International Journal of Modern Nonlinear Theory and Application, 2015, 4, 21-36 "0’ Scientific
Published Online March 2015 in SciRes. http://www.scirp.org/journal/iimnta 0‘:,. 53?‘&2?32
http://dx.doi.org/10.4236/iimnta.2015.41003 * g

Equal Ratio Gain Technique and Its
Application in Linear General Integral
Control

Baishun Liu

Academy of Naval Submarine, Qingdao, China
Email: baishunliu@163.com

Received 30 September 2014; accepted 13 October 2014; published 27 February 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

In conjunction with linear general integral control, this paper proposes a fire-new control design
technique, named Equal ratio gain technique, and then develops two kinds of control design me-
thods, that is, Decomposition and Synthetic methods, for a class of uncertain nonlinear system. By
Routh’s stability criterion, we demonstrate that a canonical system matrix can be designed to be
always Hurwitz as any row controller gains, or controller and its integrator gains increase with the
same ratio. By solving Lyapunov equation, we demonstrate that as any row controller gains, or
controller and its integrator gains of a canonical system matrix tend to infinity with the same ratio,
if it is always Hurwitz, and then the same row solutions of Lyapunov equation all tend to zero. By
Equal ratio gain technique and Lyapunov method, theorems to ensure semi-globally asymptotic
stability are established in terms of some bounded information. Moreover, the striking robustness
of linear general integral control and PID control is clearly illustrated by Equal ratio gain tech-
nique. Theoretical analysis, design example and simulation results showed that Equal ratio gain
technique is a powerful tool to solve the control design problem of uncertain nonlinear system.
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1. Introduction

The complexity of nonlinear system challenges us to come up with systematic design methods to meet control
objectives and specifications. Faced with such challenge, it is clear that we can not expect a particular method to
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apply to all nonlinear systems [1]. Therefore, although there were Linearization techniques, Gain scheduling
technique, Singular perturbation technique, feedback linearization technique, sliding mode technique and so on,
nonlinear design tools, this paper still develops a new control design technique, named Equal ratio gain tech-
nique, in conjunction with linear general integral control since integral control plays an irreplaceable role in the
control domain.

For general integral control design, there were various design methods, such as general integral control design
based on linear system theory, sliding mode technique, Feedback linearization technique and Singular perturba-
tion technique and so on, presented by [2]-[5], respectively. In addition, general concave integral control [6],
general convex integral control [7], constructive general bounded integral control [8] and the generalization of
the integrator and integral control action [9] were all developed by Lyapunov method. For illustrating the prac-
ticability and validity of Equal ratio gain technique and the good robustness of linear general integral control,
this paper addresses general integral control design again.

Based on Equal ratio gain technique, this paper develops two kinds of systematic methods to design linear
general integral control for a class of uncertain nonlinear system, that is, one is Decomposition method and
another is Synthetic method. The main contributions are as follows: 1) a canonical system matrix can be de-
signed to be always Hurwitz as any row controller gains, or controller and its integrator gains increase with the
same ratio; 2) as any row controller gains, or controller and its integrator gains of a canonical system matrix tend
to infinity with the same ratio, if it is always Hurwitz, and then the same row solutions of Lyapunov equation all
tend to zero; 3) theorems to ensure semi-globally asymptotic stability are established in terms of some bounded
information. Moreover, the striking robustness of linear general integral control and PID control is clearly illu-
strated by Equal ratio gain technique. All these mean that Equal ratio gain technique is a powerful tool to solve
the control design problem of uncertain nonlinear system, and then makes the engineers more easily design a
stable controller. Consequently, Equal ratio gain technique has not only the important theoretical significance
but also the broad application prospects.

Throughout this paper, we use the notation A4,(A) and A, (A) to indicate the smallest and largest eigen-

values, respectively, of a symmetric positive define bounded matrix A(x) , forany xeR". The norm of vector
x isdefined as |x|=+/x"x , and that of matrix A is defined as the corresponding induced norm

[A]= 2 (ATA).

