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Abstract 
We have proposed previously a method for constructing self-conjugate Hamiltonians Hη in the η- 
representation with a flat scalar product to describe the dynamics of Dirac particles in arbitrary 
gravitational fields. In this paper, we prove that, for block-diagonal metrics, the Hamiltonians Hη 
can be obtained, in particular, using “reduced” parts of Dirac Hamiltonians, i.e. expressions for Di-
rac Hamiltonians derived using tetrad vectors in the Schwinger gauge without or with a few sum-
mands with bispinor connectivities. Based on these results, we propose a modified method for 
constructing Hamiltonians in the η-representation with a significantly smaller amount of required 
calculations. Using this method, here we for the first time find self-conjugate Hamiltonians for a 
number of metrics, including the Kerr metric in the Boyer-Lindquist coordinates, the Eddington- 
Finkelstein, Finkelstein-Lemaitre, Kruskal, Clifford torus metrics and for non-stationary metrics of 
open and spatially flat Friedmann models. 
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1. Introduction 
In [1], we proposed a method for constructing self-conjugate Hamiltonians Hη  in the η -representation with a 
flat scalar product to describe the dynamics of Dirac particles in arbitrary gravitational fields. 

Using the algorithm proposed in [1], we calculated Hamiltonians in the η -representation for the Schwarz-
schild and Friedmann-Robertson-Walker cosmological model metrics. However, application of the algorithm to 
the Kerr metric necessitated a large amount of calculations to find Christoffel symbols, bispinor connectivities 
etc., and cumbersome algebraic transformations of arising expressions. 

We made attempts to simplify the algorithm [1]. First, we proved the theorem, according to which a Hamilto-
nian in the η -representation for an arbitrary gravitational field, including a time-dependent one, is a Hermitian 
part of the initial Dirac Hamiltonian H  derived using tetrad vectors in the Schwinger gauge1. 

( )1
2

H H Hη
+= +                                     (1) 

Then, for block-diagonal metrics, using Equation (1), we proved the second theorem, according to which the 
Hamiltonians H  and H +

  in Equation (1) can be replaced by their “reduced” parts without or with a few 
summands with bispinor connectivities: 

( )red red
1
2

H H H Hη
+= + + ∆                                  (2) 

Block-diagonal metrics are understood to be metric tensors of the form 

00 01

01 11

22

33

0 0
0 0

0 0 0
0 0 0

g g
g g

g
g

g

αβ =                               (3) 

Apparently, the cases belong to the same kind as (3) when 01 0g = , and also when 02g  or 03g  are used in-
stead of 01g . 

In Equation (2), redH  is part of the initial Dirac Hamiltonian, which contains only the mass term and terms 
with momentum operator components (i.e. with coordinate derivatives). 

The summand H∆   in (2) equals 

0
0

00

1
4

k
n nk p

m mnp p

H HgH H S
x g x

 ∂ ∂
∆ = +  ∂ ∂ 

 

                              (4) 

One can see that H∆   is a fairly simple expression, which in some cases differs from zero for the block-dia- 
gonal metrics with 0 0kg ≠ . For example, the Kerr metric in Boyer-Lindquist coordinates [2], [3] belongs to 
such case. Of course, application of Equation (2) makes the procedure of deriving self-conjugate Hamiltonians 
in the η -representation much less complicated. 

Equations (1) and (2) are proven in Sections 3, 4 of this paper. 
In the second part of the paper, we use (1) and (2) to find self-conjugate Hamiltonians Hη  for the Kerr [2], 

[3], Eddington-Finkelstein [4] [5], Painlevè-Gullstrand [6] [7], Finkelstein-Lemaitre [5], Kruskal [8] [9], Clif-
ford torus [10] metrics, and for non-stationary metrics of open and spatially flat Friedmann models. For all these 
metrics, except for the Painlevè-Gullstrand one, self-conjugate Hamiltonians are derived for the first time2. 

At the end of the paper, we prove that self-conjugate Dirac Hamiltonians in a weak Kerr field are physically 
equivalent in both harmonic Cartesian and Boyer-Lindquist coordinates. 

In the Conclusions, we discuss the outcome of this study and the results of applying the developed algorithm 
to the evolution of bound atomic and quark states in the expanding universe. 

 

 

1We use the same notations as in [1]. 
2For the Painlevè-Gullstrand metric, a physically equivalent self-conjugate Hamiltonian has been derived and studied earlier in [11]. 
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2. Reducing the Dirac Equation to the Schrödinger Form. An Algorithm for Finding 
a Self-Conjugate Hamiltonian in the η -Representation 

Let us recall the line of corresponding reasoning and introduce the notation. Tetrad vectors are defined by the 
relation 

H H gµ ν
α β µν α βη=                                     (5) 

where 

[ ]diag 1,1,1,1α βη = −                                    (6) 

In addition to the system of tetrad vectors H µ
α , one can introduce three other systems of tetrad vectors, Hαµ , 

Hαµ , Hα
µ , which differ from H µ

α  in the location of the global and local (underlined) indices. The global in-
dices are raised up and lowered by means of the metric tensor gµν  and inverse tensor g µν , and the local in-
dices, by means of the tensors α βη , α βη . 

We assume that the quantum mechanical motion of particles is described by the Dirac equation, which is 
written in the units of 1c= =  as 

0m
x

α
αα

ψγ ψ ψ∂ +Φ − = ∂ 
                               (7) 

Here, m  is the particle mass, ψ  is a four-component “column” bispinor, and αγ  are 4 4×  Dirac ma- 
trices, satisfying the relation 

2g Eα β β α αβγ γ γ γ+ =                                  (8) 

E  in (8) means a unity 4 4×  matrix. The round parentheses in (7) contain a covariant bispinor derivative, 
αψ∇ : 

xα αα

ψψ ψ∂
∇ = +Φ

∂
                                  (9) 

Equation (9) for αψ∇  contains the bispinor connectivity αΦ , for finding which one should fix some system 
of tetrad vectors H µ

α  defined as (5). Upon that, the quantity αΦ  can be expressed through “Christoffel” vec-
tor derivatives in the following way (the “Christoffel” derivatives are denoted by a semicolon): 

;
1
4

H H Sε µν
α µ ν ε αΦ = −                                (10) 

The expression for S µν  in (10) is defined below, see (14). The bispinor connectivity αΦ  given by (10) 
provides invariance of the covariant derivative αψ∇  with respect to the transition from one system of tetrad 
vectors to another. 

In what follows, along with Dirac matrices with global indices αγ , we will use Dirac matrices with local in-
dices αγ . The relation between αγ  and αγ  is given by the expression 

H βα α
βγ γ=                                    (11) 

It follows from (11), (8), (5) that 

2 Eβ β α βα αγ γ γ γ η+ =                               (12) 

In terms of the matrices αγ , the Dirac Equation (7) can be written as follows: 

0H m
x

µα
µ αα

ψγ ψ ψ∂ +Φ − = ∂ 
                          (13) 

It is convenient (but not necessary) to choose the quantities αγ  so that they have the same form for all local 
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frames of reference. Both systems αγ  and αγ  can be used to construct a full system of 4 4×  matrices. The 
full system is, for example, the system 

( ) 5 0 1 2 3 5
1,    ,    ,    ,    
2

E Sα αβ α β β α αγ γ γ γ γ γ γ γ γ γ γ γ≡ − ≡                (14) 

Any system of Dirac matrices provides for several discrete automorphisms. We restrict ourselves to the au-
tomorphism 

1D Dα α αγ γ γ+ −→ = −                             (15) 

The matrix D  will be called anti-Hermitizing. 
It follows from (7) that the initial Hamiltonian is given by the following expression: 

( ) ( ) ( )
0 0 0

000 00 00
k k

kk

im i iH i
xg g g

γ γ γ γ γ∂
= − + − Φ + Φ

∂− − −
              (16) 

The operator H  (16) has a meaning of the evolution operator of the wave function of a Dirac particle in the 
chosen global frame of reference. 

