ,b ε η=ρ , 0 b d≤ ≤ , 0 2πε≤ ≤ , d η λ≤ ≤ , Figure 3. The volume of the collision cy-
linder C+  ( )2d λ  equals to the average volume per particle of gas medium ( )V N . Let at the time 0t , 
( )0t t> , particles 1 and 2, having collided, leave the domain of their interaction 0С , ( )dη = . At the time 0t  
the second term on the right hand side of Equation (3.1) describes a triple collision between particles 1, 2, and 3. 
During the collision time ( )0t t d c−  , the order of the second term on the right hand side of Equation (3.1) 
will not exceed ( )2 61 V c d λ . In accordance with Equation (3.2), as time of motion of particles 1 and 2 in 2µ - 
space grows, contribution of the second term on the right hand side of Equation (3.1) increases monotonically. 
The probability that particle 1 will experience a collision with particle 3 becomes of the order of unity on the 
length of l λ . Monotonic increase (3.2) of the second term on the right hand side of Equation (3.1) contra-
dicts the ideas of the kinetic theory of gases on a free path of particle. Indeed, particle 1 has already experienced 
collision with particle 2 at the time 0t  at the boundary of the collisions cylinder C+ . Therefore, the rectilinear 
motion of particle 1 within the cylinder C+  must not be interrupted on the length of l  ( )d l λ≤ ≤ . That is, 
the possibility of collision between particle 1 and particle 3 contradicts the above evaluated number of collisions 

3N  within the cylinder C+ . As a result, monotonic increase (3.2) of the second term on the right hand side of 
Equation (3.1) contradicts also the above evaluated number of collisions 4N  within the volume V . Indeed, in 
accordance with the estimation (3.2), the magnitude of 4N  reaches 2N  that far exceeds the error 4δN  of the 
characteristic number of collisions ( 4 ~N N , 4N Ndδ λ∼ ). Thus, the assumption that a particle may be present 
at all phase space locations with equal probabilities sets too high estimation of the second term on the right hand 
side of Equation (3.1). Estimation of the second term on the right side of Equation (3.1) requires a more accurate 
evaluation of the order of magnitude of the 3F  function. The aforesaid estimations are fully applicable to the 
third term on the right hand side of Equation (3.1). Let the ( )

2
pF +  function describes particles 1 and 2 located 

within the collision cylinder C+ . Then, based on the estimation of the number of collisions 3N  within the cy-
linder C+  during the time, proportional to cλ , we have : 

( ) ( ) ( ) ( ) ( )( ) ( )2 1 1 2 2 2 0 1 1 0 1 2 2 0 2, , , , , , , , 1p pF t F t t t t t O ν+ += − − − − +  x ξ x ξ x ξ ξ x ξ ξ           (3.3) 

Equation (3.3) has a clear physical meaning. It asserts that a pair of flying-apart particles, that is, of particles 
that have already left the domain of their interaction 0C  and are located within the cylindrical volume C+ , 
travels undergoing no collisions with third particle 3. Note that the ideas of the kinetic theory of gases on the 
free path of particle are valid for an arbitrary gas particle at every time moment. That is why, partial distribution 
functions ,  1, ,sF s N=  , themselves rather than fluctuations of these functions must correspond to these ideas.  

Let particles 1 and 2 are located so that at time t  the vector 1 2= −ρ x x  does not extend beyond the colli-
sion cylinder C− , ( ), ,b ε η=ρ , 0 ,  0 2π,  b d dε λ η≤ ≤ ≤ ≤ − ≤ ≤ − , Figure 3. The volume of collision cy-
linder C−  ( )2d λ∼  equals to the average volume per particle of gas medium ( )V N . Let at the time 0t , 
( )0t t< , particles 1 and 2 reach the domain of their interaction 0С , ( )dη = − . At the time 0t  the second term 
on the right hand side of Equation (3.1) describes a triple collision between particles 1, 2, and 3. During the col-
lision time ( )0t t d c−  , the order of the second term on the right hand side of Equation (3.1) will not exceed 