The remainder of the paper is organized as follows: Section 2 demonstrates Equal ratio gain technique. Sec-
tion 3 addresses the control design. Example and simulation are provided in Section 4. Conclusions are given in
Section 5.

2. Equal Ratio Gain Technique

Consider the following n+1xn+1 system matrix A,

0 1 0 0
0 0 0 0
A=| O 0 1 0
&, €, -&ta, -&'a,,
R Y gih 0]

where ¢ (i=12,--n+1), B (j=12--n), ¢, and &, are all positive constants. If &,'a; and &,'p,

are viewed as the controller and integrator gains, respectively, and then the system matrix A isan n+1-order
single input single output linear system matrix with linear general integral control. In consideration of the con-
trollable canonical form of linear system, the system matrix A can be called as the controllable canonical form
with linear general integral control.

For developing Equal ration gain technique, firstly, we must ensure that the system matrix A is Hurwitz for
all 0<g, <¢, and 0< &y < g;, secondly we need to solve the Lyapunov equation PA+A'P =-Q with
any given positive define symmetric matrix Q to obtain the solution of the matrix P .

©,
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2.1. Hurwitz Stability

For 0<¢,<¢, and 0< £y < g; , Hurwitz stability of the system matrix A can be achieved by Routh’s sta-
bility criterion, as follows:
Step 1: the polynomial of the system matrix A with ¢, =¢, =1 s,
Sn+l + ansn + (an+lﬂn + Oln—l)sn_1 +eeet (an+lﬂ2 + al)s + an+1ﬂl = 0 (1)

By Routh’s stability criterion, the gains «; and p; can be chosen such that the polynomial (1) is Hurwitz.
Obviously, if «; and g, are all large to zero, and then the necessary condition, that is, the coefficients of the
polynomial (1) are all positive, is naturally satisfied.

Step 2: based on the gains «;, B; and Hurwitz stability condition to be obtained by Step 1, the maximums
of ¢, and &,, that is, ¢, and &, can be obtained, respectively. Since &, and &, interact, there exist
innumerable &, and g;,, but & is more important than g; . Thus, two kinds of typical cases are interesting,
that is, one is that ¢, is evaluated with ¢, =1; another is that let &, =¢,, and then ¢, = ¢, can be obtained
together.

Step 3: by ¢, and g; obtained by Step 2, check Hurwitz stability of the system matrix A for all
0<¢,<¢, and 0< &y < g; - If it does not hold, redesign «; and f; and repeat the previous steps until the

system matrix A is Hurwitz forall 0<¢, <¢, and O<g, <s.

The demonstration above is only a basic idea to ensure that the system matrix A is Hurwitz. For clearly il-
lustrating the method above, we consider two kinds of cases, thatis, n=2 and n=3, respectively, as follows:
Case 1: for n=2, the polynomial (1) is,

$°+a,8" +(@ By +ay)S+a B, =0 )

By Routh’s stability criterion, if «,, «,, ., f,,and g are all positive constants, and the following in-
equality,

a, (asﬁz + al) > 3)

holds, and then the polynomial (2) is Hurwitz.
Sub-class 1: «,, a, and «, are multiplied by g;l, and then substituting them into (3), obtain,

a, (asﬁz + 0‘1) > &, 5 4)
By the inequality (4), obtain,

. o (af+ay)

g, =
aSﬂl
Sub-class 2: «,, @,, a,, B, and B, are multiplied by &', and then substituting them into (3), obtain,
a0 p, > &, (asﬁl - 0‘20‘1) (%)

For this sub-class, there are two kinds of cases:

1) if a,f, —a,a, >0, and then by the inequality (5), obtain,
*_ 4,035

T afi-ae

2) if a,f, —a,a, <0, and then by the inequality (5), obtain,

&

g =0
Case 2: for n=3, the polynomial (1) is,
sttt +(a Byt ay ) St +H(au By +ay)s+a, B =0 (6)

By Routh’s stability criterion, if «,, o,, @,, &, f;, B, and g, areall positive constants, and the fol-