Ref. [1] formulates the rules of finding a Hamiltonian in the η -representation for a Dirac particle in an arbi-
trary gravitational field. A-priori information, which is assumed to be known, is information about the metric  

tensor ( )g xαβ , Christoffel symbols 
λ
αβ
 
 
 

, local metric tensor α βη  and local Dirac matrices { }αγ . These  

rules are the following: 
1) For a gravitational field described by the metric ( )g xαβ , we find a system of tetrads ( ){ }H xα

µ
 , satisfy-

ing the Schwinger gauge. Recall that components of the tetrads 0
0H , 0

kH  in this gauge correlate with compo-
nents of the tensor ( )g xαβ  as follows: 

0
0 00
0 0 00

,     
k

k gH g H
g

= − = −
−

                            (17) 

0
kH  components are identically zero 

0 0kH =                                    (18) 

In order to find n
mH , we introduce a tensor, mnf , with components 

0 0

00

m n
mn mn g gf g

g
= −                                (19) 

The tensor mnf  satisfies the condition 
mn m

nk kf g δ=                                   (20) 

As n
mH  we can use any triplet of three-dimensional vectors, satisfying the relation 

m n mn
k kH H f=                                    (21) 

In what follows, the quantities, dependent on the choice of tetrad vectors, are denoted by a tilde, if they are 
calculated in the system of tetrad vectors in the Schwinger gauge. 

2) In accordance with (16), we write a general expression for the Hamiltonian H . 

( ) ( ) ( )
0 0 0

000 00 00
k k

kk

im i iH i
xg g g

γ γ γ γ γ∂
= − + − Φ + Φ

∂− − −
  

                    (22) 

Here 
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H βα α
βγ γ= 

                                    (23) 

; ;
1 1
4 4

H H S H H S µνε µν ε
α µ ν ε α µ νε αΦ = − =                             (24) 

3) The expression for the Hamiltonian Hη  equals 
1

1H H i
tη
ηη η η

−
− ∂

= +
∂




                                (25) 

where the operator η  is defined by the relation 

( ) ( )1 41 4 00
Gg gη = − −                              (26) 

As distinct from [1], in Equation (26) we use only the gravitational part of the determinant Gg , which is there 
due to the presence of an external gravitational field. An additional multiplier arises, if we use curvilinear coor-
dinates in accordance with the equality of scalar products for wave functions in the initial and η -representations 
[1]: 

( ), ,
ρ

ϕ ψ = Φ Ψ                                (27) 

Hence, 

G
c

gg
g

=                                   (28) 

where cg  is the determinant, which arises when the volume element is written in curvilinear coordinates. Giv-
en that the conditions of coordinate harmonicity [12] [13] are satisfied, 1cg =  for Cartesian coordinates, 

2
cg r=  for cylindrical coordinates, 4 2sincg r θ=  is for spherical coordinates etc. 
Equations (25), (26) define the operator Hη , which is the sought Hermitian Hamiltonian in the η  represen-

tation. 
Thus, 

( ) ( ) ( ) ( )
( ) ( )00 00

0 0 0 0
000 00 00 00

ln ln

44
G Gk k k

kk k

g g g gim i i i iH i
tx xg g g gη γ γ γ γ γ γ γ

∂ ∂∂
= − + − Φ + Φ − +

∂∂ ∂− − − −
 

        (29) 

Note that procedures for constructing self-conjugate Hamiltonians with a flat scalar product that could be used 
for studying the dynamics of spin 1/2 particles in gravitational fields of particular form have been proposed in 
literature more than once [14]-[17]. These attempts are not general, but they produce correct results as applied to 
the choice of particular metrics and tetrad vectors. 

3. Proving the Equality ( )1
2
 

ηH H H += +  for an Arbitrary, including 

Time-Dependent, Gravitational Field 
We start the proof from transforming the right side in (25). 

1 1H H i
tη
ηη η η− −∂

= +
∂




                                    (30) 

After inserting (22), (26) into (25) we have: 

( ) ( ) ( ) ( )00 00
1 200 0

00

ln ln1
4 4

G Gk
k

g g g gi iH H g
txgη γ γ

∂ ∂
= − − +

∂∂−


                  (31) 
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The next step in the proof is to find an expression for H +
 . For this purpose, we employ relations (77) from 

[1]: 

1H Hρ ρ+ −= + ∆  

                                     (32) 

( )1 200
Gg gρ =                                      (33) 

( )00ln

2
Gg gi

t

∂
∆ =

∂
                                    (34) 

We insert (33), (34) into (32): 

( ) ( ) ( ) ( )00 00
1 200 0

00

ln ln1
2 2

G Gk
k

g g g gi iH H g
txg

γ γ+
∂ ∂

= − − +
∂∂−

 

                 (35) 

Using (22) and (35), we calculate the quantity ( )1
2

H H ++  : 

( ) ( ) ( ) ( ) ( )00 00
1 200 0

00

ln ln1 1
2 4 4

G Gk
k

g g g gi iH H H g
txg

γ γ+
∂ ∂

+ = − − +
∂∂−

  

              (36) 

By comparing (36) with (31) we conclude that Equation (1) is valid. 

( )1
2

H H Hη
+= +                                      (37) 

4. Proving the Equality ( ) ∆red red
1
2
  

ηH H H H+= + +  for Gravitational Fields with the 

Block-Diagonal Metrics 
An expression for the “reduced” Hamiltonian redH  is derived from (22) by deleting the terms with bispinor 
connectivities. Thus, 

( ) ( )
0 0

red 00 00
k

k

im iH
xg g

γ γ γ ∂
= − +

∂− −


                             (38) 

This expression can also be written as 

( )
0

red 0 00
k

k
iH H i
g

γ γ= + Φ − Φ
−

   

                              (39) 

Taking the Hermitian conjugation from (39), we obtain 

( )red 0 0 0 01 200

k
k

iH H i
g

γ γ γ γ+ += − Φ + Φ
−

   

                          (40) 

It follows from (39), (40) that 

( ) ( )
( )red red 0 0 0 01 200

, ,k
k

iH H H H i
g

γ γ γ γ+ +

+ +
  + = + − Φ + Φ   

−
     

                (41) 

Considering Equation (37), we obtain 
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( )
( )red red 0 0 0 01 200

1 , ,
2 2 2

k
k

i iH H H
g

η γ γ γ γ+

+ +
  = + + Φ − Φ   

−
   

                 (42) 

Let us introduce the following notation: 

0 0 0,
2
iY γ γ

+
 ≡ Φ 

                                    (43) 

( ) 01 200
,

2
k

k
iZ

g
γ γ

+
 ≡ − Φ 

−


                               (44) 

Some transformations give the following expressions for Y  

;04
p

m np mn
iY H H S= −                                     (45) 

and for Z : 

1 2 3 4Z Z Z Z Z= + + +                                   (46) 

where 

( )1 0 ;1 2004
k

m n k mn
iZ H H H S

g
ε

ε= −
−

                                (47) 

( )2 0 ;1 2004
p

m n p mn
iZ H H H S

g
ε

ε=
−

                                 (48) 

( )3 0 ;1 2004
p

m n p mn
iZ H H H S

g
ε

ε= −
−

                                (49) 

( )4 ; 51 2004
k
m p q k m pq

iZ H H H
g

ε
ε ε γ=

−
                               (50) 

In (50), 5 0 1 2 3 ,  m pqγ γ γ γ γ ε=  is a totally antisymmetric third-rank tensor. 