( )2 61 V c d λ . In accordance with Equation (3.2), as time of motion of particles 1 and 2 in 2µ -space grows, 
contribution of the second term on the right hand side of Equation (3.1) increases monotonically. The probabili-
ty that particle 1 will experience a collision with particle 3 becomes of the order of unity on the length of l λ .  
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Figure 3. The interaction domain of a pair of particles C0, the collision 
cylinders C− and C+.                                             

 
Monotonic increase (3.2) of the second term on the right hand side of Equation (3.1) contradicts the ideas of the 
kinetic theory of gases on a free path of particle. Indeed, particle 1 will experience collision with particle 2 at the 
time 0t  at the boundary of the collision cylinder C− . Therefore, the rectilinear motion of the particle 1 within 
the cylinder C−  must not be interrupted on the length l  ( )d l λ≤ ≤ . As a result, the possibility of collision 
between particle 1 and particle 3 contradicts both the above estimated number of collisions 3N  within the cy-
linder C− and the number of collisions N4 within the volume V. Thus, the assumption that a particle may be 
present at all phase space locations with equal probabilities sets too high estimation of the second term on the 
right hand side of Equation (3.1). Evaluation of the second term on the right side of Equation (3.1) requires a 
more accurate estimation of the order of magnitude of the 3F  function. The aforesaid estimations are fully ap-
plicable to the third term on the right hand side of Equation (3.1). Let the ( )

2
pF −  function describes particles 1 

and 2 located within the collision cylinder C− . Then, based on the estimation of the number of collisions 3N  
within the cylinder C−  during the time, proportional to cλ , we have: 

( ) ( ) ( ) ( ) ( )( ) ( )2 1 1 2 2 2 0 1 1 0 1 2 2 0 2, , , , , , , , 1p pF t F t t t t t O ν− −= − − − − +  x ξ x ξ x ξ ξ x ξ ξ           (3.4) 
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Equation (3.4) has a clear physical meaning. It asserts that a pair of drawing together particles, that is, of par-
ticles that have not yet reached the domain of their interaction 0C  and are located within the cylindrical volume 
C− , travels undergoing no collisions with third particle 3.  

Let particles 1 and 2 are located so that at time t  the vector 1 2= −x xρ  does not extend beyond the domain 
of their interaction 0C , ( ), ,b ε η=ρ , 0 ,  0 2π,  b d d dε − η≤ ≤ ≤ ≤ ≤ ≤ , Figure 3. Let distribution function 

( )2 0
pF  describes particles 1 and 2 located within the interaction domain 0С . The evolution of the ( )2 0

pF  function 
occurs at the times, proportional to d c . The second equation of the hierarchy (2.1) on the initial 0l -scale has 
the form (2.2b), in which 2̂F  can be replaced by ( )2 0

pF . Let 2
pF  equals the ( )

2̂
pF +  function within the collision 

cylinder C+ , and the ( )
2̂
pF −  function within the collision cylinder C−, and the function ( )2 0

pF  within the interac-
tion domain 0C . Then: 

( ) ( )12 21
1 2 2 1 1 2 2

1 2 1 2

, , , , 1 0pF t O
t m m

ν
 ∂ ∂ ∂ ∂ ∂

+ + + + + =    ∂ ∂ ∂ ∂ ∂ 

Φ Φξ ξ x ξ x ξ
x x ξ ξ

           (3.5) 

( )
2 2 ,     ppF F C+ += ∈ρ  

( )
2 2 ,     ppF F C− −= ∈ρ  

( )2 02 0 ,     p pF F C= ∈ρ  

here, 

( ) ( ) ( )2 1 1 2 2 2 1 1 2 2 0, , , , , , , , 1 ,    pF t F t O Cν= + ∈  x ξ x ξ x ξ x ξ ρ                  (3.6) 