®
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lowing inequality,
Q, (0‘4133 ta, )(a4ﬂ2 + al) > (064ﬁ2 + al)z + a0, B (7)
holds, and then the polynomial (6) is Hurwitz.
Sub-class 1: a,, a@,, @, and o, are multiplied by &', and then substituting them into (7), obtain,

Qa3 (0‘4133 ta, )(a4ﬁ2 +a, ) -, P > ¢, (0‘4132 +a )2 (8)

By the inequality (8), obtain,

oo (afstay)(anfy+on) - s
ba = 2
(a8, + )

Sub-class 2. «,, a;, @,, a, B, B, and g, are multiplied by &', and then substituting them into
(7), obtain,

a

as(a,fy+e,0, ) (B +e,00)> €, (@, + 5110‘1)2 +6,03050, )
For this sub-class, although the situation is complex, a moderate solution can still be obtained, that is,
x _ 030,045, 5
(afy + al)z + a0,

From the demonstration above, it is obvious that for n=2, n=3 and ¢,=1 or ¢, =¢, of the system

matrix A, there all exist &, such that the system matrix A is Hurwitz for all 0<¢, <&, . Moreover, Hur-

witz stability condition is more and more complex as the order of the system matrix A increases. Therefore,
for the high order system matrix A, the same result can be still obtained with the help of computer. Thus, we
can conclude that the n+1-order system matrix A can be designed to be Hurwitz for all 0<¢, <&, and
O<eg,< g; . As a result, the following theorem can be established.

Theorem 1: There exist ¢, ,,,,,--,a,,, >0 and g,5 .,---,5,, 4 >0 such that the system matrix A

n+1r~n
for ¢,=5,=1 isHurwitz, and then it is still Hurwitz forall 0<¢, <&, and O0<s, <¢).

Discussion 1: From the system matrix A, the polynomial (2) and Hurwitz stability condition (3), it is not
hard to see that: 1) when g, =0, the control law is reduced to PID control; 2) for g, >0, if ¢, is less than
zero, and then Hurwitz stability condition can still be satisfied. However, for PID control, ¢, >0 is the neces-
sary condition. This means that linear general integral control is more robust than PID control.

Discussion 2: From the polynomial (1), it is not hard to see that that Hurwitz stability of the system matrix
A can still be achieved for «,,,,2,,":-,2,,, >0 and B ,---,5,<0,0r ¢, ;,--,04<0 and g ,---, 5 >0.
Therefore, the stability condition of Theorem 1 can be relaxed, but this is useless for the control design.

Discussion 3: From the statements above, Hurwitz stability condition is more and more complex as the order
of the system matrix A increases. So, although Theorem 1 is demonstrated by the single variable system ma-
trix A, it is easy to extend Theorem 1 to the multiple variable case since there is not any difficulty to ensure
that as any row controller gains, or controller and its integrator gains increase with the same ratio, the system
matrix A is always Hurwitz in theory, that is, Routh’s stability criterion applies to not only the single variable
system matrix but also the multiple variable one. Thus, the following proposition can be concluded.

Proposition 1: A canonical system matrix can be designed to be always Hurwitz as any row controller gains,
or controller and its integrator gains increase with the same ratio.

2.2. Solution of Lyapunov Equation

By Hurwitz stability condition given by Subsection 2.1, the system matrix A can be ensured to be Hurwitz for
all 0<g, <¢, and 0< £y < g; . Thus, by linear system theory, if the system matrix A is Hurwitz, and then
for any given positive define symmetric matrix Q there exists a unique positive define symmetric matrix P
that satisfies Lyapunov equation PA+ ATP =-Q . Thus, the solution of Lyapunov equation can be obtained by
skew symmetric matrix approach [10], that is,

P=05(S-Q)A™
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where
S=PA-A"P, ST=-S and ATS+SA=A"Q-QA

The inversion of the system matrix A with ¢, =¢, =1 s,

a

% % * 0 * |
10 0 0 0
Al = g (1) g (.) ? 9)
00 1 0 0
* & ... % _O‘r:l *

where the elements * are omitted since it is useless to achieve our object. The interesting reader can evaluate
themby AA*=1.