Then, we calculate Y  and Z  using the relations (3), (5), (17), (18), and diagonal representation of { }m
kH . 

Direct calculations show that 

0
0

1 2 004

k
n nk p

m mnp p

H Hi gH Y Z Z H S
x g x

 ∂ ∂
∆ = + + = + 

∂ ∂  

 

                         (51) 

3 4 0Z Z= =                                      (52) 

Thus, it turns out that for the block-diagonal metrics of the form (3) we can find the Hamiltonian Hη  using 
the fairly simple formula (2). 

5. Centrally Symmetric Gravitational Field 
This section presents Hamiltonians in the η -representation for Dirac particles in centrally symmetric gravita-
tional fields, when the metrics are written in various coordinates. 
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5.1. The Schwarzschild Metric 
Writing the Schwarzschild solution in the coordinates 

( ) ( )0 1 2 3, , , , , ,x x x x t r θ ϕ≡                                 (53) 

gives: 

( )
2

2 2 2 2 2 20

0

dd 1 d d sin d
1

r rs t r
rr
r

θ θ ϕ = − − + + +     − 
 

                      (54) 

In Equation (54), 0r  is the gravitational radius ( )0 2r M= . 
The resulting expression for Hη  derived in [1] and revised to include (26) is 

0 0 1 2 3 0 1
1 1 1ctg

2 sin 2
i fH im f i f f

r r r r
γ γ γ γ θ γ γ γ

θ θ ϕ
 ∂ ∂ ∂ ∂   = − + + + + −    ∂ ∂ ⋅ ∂ ∂    

        (55) 

In Equation (55), 01
r

f
r

= − . 

It is easy to verify that Equation (55) can be found in a comparatively straightforward manner using formula 
(2), if we take into account that 

red 0 0 1 2 3
1 1 ,     0

sin
H im f i f f H

r r r
γ γ γ γ γ

θ θ ϕ
 ∂ ∂ ∂

= − + + ∆ = 
∂ ∂ ⋅ ∂ 

               (56) 

In Refs. [1] [14], the authors also derived a Hamiltonian for the Schwarzschield metric in isotropic coor- 
dinates 

( )

2
0

4
2 2 2 2 20

2
0

1
4d d 1 d d d

4
1

4

r
rRs t x y z
Rr

R

 −    = − + + + + 
  + 

 

                     (57) 

0 0 0

0
0 0 03 4 3

0 0 0

1 1 1
4 4 8

21 1 14 4 4

k kk
k

r r r
r RR R RH im i i

r x Rr r
R R R

η γ γ γ γ γ

     − − −     ∂     = − −
∂     + + +          

               (58) 

The expression for Hη  can be easily derived from (2) using 

0 0

red 0 03
0 0

1 1
4 4 ,     0

1 14 4

k
k

r r
R RH im i H

r xr
R R

γ γ γ

   − −    ∂   = − ∆ =
∂   + +      

                     (59) 

5.2. Eddington-Finkelstein Metric 
The Eddington-Finkelstein solution ([4] [5]) in the coordinates 

( ) ( )0 1 2 3, , , , , ,x x x x t r θ ϕ≡                                (60) 

is given by 
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0 0

0 0

2

2 2

1 0 0

1 0 0

0 0 0
0 0 0 sin

r r
r r

r rg
r r

r
r

αβ

θ

 − − 
 

 = + 
 

                          (61) 

4 2sin ,     1Gg r gθ= − ⋅ = −                                 (62) 

The inverse tensor has the following form: 

0 0

0 0

2

2 2

1 0 0

1 0 0

10 0 0

10 0 0
sin

r r
r r

r r
r rg

r

r

αβ

θ

 − + 
 

 − 
 =                          (63) 

Calculations of a “reduced” Hamiltonian using (38) gives 

0
red 0 0 1 2 3

00 0 0

1 1 1
sin11 1 1

irim iH
r r r r rr r rr
rr r r

γ γ γ γ γ
θ θ ϕ

 
 

∂ ∂ ∂ ∂ = + − + + ∂ ∂ ∂ ∂      +  + + +              

       (64) 

The Hamiltonian in the η -representation is calculated using (2) given that 0H∆ =  for the metric of interest. 
in Table 1. We obtain: 
 
Table 1. H α

µ
 —like tetrad vectors. 

Tetrad vectors Tetrad vector components 

0H α
  0 0

0 1 rH
r

 = + 
 

  
1 0
0

01

rH
rr
r

= −
 + 
 

  
2
0 0H =  3

0 0H =  

1H α
  0

1 0H =  
1
1

0

1

1
H

r
r

=
 + 
 

  
2

1 0H =  3
1 0H =  

2H α
  0

2 0H =  1
2 0H =  2

2

1H
r

=  3
2 0H =  

3H α
  0

3 0H =  1
3 0H =  2

3 0H =  3
3

1
sin

H
r θ

=  
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0
0 0 1 0 22

0 00 0

0
0 3

0 00

1 1 1 1 1 1 ctg
221 11 1

1 1 1 1 1         
sin 1 2 11

rmH i i i
r rr r rrr r
r rr r

r
i i

r rr r r rr r
r rr

η γ γ γ γ γ θ
θ

γ γ
θ ϕ

 
 ∂ ∂    = − + + − +    ∂ ∂         + ++ +              


∂ ∂ − + + − ∂ ∂      + ++          

.








    (65) 

5.3. Painlevé-Gullstrand Metric 
In this section, we find a self-conjugate Hamiltonian Hη  for a Dirac particle in a spherically symmetric gravi-
tational field described by the Painlevé-Gullstrand metric. The Hamiltonian Hη  for this metric is calculated 
first using the algorithm of [1] and then using (1) and (2). 

In the ( ), , ,t r θ ϕ  coordinates, the Painlevé-Gullstrand metric [6] has the following form: 

0

0 0

0 0

0

2 2

2 2

2 2

1 0 0
1 0 0

1 0 0
,     1 0 0

10 0 00 0 0
10 0 0 sin 0 0 0

sin

r
r r r
r r r r

r r rg g
r

r r
r

r

αβ
αβ

θ
θ

−
 − − 
   − 

 = =           (66) 

The determinants equal 

4 2sin ,     1Gg r gθ= − = −                                 (67) 

Tetrad vectors in the Schwinger gauge: 

0 1 2 30
0 0 0 0

0 1 2 3
1 1 1 1

0 1 2 3
2 2 2 2

0 1 2 3
3 3 3 3

1, , 0, 0,

0, 1, 0, 0,
10, 0, , 0,

10, 0, 0, .
sin

r
H H H H

r
H H H H

H H H H
r

H H H H
r θ


= = − = = 


= = = = 


= = = = 



= = = = ⋅ 

   

   

   

   

                     (68) 

00 01 02 03

0
10 11 12 13

20 21 22 23

30 31 32 33

1, 0, 0, 0,

, 1, 0, 0,

0, 0, , 0,
0, 0, 0, sin .