Generally, any medium particle forms a pair with every other particle. A medium therefore contains 
( )1N N −  pairs of particles. All these pairs are described by the ( )2 1 1 2 2, , , ,F t x ξ x ξ  function, which obeys the 

second equation of the BBGKY hierarchy (2.1). If a single particle 2, which either flies away from (Figure 2(a)) 
or approaches (Figure 2(b)) some particle 1, is selected as a partner of this particle, this pair is described by the 

( )2 1 1 2 2, , , ,pF t x ξ x ξ  function that obeys Equation (3.5). Note that Equation (3.5) is valid for an arbitrary gas par-
ticle rather than some particular particle 1 (Figure 2). Generally, a medium contains 2N  pairs of approaching 
particles, and 2N  pairs of diverging particles. For this reason, Equation (3.5) is capable of describing the gas 
as a whole. Heuristic derivation of Equation (3.5) was given in [3]. In [11], Equation (3.5) was derived in terms 
of conditional probabilities. In accordance with [11], the 2

pF  distribution function is limited by the condition 
that the third particle is not located within the collision cylinders C+  and C− , Figure 3. Earlier, the formalism 
of conditional probabilities was used in [16] in deriving the Boltzmann equation for a gas consisting of rigid 
spheres. 

Expand the dimensionless two-particle distribution function in a perturbation theory series in terms of the 
virial parameter ν : 

( ) ( ) ( )2 1 1 2 2 2 1 1 2 2
0

ˆ ˆ, , , , , , , ,p kp k

k
F t ν F t

∞

=

= ∑x ξ x ξ x ξ x ξ                        (3.7) 

Let us substitute Equation (3.7) into the dimensionless Equation (3.5). Equating the multipliers at equal de-
grees of ν , let us specify the equation for ( ) ( )0

2 1 1 2 2
ˆ , , , ,pF t x ξ x ξ . Let us omit the superscript of  

( ) ( )0
2 1 1 2 2

ˆ , , , ,pF t x ξ x ξ  and go back to the dimensional quantities. Recasting the two-particle distribution function 
in variables x , ρ , G , v , one obtains: 

( )12
2

2
, , , , 0pF t

t m
 ∂ ∂ ∂ ∂

+ + + = ∂ ∂ ∂ ∂ 

ΦG v x G v ρ
x ρ v

                       (3.8) 

Integrating Equation (3.8) with respect to ρ  over the cylindrical volumes C+  and C−  yields 

( ) ( ) ( )
2π

div
2 2

0 0

, , , , , , , , , , , d d
d

p d p
pF t v F t F t b b

t
λ ε+ +∂ ∂   + = −   ∂ ∂  ∫ ∫ v vG x G v x G v ρ x G v ρ

x
          (3.9a) 

( ) ( ) ( )
2π

app
2 2

0 0

, , , , , , , , , , , d d
d

p p d
pF t v F t F t b b

t
λ ε− −∂ ∂   + = −   ∂ ∂  ∫ ∫ v vG x G v x G v ρ x G v ρ

x
          (3.9b) 
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where 

( ) ( )
2π

div
2

0 0

, , , , , , , d d
d

p
p

d

F t F t b b d
λ

ε η= ∫ ∫ ∫x G v x G v ρ                    (3.10a) 

( ) ( )
2π

app
2

0 0

, , , , , , , d d
d d

p
pF t F t b b d

λ

ε η
−

−

= ∫ ∫ ∫x G v x G v ρ                    (3.10b) 

Equation (3.8) allows putting on the trajectory t+x G  in the 12-dimensional phase space both the first and 
the second terms on the right-hand side of Equation (3.9b): 

( ) ( ) ( )
2π

app
2 2

0 0

, , , , , , , , , , , d d
d

p d p d
pF t v F t F t b b

t
τ τ ε− −∂ ∂   + = + + −   ∂ ∂  ∫ ∫ v vG x G v x G G v ρ x G v ρ

x
      (3.11) 