It is well known that the solution P of Lyapunov equation is more and more complex as the order of the
system matrix A increases. Therefore, for clearly showing the results, we consider a simple case, that is, tak-
ing Q=1 and n=2 of the system matrix A.Thus, taking ¢, =¢, =1, obtain,

-1 Si Si3 * 0
S-Q=|-s, -1 s,|and A*=|1 0 0
=S5 —Sp 1 * —( a, )71 *

where
ot (al +af, )al +BB+a B — B b,
12 =
a, (asﬂz + 0‘1) —ap
_ 0,8, — 3, B — 0,0, B — a0 — a0 )
a, (asﬂz oy ) -

13

and
__%ta (2:f, +on)+ oo + iy
“ a, (0‘3/772 + al) —ap
and then we have,
Si3 Sp3 1
=—— =——= and =—
P2 2, P2, 2, P23 2a,

Casel: a,, a, and «, are multiplied by &', and then we have,

ca a0,y —€,05 5, B — 0L,a, B — a0 — A By
13 = )
a, (aaﬂz + al) — &,

&0 T 05y + o0 + E,055, 55 + €,

Ssa —
23 ,
a, (0‘3,32 + al) -,
ea ca
S 1
_ 3 _ Sz _

Py =— 2 Eqr Py =— &, and p,, = Eq

a, 20, 2ar,

Itis obvious that s;; and s;; all tend to the constants as ¢, — 0, and then we have,

where P =P“s, =[Py Py Pp] and Py"=-050;'[sy siz -1].

®

PY|=|P“|le, >0 as ¢, >0
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Case2: a,, a,, a,, B, and f, are multiplied by &, and then we have,
geah _ 40, ) — a5, B — 0,0, 5 — £,0,0; — a0 5
13 ’
a, (afy +e,0) =€,

cop __ €aa +o0,0, +Eon0n o BB, v E,0, 5

S - 1
23 a, (aaﬂz +té,04 ) —&,0,8
s cap
Si3 2 1
Po =— o Ear P =~ o &,, and p23=2a Eo
3 3 3
It is obvious that s;3” and s’ all tend to the constants as &, — 0, and then we have,

Pzaﬁ staﬁ

where Pzaﬂ = szﬂga :[p21 P2, p23] and szﬂ = _0_5%4 [5183“/} S;g/f _1]
From the statements above, it is easy to see that for n=2 and ¢, =1 or ¢, =¢, of the system matrix A,
[Ps
the solution of the matrix S is more and more complex as the order of the system matrix A increases. Thus,
by the inversion matrix A™ (9), [[P?|| and |P*| can all be formulated as the linear form on &, for the
n+1-order system matrix A, and with the help of computer, it can be verified that the solutions of P/ and
P> still tend to the constants as &, — 0. Therefore, for the n+1-order system matrix A, we can conclude
that ([Pl >0 as g, -0 forall 0<eg,<eg,, and Pn“ﬁ| —0 as ¢, =¢, —>0. As aresult, the following
theorem can be established.

Theorem 2: If there exist the gains «,,,,---,a4 >0 and f,,---, 4, >0 such that the n+1-order system
matrix A is Hurwitz forall 0<¢, <&, and 0<s, <e¢j, and then we have,

g, —0and g, >0

and ||P2"ﬂ|| can all be formulated as the linear form on ¢, and all tend to zero as &, — 0. Moreover,

1) |PF=|IP*|le, >0 Vsﬂe(O,g;}) as g, »0.
2) [P?|=|P*|le, >0 as g,=6, 0.
where
|:>n0! = anga =|:pnl pn,n+1]’
R =-05a,4[si, sih, - st 1],
B _ peaf, _

I:’na - Pnga &y _|:pnl pn,n+1]’
and
P =-08arl sl st e sl -1

Discussion 4: Theorem 1 and 2 are all obtained by multiplying the controller gains ¢; and the integrator

gains B; by the same ratios 3;1 and &,

» » respectively, even under the typical cases g;l can be equal to 1 or

g;l. This is the reason why our method is called as Equal ratio gain technique.