H H H H

r
H H H H

r
H H H r H
H H H H r θ

= − = = =

= = = = 

= = = = 

= = = = ⋅ 

   

   

   

   

                     (69) 

Christoffel symbols: 
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3
0

2

0
2

0

0

2
0

0 1
00 2
0 1
01 2

0 1
11 2
0 0 0 0 0

0
02 03 12 13 23

0
22

0
sin

33

r
rr

r
r

r
r r

r r

r r θ

 
= 
 
  =    
 

=    
          = = = = =          
          

 
= −  

 
  = −    

                          (70) 

0 0
2

3 2
0
5 2

0
2

0

2 0

1 1 1
00 2
1 1
01 2
1 1
11 2
1 1 1 1 1

0
02 03 12 13 23

1
1

22

1
sin 1

33

r r
rr

r
r

r
r

r
r

r

r
r

r
θ

   = −    
   

  = − 
 


  = −    


          = = = = =                    
   = − −    

   
    = − −       

                          (71) 

2 1
12

2 2 2 2 2 2 2 2
0

00 01 11 02 03 13 22 23

2
sin cos

33

r

θ θ

 
=  

  
                = = = = = = = =                

                
  = −    

                 (72) 

3 1
13

3 3 3 3 3 3 3 3
0

00 01 11 02 12 03 22 33

3 cos
23 sin

r

θ
θ

 
=  

  
                = = = = = = = =                

                
  =    

                 (73) 

Bispinor connectivities are calculated by the formula (24) using (66)-(73). We obtain: 
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0
0 012

0
1 01

0
2 02 12

0
3 03 31 23

1
4
1 1
4

1 1
2 2
1 1 1sin sin cos
2 2 2

r
S

r
r

S
r r

r
S S

r
r

S S S
r

θ θ θ

Φ = 



Φ = 


Φ = − − 

Φ = − ⋅ + ⋅ − ⋅ 









                      (74) 

In order to find the Hamiltonian in the η -representation, ( )00 1g− = , expressions for H µα α
µγ γ= 

  and ex-
pressions (74) for αΦ  are put into the primary Dirac Hamiltonian H , 

( ) ( ) ( )
0 0 0

000 00 00
k k

kk

im i iH i
xg g g

γ γ γ γ γ∂
= − + − Φ + Φ

∂− − −
  

                        (75) 

These transformations give 

0 0
0 0 1 2 3

1 1 1 1 3 1ctg
2 sin 4

r r
H im i i i

r r r r r r r r
γ γ γ γ θ γ

θ θ ϕ
 ∂ ∂ ∂ ∂   = − + + + + + +    ∂ ∂ ∂ ∂    

         (76) 

The operator η  for the Painlevè-Gullstrand metric equals 

( )
1

00 2 1Gg gη = =                                     (77) 

so the η -representation coincides with the representation of the Hamiltonian H . 
The Hamiltonian H  (76) is self-conjugate. It is evident that the formula (1) is valid in this case. 
It is easy to obtain (76) from (2) given that 0H∆ = , and redH  is written as 

0
red 0 0 1 2 3

1 1
sin

r
H im i i

r r r r r
γ γ γ γ γ

θ θ ϕ
 ∂ ∂ ∂ ∂

= − + + + 
∂ ∂ ⋅ ∂ ∂ 

                   (78) 

Thus, as applied to the Painlevé-Gullstrand metric, the same Hamiltonian Hη  was obtained both by the 
standard algorithm and in a simpler manner using (2). 

In [11], a self-conjugate Hamiltonian was obtained for the Painlevé-Gullstrand metric using tetrad vectors in 
the Schwinger gauge with a set of local Dirac matrices written in spherical coordinates. 

0 0
1

1 2 3 1

1
1 2 3 2

1
1 2 3

sin cos sin cos

cos cos sin sin

sin cos

r R R

R R

R R
θ

ϕ

γ γ

γ θ γ ϕ γ ϕ γ ϕ γ

γ θ γ ϕ γ ϕ γ ϕ γ

γ γ ϕ γ ϕ γ

−

−

−

= 


 = + + =   


 = + − =  
= + = 

                       (79) 

The set { }, ,r θ ϕγ γ γ  is related to the set { }1 2 3, ,γ γ γ  through a unitary matrix R , 

( )

( )

1 1 2 2

1 1 2 1 5 1 1 2

2 1 3 2 5 2 3 1

;
1exp ;     ;

2 2
1exp ;     .

2 2

R R T R T

R T E

R T E

ϕ γ γ γ γ γ γ

θ γ γ γ γ γ γ

=

 = − = + 
 
 = − = + 
 

                       (80) 

The Hamiltonian from [11] can be written as 
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0
0 0

1 1 3
sin 4D r

r
H im i i

r r r r r rθ ϕγ γ γ γ γ
θ θ ϕ

 ∂ ∂ ∂ ∂ = − + + + +   ∂ ∂ ∂ ∂  
                (81) 

The Hamiltonians (76) and (81) are physically equivalent, because they are related through a unitary trans-
formation, 

1 1,     DH RHR R R− + −= =                                 (82) 

Generally speaking, all Hamiltonians in the Schwinger gauge are connected with each other by physically 
equivalent matrices of spatial rotation. This is what we meant [1] speaking about the uniqueness of Hamiltonians 
in the η -representation (see the comments by M. Arminjon in [18]). 

5.4. Finkelstein-Lemaitre Metric 
It is of independent interest to study the motion of a Dirac particle in the nonstationary Finkelstein-Lemaitre 
metric [5], because the time coordinate in this metric coincides with the proper time. 

( )
( ) ( )

4 32
2 2 2 3 2 2 2

02 3

0

d 3d d d sin d
23

2

rs t r t r

r t
r

θ θ ϕ = − + + − + ⋅   
− 

 

               (83) 

The determinants equal 

( )

( )

2
2 2

0

2 2
0
4

3 sin
2

3
2G

g r t r

r
g r t

r

θ
 = − −    

 = − −    

                              (84) 

Non-zero components of tetrad vectors in the Schwinger gauge: 

( )
( ) ( )

1 3
0 1 2 3
0 1 2 32 3 2 3

0 1 3 1 3
0 0

3 1 11,     ,     ,     
2 3 3 sin

2 2

H H r t H H
r

r t r r t r θ

 
= = − = = 

     − −      

            (85) 

For this metric, in (2), 0H∆ = . 
“Reduced” Hamiltonian: 

1 2 3
red 0 0 1 1 2 2 3 3H im i H H H

r
γ γ γ γ γ

θ ϕ
 ∂ ∂ ∂

= − + + 
∂ ∂ ∂ 

                        (86) 

We insert (86) into (2) and obtain 
1
11 2 3

0 0 1 1 2 2 3 3 0 1
1 1 ctg

2 2
HiH im i H H H

r r rη γ γ γ γ θ γ γ γ
θ ϕ

∂ ∂ ∂ ∂   = − + + + + −    ∂ ∂ ∂ ∂    



           (87) 

The Hamiltonian (87) is self-conjugate with a fairly complex time dependence. 