Let us recast Equation (3.11) in the dimensionless form. It turned out that kl  is characteristic scale of varia-
tion of the ( )app , , ,pF t x G v  pair function with time along the trajectory of a center of mass of a pair. Let us op- 

erate with 
t
∂ ∂ ∇ = + ∂ ∂ 

G
x

 directly on Equation (3.10b). Then, a weak dependence on 0l -scale with time  

along the trajectory of a center of mass of a pair of the app
pF  function on the left-hand side of Equation (3.10b) 

defines a weak dependence on 0l -scale of the function ( )2 , , , ,pF t x G v ρ , dλ η− ≤ ≤ − , on the right side of 
Equation (3.10b). Function ( )2 , , , ,p dF t +

vx G v ρ  B (3.9а) pertains to a pair of particles escaping from the domain 
of their interaction 0C . In accordance with (2.5) and (2.6), express ( )2 , , , ,p dF t +

vx G v ρ  in terms of the two- 
particle distribution function at the entrance to domain 0C . Let the series (3.7) be taken into account. Time av-
eraging Equation (3.9a) along the trajectory of a center of mass of a pair with regard for Equations (2.5) and (2.6) 
yields 

( ) ( ) ( )
2π

div
2 2

0 0 0

1 1, , , d , , , , , , , , , , d d
d

p p
pF t q q q v F t b F t b b b

t

τ

ε ε ε
τ τ

∂ ∂   ′+ + + = −   ∂ ∂  ∫ ∫ ∫G x G G v x G v x G v
x

    (3.12) 

В (3.12) ( )d vτ λ= − . In deriving Equation (3.12), we took into account that, according to Equation (3.8), 
( )2 , , , ,pF t x G v ρ  is conserved along the trajectory of a pair in the 12-dimensional phase space 

( ) ( ) ( )

( ) ( ) ( )

div
2 2

0

app
2 2

0

, , , , , , d , , , , , , d , , , , , ;

, , , , , , d , , , , , , d , , , , , .

p p
p

d
d

p p
p

vF t q q b q F t b F t b

vF t q q b d q F t b F t b

τ λ

τ

λ

ε λ ε η η ε

ε ε η η ε
−

−

+ + = =

′ ′ ′+ + − = =

∫ ∫

∫ ∫

x G G v x G v x G v

x G G v x G v x G v





    (3.13) 

The first term in the right hand side of Equation (3.12) contains information, which is excessive for the kinetic 
stage of gas description. This is information about mutual disposition of particles in the pair contained in the 

app
pF  dependence on b  and ε . According to [17], in order to proceed to the kinetic stage, we replace this 

function by its average value: 

( ) ( )app app1, , , , , , , ,p pF t b F tε
σ

′ ′⇒x G v x G v                        (3.14) 

The replacement (3.14), being substituted in Equation (3.12), makes this equation irreversible. 
Expanding the left hand side of Equation (3.12) into series in terms of q  gives 

( ) ( ) ( )
2 2π

div app div

0 0

1, , , , , , , , , d d
2

d

p p pF t F t F t b b
t t

τ ε
τσ

 ∂ ∂ ∂ ∂     ′+ + + + = −      ∂ ∂ ∂ ∂     
∫ ∫G G x G v x G v x G v

x x
   (3.15) 

When writing the right hand side of Equation (3.15), we took into account that, according to Equation (3.13), 
function app

pF  (likewise div
pF ) changes in time only little on the 0l -scale along the trajectory of the center of 

mass of the pair, because it is represented by the 2
pF  function averaged over this trajectory. This does not ne-

cessary mean that functions app
pF  and div

pF  insignificantly vary on the initial 0l -scale with time and in space 
separately. Let 
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( ) ( )

( ) ( )

div div
3

app app
3

1, , , , + , , d ;

1, , , , + , , d .

p p
W

p p
W

F t F t
l

F t F t
l

=

=

∫

∫

x G v x a G v a

x G v x a G v a
                      (3.16) 

The spatial integration in Equation (3.16) is implemented near point x  within the W  region of a characte-
ristic linear size l , d l λ  . Functions app

pF  and div
pF  change only little in space on the initial scale. 