Discussion 5: From the statements above, the solution of the matrix S is more and more complex as the or-
der of the system matrix A increases. So, although Theorem 2 is demonstrated by taking Q =1 and the sin-
gle variable system matrix A, it is very easy to extend Theorem 2 to any given positive define symmetric ma-
trix Q and the multiple variable system matrix A with the help of computer since there is not any difficulty
to obtain the solution of the matrix S in theory, that is, Lyapunov equation applies to not only the single sys-
tem matrix but also the multiple system matrix. Thus, there is the following proposition.

Proposition 2: As any row controller gains, or controller and its integrator gains of a canonical system matrix
tend to infinity with the same ratio, if it is always Hurwitz, and then the same row solutions of Lyapunov equa-
tion all tend to zero.

2.3. Example

For testifying the justification of Theorems 1 and 2, and Propositions 1 and 2, we consider a 6-order two varia-
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ble system matrix A as follows,

0 0 0 0 1 0
0 0 0 0 0 1
A BB 00 B g
gop 0 0 BB
- -a, -a 0 —a -o
| -} 0 -af -a] -a]

The polynomial of the system matrix A is,
6 5 4 3 2 _
a,s° +as° +a,5* +a,s° +a,s” +a;s+a, =0.
where
_ e a = (BB — BB XY — Y — o) 4 B 4 B o 4 o
8 =1 ai—a4+a5,a6—(ﬁ1ﬁ2 _ﬂlﬁz)asas’ &, =a,05 —asoy + oy + oy +a; +ay,
— B o 4 B Y — B — By et — ¥t 2t BY 4 Bk — ¥t - o)
a = flago, + frozas - fiaza) — flasas +aya, oo oy B + o —asay +agag,
_ X y X y X y X y X y X X y X X y y y X y X y X X y
aA_(:B3ﬁ4 — BB )0‘30‘3 taa, a0 = foga, + faga, + fasa, - fya,op — ooy
XX oY Y o X Y L pY XY
thosas = flasas + oo,
and
N R AP xRy pxpy\ X oY _ X Xy o pX XY gy X Y gy XY
as—<ﬂ1ﬂ4 — B )%as _(ﬂzﬁs Y )a3a3— yaao + frasa, = Blapas + o a;.

The inversion of the system matrix A s,

* % k% 0 0
* ok k% 0 0
-1
% ok %k _(a;) 0
Al= .
* ok k% 0 —(0!3)/)
1 000 0 0
0100 0 0

By the equation ATS+SA=A"Q-QA, it is very easy to obtain the fifteen linear equations with fifteen ele-

ments of the matrix S . So, it is omitted.

Thus, taking
[0 0 0 0 1 O (3.0 1.0 -0.8 06 05 0.3]
0O 0 0 0 0 1 1.0 50 13 10 08 0.2
A 8 2 0 0 3 1 and Q= -08 13 6 08 04 1.01
2 7 0 0 1 5 06 10 08 20 13 05
-8 -2 -8 0 -3 -1 05 08 04 13 30 038
-2 8 0 -8 -1 -3] 103 02 10 05 08 6.0]
and then by Routh’s stability criterion, the array of the coefficients of polynomial is,
$ a & a &
s a a a O
s b b b O
s ¢ ¢, 00O
s d, d, 0 O
ss e O
s f,
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where
a,=1 a =6, a,=88, a, =340, a, =1764, a, =4544, a, =3328,
b3:a6, blzaiaz_aoa3, bzzalaA_aOaS, 01:b1a3_a1b2, czzblas_a1b3’
& by by
d,c, —cd
= 9% 8% and 1, =d,.