5.5. Hamiltonian in the η -Representation for Dirac Particles in the Kruskal Gravitational 
Field 

The Kruskal metric [8] is a further development of the Lemaitre-Finkelstein metric to build the most complete 
frame of reference for a point-mass field. The formula below, in which the frame of reference is synchronous, 
has been developed by I.D. Novikov [9]. In the ( ), , ,Rτ θ ϕ  coordinates, 
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( ) ( ) ( )
2 2

2 22 2 2 2 2 2 2
02 2

0 0

1d d 1 1 cos d 1 1 cos d sin d
4

R Rs R r
r r

τ χ χ θ θ ϕ
   

= − + + − + + − +   
   

       (88) 

( )
3

2 2

2
0 0

1 1 π sin
2

R
r r
τ χ χ

 
= + − + 

 
                                                (89) 

The determinants equal 

( )

( )

32
6 4 2

02
0

3 42
6 0

2 4
0

11 1 cos sin ;
16

11 1 cos .
16G

Rg r
r

rRg
r R

χ θ

χ

 
= − + − 

 

 
= − + − 

 

                       (90) 

Equations (88), (89) show that the metric (89) is related to the radial coordinate R  and proper time τ  
through the parameter η . 

The non-zero components of the tetrad vectors in the Schwinger gauge equal 

( ) ( ) ( )

0 1 2 3
0 1 2 3

2 2 2

0 02 2 2
0 0 0

1 2 21,     ,     ,     .

1 1 cos 1 1 cos 1 1 cos sin

H H H H
R R Rr r
r r r

χ χ χ θ

= = = =
     
+ − + − + − ⋅     

     

    (91) 

“Reduced” Hamiltonian: 

1 2 3
red 0 0 1 1 2 2 3 3H im i H H H

R
γ γ γ γ γ

θ ϕ
 ∂ ∂ ∂

= − + + 
∂ ∂ ∂ 

                          (92) 

According to (2), with 0H∆ = , we have 
1
11 2 3

0 0 1 1 2 2 3 3 0 1
1 1 ctg

2 2
HiH im i H H H

R R Rη γ γ γ γ θ γ γ γ
θ ϕ

∂ ∂ ∂ ∂   = − + + + + −    ∂ ∂ ∂ ∂    



              (93) 

The derivative 
1
1H

R
∂

∂



 in the last summand of (93) should allow for the dependence ( ),Rχ τ  (see (89)). 

6. Axially Symmetric Gravitational Field 
6.1. Kerr Metric in the Boyer-Lindquist Coordinates 
The Kerr solution in the Boyer-Lindquist coordinates [3] 

( ) ( )0 1 2 3, , , , , ,x x x x t r θ ϕ≡                                  (94) 

is given by 

20 0
2 2

2

2

2
2 2 2 2 20 0

2 2

1 0 0 sin

0 0 0

0 0 0

sin 0 0 sin sin

r r ar r

g

ar r a r r
r a

αβ

θ
ρ ρ

ρ

ρ

θ θ θ
ρ ρ

 
− − − 
 

= ∆

 
− + + ⋅ ⋅ 

 

                 (95) 
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4 2
4sin ,     Gg g

r
ρρ θ= − ⋅ = −                                 (96) 

The inverse tensor has the following form: 

2
2 2 20 0

2 2

2

2

0 0
2 2 2

1 sin 0 0

0 0 0

10 0 0

10 0 1
sin

a r r ar r
r a

g

ar r r r

αβ

θ
ρ ρ

ρ

ρ

ρ θ ρ

 
− ⋅ + + ⋅ − 
∆ ∆ ⋅ 

∆

=

 
− − ∆ ⋅ ∆ ⋅  

               (97) 

Here, 
2 2

0
2 2 2 2sin

r r r a
r aρ θ

∆ ≡ − +


≡ + ⋅ 
                                  (98) 

6.2. Tetrad Vectors in the Schwinger Gauge 
We will need expressions for tetrad vectors in the Schwinger gauge. The results of calculating the components 
of tetrad vectors Hα

µ
  are presented in Table 2. Table 3 shows the components of vectors Hµα

 . 
 
Table 2. H α

µ
 —like tetrad vectors. 

Tetrad vectors Tetrad vector components 

0H α
  ( )0 00

0H g= −  1
0 0H =  2

0 0H =  ( )
3 0
0 2 00

ar rH
gρ

=
∆ −

  

1H α
  0

1 0H =  1
1H

ρ
∆

=  2
1 0H =  3

1 0H =  

2H α
  0

2 0H =  1
2 0H =  2

2

1H
ρ

=  3
2 0H =  

3H α
  0

3 0H =  1
3 0H =  2

3 0H =  ( )
3
3 00

1
sin

H
gθ

=
⋅ ∆ −

  

 
Table 3. Hµα

 —tetrad vectors. 

Tetrad vectors Tetrad vector components 

0H α
  ( )00 00

1H
g

= −
−

  
01 0H =  02 0H =  03 0H =  

1H α
  10 0H =  11H ρ

=
∆

  
12 0H =  13 0H =  

2H α
  20 0H =  21 0H =  22H ρ=  23 0H =  

3H α
  ( )

0
30 2 00

sinar rH
g
θ

ρ

⋅
= −

∆ −
  

31 0H =  32 0H =  ( )00
33 sinH gθ= ⋅ ∆ −  
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6.3. Hamiltonian ηH  

First, from formula (38), we obtain 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

0 0
red 00 00

0 0 0 0 1 1 2 2 3 3 3 0
0 0 1 2 3 01 2 3 300 00

0 0 1 0 2
0 0 0 1 0 1 0 2 0 200 00 00

0 3
0 3 0 300

       

       

k
k

im iH
xg g

im iH H H H H H
x x x xg g

im i iH H H H H
rg g g

i iH H
g

γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ
θ

γ γ
ϕ

∂
≡ − +

∂− −

∂ ∂ ∂ ∂ = − + + + + 
∂ ∂ ∂ ∂− −  

∂ ∂
= − −

∂ ∂− − −

∂
− −

∂− −



  

     

    

 

( )
0 3
0 000

.H H
g ϕ

∂
∂

 

        (99) 

For the metric under consideration, H∆   in (2) differs from zero: 

03 03
30 33 30 331 2

1 13 2 2300 00 .
4 4

H H H Hi g i gH H S H S
r rg gθ θ

   ∂ ∂ ∂ ∂
∆ = + + +      ∂ ∂ ∂ ∂   

   

                  (100) 

The Hamiltonian Hη  is calculated using (2). 

( ) ( )

( ) ( )

( ) ( ) ( )

0 0 1
0 0 0 1 0 100 00

0 2 0 3
0 2 0 2 0 3 0 300 00

0 1 0 2
0 1 0 2 0 3

0 1 0 2 0 000 00 00

1

1          ctg
2

          
2 2

   

im iH H H H
r rg g

i iH H H H
g g

H H H Hi i i H H
r g g g

η γ γ γ

γ γ θ γ γ
θ ϕ

γ γ γ γ
θ ϕ

∂ = − + ∂− −  

∂ ∂ − + − ∂ ∂− − 

   ∂ ∂ ∂   − − −
∂ ∂ ∂   − − −   

  

   

   

 

03 03
30 33 30 331 2

3 1 1 2 3 200 00       .
4 4

H H H Hi g i gH H
r rg g

γ γ γ γ
θ θ

   ∂ ∂ ∂ ∂
− + + +      ∂ ∂ ∂ ∂   

   

 

              (101) 

We put the tetrad vector components 

( )
( ) ( )

( )
( )

0 00 1 2 3 3 0
0 1 2 3 0

00 2 00

000
30 33

2 00

1 1,     ,     ,     ,     ,
sin

sin
,     sin .