Since app
pF  and div

pF , and, hence, app
pF  and div

pF  change insignificantly in time along the trajectory of the 
center of mass of a pair on the initial scale, time variation of app

pF  and div
pF  on the initial scale is also insigni-

ficant.  
Multiplying app

pF  and div
pF  by the number of possible selections of pairs from the set of N  particles equal 

( )1 2N N −  (transmutations of particles do not lead to a new pair), we arrive at the pair distribution functions 
defined in [10] 

 
( ) ( ) ( )

( ) ( ) ( )

div div

app app

1
, , , , , , ;

2
1

, , , , , , .
2

p p

p p

N N
f t F t

N N
f t F t

−
=

−
=

x G v x G v

x G v x G v
                      (3.17) 

Let us average Equation (3.15) within the W  region. At the hydrodynamic stage of description, when the 
characteristic scale of changes in the distribution function hl , h kl l , the second term in the left hand side of 
Equation (3.15) is negligibly small as compared to the first term. As a result, we arrive at one of two equations, 
which has been derived in [10] heuristically: 

( ) ( ) ( )
2π

div app div

0 0

1, , , , , , , , , d d
d

p p pf t f t f t b b
t

ε
τσ

∂ ∂   ′+ = −   ∂ ∂  ∫ ∫G x G v x G v x G v
x

        (3.18) 

Let v , θ  and ϕ  are the spherical coordinates of vector v . Integrating Equation (3.18) with respect to θ  
and ϕ  yields 

( ) ( ) ( )div app div1, , , , , , , , ,p p pf t v f t v f t v
t τ
∂ ∂   + = −   ∂ ∂ 

G x G x G x G
x

              (3.19) 

Equation for app
pf  can be derived by analogy with derivation of Equation (3.19). In accordance with Equa-

tions (2.5) and (2.6), the 2
pF  function at the entrance to the interaction domain 0C  of a pair is expressed 

through the function at the exit from this domain: 

( ) ( ) ( )2 2, , , , , , , , 1 Op d p dF t F t ν−
′′′′= +  v vx G v ρ x G v ρ                      (3.20) 

where ′′v  is the velocity of the relative motion of particles, which is acquired by these particles upon their col-
lision, provided their parameters before collision have been b , ε  and v , Figure 1. Let the series (3.7) be 
taken into account. Substituting Equation (3.20) into Equation (3.9b) and time averaging along the trajectory of 
the center of mass of a pair yields 

( )

( ) ( )

app

0
2π

div app

0 0

1 , , , d

1 , , , , , , , , , , d d

p

d

p p

F t q q q
t

v F t b F t b b b

τ

τ

ε ε ε
τ

∂ ∂ + − − ∂ ∂ 

 ′′= − + 

∫

∫ ∫

G x G G v
x

x G v x G v
               (3.21) 

Without performing the irreversible replacement in Equation (3.21), we integrate this equation with respect to 
θ  and ϕ . Then, averaging Equation (3.21) within the W  region near point x  and using definitions (3.16) 
and (3.17), we arrive at the second equation derived in [10] heuristically: 

( ) ( ) ( )app app div1, , , , , , , , ,p p pf t v f t v f t v
t τ
∂ ∂   + = −   ∂ ∂ 

G x G x G x G
x

              (3.22) 

The solution to the closed set of Equations (3.19) and (3.22) discovers the basic property of the pair distribu-
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tion functions. It shows that the distribution functions ( )div , , ,pf t vx G  and ( )app , , ,pf t vx G  do not change with 
time along the trajectory of the center of mass of a pair: 

( ) ( )( )
( ) ( ) ( )

0 0

div app

, , , , , , ;

, , , , , , , , , .
p p

p p p

f t v f t t t v

f t v f t v f t v

= − −

= =

x G x G G

x G x G x G
                    (3.23) 