dl _ Clb2 _blcz , d2 _ Clb3 _bICB Y
Cl Cl dl
Now, with the help of computer, we have: 1) if « (i =1,2,---,5) of the system matrix A are multiplied
by &, and then it is still Hurwitz for all 0<e<e"=1.25;2)if o and B (j=12,--,4) of the system
matrix A are multiplied by &', and then it is still Hurwitz for all 0<e<g"=1.45;3)if &’ of the system
matrix A are multiplied by &7, and then it is still Hurwitz for all 0<e<g" =172 4) if &’ and ﬁj" of
the system matrix A are multiplied by &7, then it is still Hurwitz for all 0<e<¢g"=2.90; 5) if o and
o of the system matrix A are multiplied by &7, and then it is still Hurwitz forall 0<e&<¢g" =12, and the
numerical solutions of P, and P, are shown in Table 1 and Table 2, respectively; 6) if o, o/, ,Bjx and
ﬁjy of the system matrix A are multiplied by &, and then it is still Hurwitz for all 0<¢&<¢&* =1.28, and
the numerical solutions of P, and P, are shown in Table 3 and Table 4, respectively.

Table 1. Numerical Solutions of P, forall o and o' multiplied by &7.

=10 =01 =001
P 22.43 2.72e-1 2.34e-2
P —2.24 6.53e—3 3.99e—4
P -0.75 7.50e—2 7.50e-3
Ps, 0.94 7.66e—2 7.40e-3
Pss 10.86 1.34e-1 1.16e-2
Pss -3.95 —4.43e-2 —4.15e-3

Table 2. Numerical Solutionsof P, forall «‘ and o’ multiplied by &*.

=10 e=0.1 £=0.01
P, -9.42 —1.5%-1 —1.49e-2
P 5.20 2.46e-1 2.36e-2
Pss -0.84 —6.66e—2 —6.40e-3
P, 0.25 2.50e-2 2.50e-3
Pss -3.95 —4.43e-2 —4.15e-3
Pss 5.19 2.25e-1 2.15e-2

Table 3. Numerical Solutions of P, forall o, o', B and g/ multipliedby &*.

=10 e=0.1 £=0.01
P 22.43 2.74e-1 2.39e-2
P —2.24 9.96e—2 9.55e-3
P —0.75 7.50e-2 7.50e-3
Ps, 0.94 8.98e—2 8.57e-3
Pss 10.86 1.37e-1 1.20e-2
Ps -3.95 2.85e-2 3.01e-3
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Table 4. Numerical Solutions of P, forall o, o', B and B/ multipliedby &*.

=10 e=0.1 £=0.01
Pes -9.42 4.26e-3 1.33e-3
Ps 5.20 3.15e-1 3.10e-2
Pes -0.84 —7.98e-2 —7.57e-3
P, 0.25 2.50e-2 2.5e-3
Pes -3.95 2.85e-2 3.01e-3
Pes 5.19 2.40e-1 2.32e-2

From the example above, it is obvious that: 1) for all the six cases, there all exists & such that the system
matrix A is always Hurwitz for all 0<e&<¢"; 2) as shown in Tables 1-4, the absolute values of p, and
Psi (i =1 2,---,6) are all decrease as & reduces. This not only verifies the results proposed by Subsection 2.1
and 2.2 but also shows that for the high order and multiple variable system matrix A, it is convenient and prac-
tical with the help of computer.

3. Control Design

Consider the following controllable nonlinear system,

X =X,

Xy = X5

%, = £ (% y,w)+a, (X, y,w)u,
Y=Y,

Y, =Y;

(10)

I = T, (% y, W) +g, (v, w)uy

where xeR" and yeR™ are the states; u,,u, € R are the control inputs; we R' is a vector of unknown

constant parameters and disturbances. The functions f,(x,y,w) and f (x,y,w) are uncertain nonlinear ac-

tions, and the functions g, (x,y,w) and g,(x,y,w) are continuous in (X,y,w) on the control domain
D, xD, xD, = R"xR™xR'. We want to design the control laws u, and u, such that x(t), y(t)—>0 as
t>o.