ar r
H g H H H H

g g

ar r
H H g

g

ρ ρ θ ρ

θ
θ

ρ

∆
= − = = = =

⋅ ∆ − −

= − = ⋅ ∆ −
∆ −

    

 

 

and the metric components 

2
00 2 2 2 030 0

2 2

1 sin ,     
a r r ar r

g r a gθ
ρ ρ

 
= − + + = − 

∆ ∆ 
                   (102) 

into (101). Finally, 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( )

0 0 1 0 2 0 30000 00 00

0
0 1 0 2200 00 00

0
3 1 2 00

1 1 ctg
2 sin

1          
2 2

sin          
4

im i i iH
r r gg g g

ar ri i i
rg g g

ar r ari
r g

η γ γ γ γ γ θ γ γ
θ ϕθρ ρ

γ γ γ γ
ϕ θρ ρ ρ

θγ γ
ρ ρ

∆ ∂ ∂ ∂   = − + − + −   ∂ ∂ ∂⋅ − ∆   − − −

   
∂ ∂ ∆ ∂   − − −   ∂ ∂ ∂∆− − −      

∆ ∂
− − +

∂ ∆ − ( ) ( )

( ) ( ) ( )

000
2 00

000 0
2 3 2 002 00

sin

sin1          sin .
4

r g
rg

ar r ar ri g
gg

θ
ρ

θγ γ θ
ρ θ θρρ

 
∂ ∆ − ∂∆ − 

 

 
∂ ∂ + − + ∆ − ∂ ∂∆ − ∆ − 

 (103) 

The quantities 00 ,  ,  g ρ− ∆  are defined by (102), (98). 
In order to turn to the Schwarzschild Hamiltonian, one should assume that 

2
2 2 2 2 20

0 20,     ,     ,     sin
a r r

a r r r r r a rρ θ
ρ

 
= ∆ → − → + + → 

 
                (104) 

After such a replacement, from (103), we obtain the Hamiltonian Hη  (55) for the Schwarzschild field: 

0 0 1 2 3 0 1
1 1 1 1ctg

2 sin 2
i fH im f i f f

r r r r rη γ γ γ γ θ γ γ γ
θ θ ϕ

 ∂ ∂ ∂ ∂   = − + + + + −    ∂ ∂ ⋅ ∂ ∂    
      (105) 

If in the expression for Hη  (103) we restrict ourselves to the terms not higher than of the first order of 

smallness in the parameters 0 0
2,  

r ar
r r

, we will obtain a self-conjugate Hamiltonian for the weak Kerr field. 

app 0 0 0
0 0 1 0 2 3

0 0 0
0 1 3 12 3 3

1 1 1 11 1 1 ctg
2 2 2 sin

3           sin .
42

r r r
H im i i

r r r r r r r

ir ar ar
i

r r r

η γ γ γ γ γ θ γ
θ θ ϕ

γ γ γ γ θ
ϕ

 ∂ ∂ ∂        = − − − + − − + +         ∂ ∂ ∂          

∂
− − −

∂

    (106) 

In Section 7, appHη  is found by the general algorithm [1], and using (1). 
Previously, a self-conjugate Hamiltonian for a weak Kerr field has been obtained in Refs. [16], [19] for the 

metric written in isotropic coordinates. 

7. Weak Axially Symmetric Gravitational Field 
7.1. Kerr Metric in the Boyer-Lindquist Coordinates 
For our purposes, we write Equations (95)-(98), leaving the terms not exceeding the first order of smallness in  

the quantities 0r
r

 and 0
2

r a
r

. In this approximation, 

( )2 000 01 ,     ,     1
r r

r r g
r r

ρ   ∆ ≈ − ≈ − ≈ +   
   

                       (107) 
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20 0

0

2

2 2 20

1 0 0 sin

0 1 0 0

0 0 0

sin 0 0 sin

r ar
r r

r
g r

r
ar

r
r

αβ

θ

θ θ

 − − − 
 

 + ≈  

− ⋅

                      (108) 

0 0
3

0

2

0
3 2 2

1 0 0

0 1 0 0

10 0 0

10 0
sin

r ar
r r

r
rg

r
ar
r r

αβ

θ

 − + − 
 

 − 
 =

−
⋅

                       (109) 

( )
1

1 44 2 00 04sin ,     1,     1G G
r

g r g g g
r

θ η  = − ⋅ = − = = + 
 

                  (110) 

7.2. Tetrad Vectors in the Schwinger Gauge 
We will need expressions for tetrad vectors in the Schwinger gauge. The results of calculating the components 
of the tetrad vectors Hα

µ
  are presented in Table 4. Table 5 shows the components of the vectors Hµα

 . 
 
Table 4. Tetrad vectors H α

µ
 . 

Tetrad vectors Tetrad vector components 

0H α
  0 0

0 1
2
rH
r

 ≈ + 
 

  1
0 0H =  2

0 0H =  3 0
0 3

arH
r

≈  

1H α
  0

1 0H =  1 0
1 1

2
rH
r

 ≈ − 
 

  2
1 0H =  3

1 0H =  

2H α
  0

2 0H =  1
2 0H =  2

2

1H
r

≈  3
2 0H =  

3H α
  0

3 0H =  1
3 0H =  2

3 0H =  3
3

1
sin

H
r θ

≈  

 
Table 5. Tetrad vectors Hµα

 . 

Tetrad vectors Tetrad vector components 

0H α
  0

00 1
2
rH
r

 ≈ − − 
 

  
01 0H =  02 0H =  03 0H =  

1H α
  10 0H =  0

11 1
2
rH
r

 ≈ + 
 

  
12 0H =  13 0H =  

2H α
  20 0H =  21 0H =  22H r=  23 0H =  

3H α
  0

30 2 sinarH
r

θ≈ − ⋅  31 0H =  32 0H =  33 sinH r θ≈ ⋅  
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7.3. Christoffel Symbols 
Christoffel symbols: 

0
2

20
2

0 1
02

00 0

0 1
01 2
0

0
02

0
0

03

0
0

11
    

0
0

12

0 3 sin
13 2
0

0
22

0
0

23

0
0

33

r
r

ar
r

θ

  
=  

  
   = 
  
 
  =    
  

=  
  
   = 
  
 
  =    
  

= −  
  
  
 = 
  
 
  =    
  

=  
  

0
2

20
2

0
2

0

2 0

1
0 2

1
0

01

1
0

02

1
sin

03 2
1 1
11 2
1

0
12

1
0

13

1
1

22

1
0

23

1
sin 1

33

r
r

ar
r

r
r

rr
r

rr
r

θ

θ

  
=  

  
   = 
  
 
  =  
 

= − 
 
  = − 
 

  =  
 

= 
 
    = − −   

  

  =  
   = − −       

0
3

2
0

00

2
0

01

2
0

02

2
sin cos

03

2
0

11
    

2 1
12

2
0

13

2
0

22

2
0

23

2
sin cos

33

ar
r

r

θ θ

θ θ

  
=  

  
   = 
 

   =    

  
= −  

  
    = 
  
 

   =    
  

=  
  

  
  = 
  
 

   =    
  

= −  
  

0
4

0
3

3
0

00

3
01 2
3 cos

02 sin
3

0
03

3
0

11
    

3
0

12

3 1
13

3
0

22

3 cos
23 sin
3

0
33

ar
r

ar
r

r

θ
θ

θ
θ

 
= 

 
  = 

  
 

   = −    
  

=  
  

    = 
  
 

   =    
  

=  
  

  
  = 
  
 