This means that particle collisions cannot influence the formation of hydrodynamic values constructed on the 
pair properties of ( ) ( )2 ,n vϕ G , 0,1,n =  . In other words, particle collisions cannot tune the distributions of all 
these hydrodynamic values to distributions of some other hydrodynamic values. That is, the set of hydrodynamic 
values constructed on the property ( ) ( )2 ,n vϕ G , 0,1,n =  , 

( ) ( ) ( ) ( ) ( )
1 1 2, , , , , d d

n

n n
pi iM t v f t v vϕ= ∫x G x G G



                    (3.24) 

is a set of principle hydrodynamic values. The relationship between the functions ( )2 1, , , ,dF t −
vx G ρ v  and 

( )app , , ,pf t x G v  is given in [5]. This relationship allows establishing a correspondence between the principal 
hydrodynamic values ( ) ( )

1 1,
n

n
i iM t x


  (2.21) and ( ) ( )
1 1,

n

n
i iM t x


 (3.24). 

4. Conclusions 
The Navier-Stokes equations have been used with much success for more than one and a half century as a tool 
for very accurately describing stable incompressible flows, both stationary and non-stationary. However, in re-
cent decades, the Navier-Stokes equations have been faced with insurmountable difficulties in interpreting flows, 
losing its stability. In accordance with the interpretation of [1]-[3], the reason for their failure is the lack of the 
main hydrodynamic values used in constructing the equations of classic hydrodynamics.  

Classic hydrodynamics equations are constructed for only three lower principle hydrodynamic values: the 
density of particles number, the hydrodynamic velocity, and the pressure. Higher principle hydrodynamic values 
are not used in the formation of classic hydrodynamics equations. The possibility of the formation of hydrody-
namics equations with an arbitrary number of principle hydrodynamic values specified beforehand was found in 
[11]. The multimoment hydrodynamics equations were derived immediately from the equations for the pair dis-
tribution functions in [5].  

The distribution functions for pairs of drawing together and flying apart particles referred to as pair distribu-
tion functions are constructed in [10], where the heuristic derivation of the equations for the pair distribution 
functions has been suggested. In [11], the equations for the pair distribution functions are derived directly from 
the fundamental principles of the statistical mechanics. The Liouville equation was used in [11] as a base when 
deriving the equations for the pair distribution functions. There is an analogy between the derivation on these 
equations [11] and the Grad method [16] used in deriving the Boltzmann equation for a gas consisting of rigid 
spheres.  

In [11], equation for two-particle distribution function 2
pF  was derived in terms of conditional probabilities. 

In Section 2, the equation for 2
pF  is derived directly from the second equation of the BBGKY hierarchy within 

the frameworks of formalism of the multiscale method. Within the C+  cylinder, the 2
pF  distribution function 

describes pairs of particles which are diverging after collision with each other. These particles move further 
without collision with third particle. Within the C−  cylinder, the 2

pF  distribution function describes pairs of 
particles, which are approaching each other before their collision. These particles also move without collision 
with third particle.  

The common ideology of the multiscale method is described in [12]. The multiscale method was used in [18]- 
[20] for the deriving the Boltzmann equation. Each of these formalisms interprets the ideology of some scales in 
its own way. In Sections 2 and 3, we don’t follow any of interpretations [18] [19] or [20]. Equations for the dis-
tribution functions are written separately at each scale. The ideas of the kinetic theory of gases on a free path are 
used when evaluating the order of terms in equations. Derived Equations (2.12) and (2.13) follow the evolution 
of the one-particle distribution function at the finest 0l -scale. The transition to the kinetic scale leads to Equa-
tion (2.16) with the collision integral (2.17). The Boltzmann hypothesis of molecular chaos closes equation 
(2.16), allowing constructing classic hydrodynamics equations only with three lower principle hydrodynamic 
values. Equation (3.8) for the 2

pF  function is used as a base when deriving equations for the pair distribution 
functions (3.18) and (3.22). Derived equations for the pair functions do not limit hydrodynamics equations in a 
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number of principle hydrodynamic values. 
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