Assumption 1: There are two unique control inputs u,, and u,, that satisfy the equations,

0= f,(0,0,w)+g,(0,0,w)u,, (11)
0=f,(0,0,w)+g,(0,0,w)u, (12)

so that x=y=0 is the desired equilibrium point, and u,, and u, are the steady-state controls that are
needed to maintain equilibriumat x=y=0.

Assumption 2: No loss of generality, suppose that the functions f,(x,y,w), f, (x,y,w), g,(x,y,w)and
g, (x, y,W) satisfy the following inequalities,

g, (% y,w)>gy >0 (13)
gy(x, y,w)>g2 >0 (14)

I, (6 yow)~ £, @O <1 [ 417 Iy )
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[, (xy.w) = £, (0.0.w)] <1 x| +17 [y (16)
o (x.y.w) =g, (0.0w) <15, [x+1;, (a7
o, (x.y.w)=g, (@.0.wf <15 x| +15, ] (18)
£,(0.0,w)g,* (0.0,w)| <7, (19)

|| f, (o,o,w)g;l(o,o,w)" <7, (20)

X y X y X y X y X y
for all xeD,, yeD, and weD,. where I; , I{, B e g dg g0 g 7 7y On and g

are all positive constants.
For the system (10), we develop two kinds of methods to design linear general integral controllers, respec-
tively, that is, Decomposition method and Synthetic method.

3.1. Decomposition Method
The control laws u, and u, are taken as,
u, =—¢,. (al X + 0y Xy + 0+ O X, +a:+1ax)
(21)
®=%Nﬁ&+@&+m+ﬁm)

Uy —&, (0:1 y1+a2y2+ + ym+am+1oy)

(22)
Ci_y :‘c";y(ﬂl y1+ﬁ2 y2+"'+ﬁmym)

where o, B, &/, B’ &, €, €, and ¢, areall positive constants (i=1,2,---n+1, j=12,---n

k=12,---m+1 and 1=12,---m).
Thus, substituting (21) and (22) into (10), obtain two augmented systems,

X =X,
X, = X5
: (23)
%, = f (% y,w)—g,(x y,w)g;i(azlxx1 T Xy +o AKX A0 )
Gy = e (B Bi% 44 X, )
Vi=Y,
V2= Ys
: (24)

Vi = fy(x'va) g, (X yW) (061 Vi +a)Y, +ota ym+a%+lo-y)

d-y =g;/(ﬂlyy1+ﬂz y2+'”+ﬂn)1/ym)

By Assumption 1 and choosing ¢, e,

system (23), we obtain,

to be large enough, and then setting Xx=0 and x=y=0 of the

9,(0,0, w)g 10,0 = £,(0,0,w) (25)
In the same way, we have,
g, (0,0,W)g;ianfﬂayo =£,(0,0,w) (26)
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Thus, we ensure that there are two unique solutions o, and o,,, and then (0,0,0,,) and (0,0,ay0) are

the unique equilibrium points of the systems (23) and (24), respectively.
Substituting (25) into (23) and (26) into (24), and then the whole closed-loop system can be rewritten as,

{ﬁx = A(nx + Fx (X' y’W)
ny = Ay + Fy(x’ y, W)

yo:

(27)

T

where 7, =[x ax—aXOJT, n, =y ay—ayo]T,

0 1 0 0

0 0 0 0
A=l 0 o - 1 o |,
e O —EL0, el —En0n,
L ep B epBs o Enb 0 |
) 1 0 0 1

0 0 0 0

A=l 0 0o - 1 0
—e 0 —ena) e —ega) —ean
LB B e 0

Fx(x,y,w) and Fy(x,y,w) are n+1x1 and m+1x1 matrices, respectively, all their elements are equal to
zero except for

fr =1, (xy.w)-f,(0,0w)-[g,(xy,w)-g,(0,0,w)]f,(0,0,w)g;*(0,0,w)
and
fy =1 (xy,w)-f (0,0, w)—[gy (x,y,w)—-g, (0,0,W)] f,(0,0,w)g,"(0,0,w).