   =    
  

=  
 



































 (111) 

7.4. Bispinor Connectivities 
Bispinor connectivities are calculated by the formula 

;
1
4

H H S µνε
α µ νε αΦ =                                    (112) 

We obtain: 

0 0 0
0 01 23 312 3 3

0
1 033

0
2 12

20 0
3 01 23 312

1 1 1cos sin
4 2 4

3 sin
4
1 1
2 2
3 1 1sin cos 1 sin
4 2 2 2

r ar arS S S
r r r

ar S
r

r S
r

ar rS S S
rr

θ θ

θ

θ θ θ

Φ = + ⋅ + ⋅ 

Φ = − ⋅ 
  Φ = − −   
  Φ = − ⋅ − ⋅ + − ⋅    









                 (113) 

7.5. Hamiltonian Hη  

Taking into account SubSections 7.1 - 7.4, we derive an expression for H  using (22): 
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0 0 0 0
0 0 1 0 2 3

0 0 0
0 3 0 1 312 3

1 1 11 1 1 ctg
2 2 2

1 3         1 sin .
2 sin 44

r r r ar
H im i i i

r r r r r r r
r r ar

i i i S
r r r r

η γ γ γ γ γ θ
θ ϕ

γ γ γ γ θ
θ ϕ

∂ ∂ ∂        = − ⋅ − − ⋅ + − − ⋅ + − ⋅        ∂ ∂ ∂        
∂ − − ⋅ − ⋅ − ⋅  ∂ 

     (114) 

Since the Kerr solution is stationary, the general formula for Hη , 
1

1H H i
tη
ηη η η

−
− ∂

= +
∂




                                   (115) 

in our case will be written as 

1H Hη η η−= 

                                      (116) 

where η  is defined by (110). 
As a result, the Hamiltonian Hη  can be written as 

0 0 0 0
0 0 1 0 2 0 1 2

0 0 0
3 1 0 33 3

1 1 11 1 1 ctg
2 2 2 2
3 1         sin 1 .
4 2 sin

r r r r
H im i i i

r r r r r r r
ar r ar

i i i
r rr r

η γ γ γ γ γ θ γ γ
θ

γ γ θ γ γ
θ ϕ ϕ

∂ ∂        = − ⋅ − − ⋅ + − − ⋅ + −        ∂ ∂        
∂ ∂ − − − ⋅ −  ∂ ∂ 

      (117) 

Equation (117) coincides with Equation (106), derived by expanding the general expression for Hη  (103). 
In turn, the general expression (103) is obtained using (2). 

Analogously, using (114), we can easily check if the formula (1) is valid for the metric under consideration 
(108). 

Thus, the same expression for Hη  for a weak Kerr field is in fact derived in three different ways. 
For the block-diagonal metrics like (3), as exemplified by the Kerr metric with the formula (2), we can see 

that the algorithm for finding the Dirac self-conjugate Hamiltonians with a flat scalar product becomes signifi-
cantly simpler. 

8. Open Friedmann Model 
Consider the case of the open Friedmann model in the coordinates 

( ) ( )0 1 2 3, , , , , ,x x x x t χ θ ϕ=  

For this model, the non-stationary metric takes the following form: 

( )( )2 2 2 2 2 2 2 2d d d sh d sin ds t a t χ χ θ θ ϕ = − + + +                      (118) 

6 4 2 6sh sin ,    Gg a g aχ θ= − = −                             (119) 

The non-zero components of the tetrad vectors Hα
α
  in the Schwinger gauge equal 

0 1 2 3
0 1 2 3

00 11 22 33
0 1 2 3

1 2 3

00 11 22 33

1 1 11, , , ,
sh sh sin

1, , sh , sh sin ,
1, , sh , sh sin ,

1 1 11, , , .
sh sh sin

H H H H
a a a

H H a H a H a
H H a H a H a

H H H H
a a r

α

χ χ θ
χ χ θ
χ χ θ

χ χ θ

= = = = ⋅ ⋅ ⋅ 
= − = = ⋅ = ⋅ ⋅ 

= = = ⋅ = ⋅ ⋅ 


= − = = = 
⋅ ⋅ ⋅ 

   

   

   

   

               (120) 

Calculations of the Hamiltonian H  give 
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0 0 1 2 3
1 1 1 1 3 dcth ctg

sh 2 sh sin 2 d
aH im i i

a a t
γ γ γ χ γ θ γ

χ χ θ χ θ ϕ
  ∂ ∂ ∂ = − + + + + −    ∂ ∂ ⋅ ∂   

       (121) 

The Hamiltonian Hη  is defined by (2). For this metric, 0H∆ =  

0 0 1 2 3
1 1 1 1cth ctg

sh 2 sh sin
H im i

a
γ γ γ χ γ θ γ

χ χ θ χ θ ϕ
  ∂ ∂ ∂ = − + + + +    ∂ ∂ ⋅ ∂   

          (122) 

In the quasi-stationary approximation, for the cosmological time t , the energy operator for a particle moving 
in the χ -direction equals 

( )

2
2 2

2

p
E H m

a t
χ

η= = +                               (123) 

Here, 

cthp iη χ
χ

 ∂
= − + ∂ 

 

Let us denote 

( ) ( ) ( ) ( )0 0
0

sh sh sh
a t

a t a b t a b t r
a

χ χ χ= = =                       (124) 

where ( )0 1b t = ; zero subscripts correspond to the current time ( )0t t≤ . 
If the radius of the spatial curvature of the universe currently goes to infinity, ( )0a →∞ , then 

0r a χ≈                                      (125) 

In this case, for the spatially flat Friedmann model, the Hamiltonian (122) becomes equal to 

( ) ( ) ( )0 0 1 0 2 0 3
1 1 1 1 1ctg

2 sin
H im i i i

b t r r b t r b t rη γ γ γ γ γ θ γ γ
θ θ ϕ

∂ ∂ ∂   = − + − + −   ∂ ∂ ∂   
      (126) 

In Cartesian coordinates, the expression for Hη  is 

( )0 0 k k

iH im
b t xη γ γ γ ∂

= −
∂

                             (127) 

9. Clifford Torus Metric 
The metric proposed in [10] in the ( )1 2, , ,t zϕ ϕ  coordinates is given by 

( )( ) ( )( ) ( ) ( )

( )

2 2 2 22 2 2 2 2
1 1 2 2 1 2

2 2 2 2
1 2 1 2

d d d d 1 d ,

1 .G

s t z z z z z

g g

ρ ϕ ρ ϕ ρ ρ

ρ ρ ρ ρ

 ′ ′= − + + + + + 
′ ′= = − + +

            (128) 

In (128), the prime denotes the derivative with respect to the z  coordinate. 
Tetrad vectors in the Schwinger gauge: 

0 1 2 3
0 0 0 0

0 1 2 3
1 1 1 1

1

0 1 2 3
2 2 2 2

2

0 1 2 3
3 3 3 3

3

1, 0, 0, 0;
10, , 0, 0;

10, 0, , 0;

10, 0, 0, .

H H H H

H H H H

H H H H

H H H H

ρ

ρ

ρ

= = = =

= = = =

= = = =

= = = =

   

   

   

   

                       (129) 
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In (129), ( ) ( )( ) ( )( )2 2
3 1 21z z zρ ρ ρ′ ′= + + . In accordance with (38), the “reduced” Hamiltonian redH  equals 

red 0 0 1 0 2 0 3
1 1 2 2 3

i i iH im
z

γ γ γ γ γ γ γ
ρ ϕ ρ ϕ ρ

∂ ∂ ∂
= − − −

∂ ∂ ∂
                    (130) 

For this metric, in (2), 0H∆ = . Then, the Hamiltonian Hη  in accordance with (2) equals 

( )red red

3
0 0 1 0 2 0 3 0 3 2

1 1 2 2 3 3

1
2

     .
2

H H H

i i i iim
z

η

ρ
γ γ γ γ γ γ γ γ γ

ρ ϕ ρ ϕ ρ ρ

+= +

′∂ ∂ ∂
= − − − +

∂ ∂ ∂

 

              (131) 

10. Equivalence of Hamiltonians with Harmonic Cartesian or Boyer-Lindquist 
Coordinates in a Weak Kerr Field 

As we know, harmonic coordinates satisfy the condition formulated by Th. De-Donder and V. A. Fock [12] [13]. 
In Refs. [16] [19], the following form of self-conjugate Dirac Hamiltonian cH  was derived using harmonic 

Cartesian coordinates for a weak Kerr field: 

0 0 0 0
0 0 0 1 23 3

2 1

2
0 3 3 1 3 2

1 2 2 3 3 13 2 2 2

1 1
2 2

3 3
         1 3 .

4

c k k kk

r r r r a
H im i i x i x x

r r x xx r r

r a x x x x x
i

r r r r

γ γ γ γ γ

γ γ γ γ γ γ

 ∂ ∂ ∂   = − − − − − −     ∂ ∂∂     
  

+ − − −  
   

          (132) 

Similar to Subsects 6, 7, ( )0,0,a a= ; 0

2
r

J a=  in (132) is angular momentum of a rotating source of the 

Kerr field. 
When using Boyer-Lindquist coordinates [3], the self-conjugate Hamiltonian B LH −  for a weak Kerr field is 

defined by (106), (117): 

0 0 0
0 0 1 0 2 0 3

0 0 0
0 1 3 12 3 3

1 1 1 11 1 1 ctg
2 2 2 sin

3            sin .
42

B L
r r r

H im i i
r r r r r r

r r a r a
i i

r r r

γ γ γ γ γ θ γ γ
θ θ ϕ

γ γ γ γ θ
ϕ

−
 ∂ ∂ ∂        = − − − + − − + +         ∂ ∂ ∂          

∂
− − −

∂

   (133) 

In (132), (133), the summands without a  correspond to the Schwarzschild metric. These parts of (132), (133) 
are physically equivalent to each other. 

The last but one summands in (132), (133) are also physically equivalent to each other. Indeed, in a weak 
Kerr field, Boyer-Lindquist coordinates are reduced to spherical coordinates. 

Hence, 

3

2

1

cos ,
sin sin ,
sin cos .

x r
x r
x r

θ
θ ϕ
θ ϕ

= ⋅

= ⋅
= ⋅

                                (134) 

2 1
1 2

2 1 2 1

x x x x
x x x xϕ ϕ ϕ

∂ ∂∂ ∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂ ∂ ∂ ∂
                      (135) 

Given (135), we can see the desired equivalence. 
As for the last summands in (132), (133), they do not seem to be equivalent at first. Suffice it to note that the 

last summand in (132) contains three spin matrices ( )1 2 3 2 3 1 3 1 2, ,i i iγ γ γ γ γ γ= Σ = Σ = Σ , while the last summand 
in (133) has only one spin matrix 2Σ . This may put the correctness of (133) into question, although it was de-
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rived in Subsection 7 in three different ways. 
In order to resolve this, let us write the Hamiltonian (133) using the representation of Dirac matrices in spher-

ical coordinates (79). The matrices (79) are related to the matrices 1 2 3,  ,  γ γ γ  by the unitary transformation (80). 
The Hamiltonian (133) with the local Dirac matrices ,  ,  r θ ϕγ γ γ  takes the following form: 

( )

0 0 0 0
0 0 0 0

20 0 0
0 1 2 2 3 3 12 3 3

1 11 1 1 1
2 2 2 sin

1             1 3cos 3 cos sin cos 3 cos sin sin .
42

B L r

r

r r r r
H im i i i

r r r r r r r
r r a r a

i i
r r r

θ ϕγ γ γ γ γ γ γ
θ θ ϕ

γ γ γ γ θ γ γ θ θ ϕ γ γ θ θ ϕ
ϕ

−
∂ ∂ ∂       ′ = − − − − − − −       ∂ ∂ ⋅ ∂       

∂  − − + − − − ∂

 (136) 

Given (134), the last summands in (136) and (132) coincide with each other. The Hamiltonian (136) is physi-
cally equivalent to the Hamiltonian (133), since it is obtained using the unitary transformwation (80): 

B L B LH RH R+
− −′ =                                   (137) 

The analysis indirectly proves that Equation (103) is valid for the general Hamiltonian in Boyer-Lindquist 
coordinates. Equation (103) can be used for Kerr gravitational field of arbitrary strength and angular momentum 
of the field source of arbitrary magnitude. 

The results obtained above demonstrate that for clear physical interpretation of individual summands of Dirac 
Hamiltonians one should use harmonic Cartesian coordinates. Classical interpretation of individual Hamiltonian 
terms requires transition to the Foldy-Wouthuysen representation [20] [21]. 

11. Conclusions 
This study develops the algorithm proposed in [1] for constructing self-conjugate Hamiltonians Hη  in the η - 
representation with a flat scalar product to describe the dynamics of Dirac particles in arbitrary gravitational 
fields. We prove that a Hamiltonian in the η-representation for any gravitational field, including a time-dependent 
field, is a Hermitian part of the initial Dirac Hamiltonian H  derived using tetrad vectors in the Schwinger 
gauge. We also prove that for the block-diagonal matrices like (3), the Hamiltonian Hη  can be calculated by 
the formula (2) using “reduced” parts of the Hamiltonians H  and H +

  without or with a small number of su- 
mmands with bispinor connectivities. Using this method, we for the first time find self-conjugate Hamiltonians 
Hη  for the Kerr metric in the Boyer-Lindquist form and for the Eddington-Finkelstein, Finkelstein-Lemaitre, 
Kruskal, Clifford torus metrics and also for non-stationary metrics of open and spatially flat Friedmann models. 

In this paper, we also prove physical equivalence of Dirac Hamiltonians in a weak Kerr field in harmonic 
Cartesian and Boyer-Lindquist coordinates. We point at the necessity of using harmonic Cartesian coordinates 
for clear physical interpretation of individual terms in the Hamiltonians. 

In [22], the algorithm for deriving self-conjugate Dirac Hamiltonians in the η -representation is extended to 
the electromagnetic case. The Hamiltonian derived is applied to the case when the nonstationary gravitational 
field describes the spatially flat Friedmann model, and the electromagnetic field is an extension of the Coulomb 
potential to the case of this model. 

Following other authors [17], we demonstrate that energy levels in atomic systems are invariable in cosmo-
logical time. 

Spectral lines of atoms in the spatially flat Friedmann model are identical at different points of cosmological 
time, and redshift is attributed completely to the growth of the wavelength of photons in the expanding universe. 

At the same time, we observed that interaction forces and physical dimensions of atomic and quark bound 
systems vary with universe expansion. 

The expressions for Hamiltonians Hη , derived in this paper, can also be employed to study the behavior of 
Dirac particles in the vicinity of black holes, and scattering and absorption of such particles by black holes. 
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