Moreover, it is worthy to note that the functions g, (x,y,w) and g, (x,y,w) are integrated into &,, and
&,y respectively, via a change of variable. This has not influence on the results if the inequalities (13) and (14)
hold and they can be taken as g, and g, respectively, in the design. Therefore, they are omitted in all the
following demonstrations.

The matrices A for all 0<¢, <&, and 0<g, <¢,,, and the matrix A for all O<g, <e&) and

0<eg,y < g;y can be designed to be Hurwitz, respectively. Thus, two quadratic Lyapunov functions,
V. (17,) = 15 B, (28)
v, (n,)=n,Pn, (29)
can be obtained. Where P, and P, are the solutions of Lyapunov equations
PA+AP =-Q and PA +AP, =-Q,

with any given positive define symmetric matrices Q, and Q,, respectively.
Thus, using V (7,.7,) =V, (n,)+V, (n,) as Lyapunov function candidate, and then its time derivative along

the trajectories of the closed-loop system (27) is,

. v, (n,) v, (n,)
Vin,, =7, (P TP LR (XY, P P F, (XY,
(nx ny) nx( XA<+A< x)nx+ 677X X(X yW)+77V( YAY+AY Y)’]y+ any y(x yW) (30)
= _TI;I—QXUX + 2an77x fn)i _UJQyny + 2Prr‘{77y fn‘?l
where an = |: p:l p:,n+l:| and F)my = [ pr¥11 pr)rl1,m+1:| .

O,
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Now, using the inequalities (15)-(20), obtain,

X
fnl

< ey X[+ |yl 31)
| fou] =t I+ 3 Iy (32)

X y X y s
where «y,, &y, Ky and xp are all positive constants.

Substituting (31) and (32) into (30), and using || <[] and ||y||s||77y||,obtain,

V (m0m,) <=2 (Q)- 2«4 [P py )||77y||2+2(;cfyx P

=—{"AL.

Jlnf (4 (Q,)-2¢ Rl

+ K7
y

Iy " (33)

where ¢ =[||77X|| ||77y||T, P =P €ax- [PY]=[PS* |,y and
(ﬂ’m (Qx)_zgax’(:x anm ) _(gaxkzx anm +gayK:y Pnzlm )
—(saxkfyx P Jré:ay/cfxy Pmy‘“’) (ﬂm (Qy)—Zsanyyy Pmym) '

By Theorems 1 and 2, and Propositions 1 and 2, obtain,

X Xea * vyl yea
P, P“|le.x =0 Vgﬂxe(o,gﬂx) as ¢, =0, "Pm”—”Pm

£,y >0 Ve, e(O,gﬁy) as ¢,, —0.

Therefore, there exist ¢,, and &, such that A >0 holds forall 0<¢,, <¢,, and O<¢,, <e,, . Con-
sequently, we have V (7,.7,)<0.

Using the fact that Lyapunov function V (nx,ny) is a positive define function and its time derivative is a

negative define function if A >0 holds, we conclude that the closed-loop system (27) is stable. In fact,
v'(nx,ny):o means x=y=0, o, =0, and o, =0, . By invoking LaSalle’s invariance principle, it is
obvious that the closed-loop system (27) is exponentially stable. As a result, we have the following theorem.

Theorem 3: Under Assumptions 1 and 2, if there exist the gains o, B/, ) and 4’ such that the ma-
trix A forall O<egy <g, and O<g,, <&, and the matrix A forall 0<s, <¢, and 0<s, <e,,
are all Hurwitz, and then x=y=0, o,=0, and o, =0, isan exponentially stable equilibrium point of
the closed-loop system (27) for all O<s, <s&; , O<g, <&, 0<¢, <g, and 0<sg, <&, . Moreover,
if all assumptions hold globally, and then it is globally exponentially stable.

In the same way, for the case of ¢,, =&, and ¢,, =¢,,, we have the following theorem.

Theorem 4: Under Assumptions 1 and 2, if there exist the gains o, B/, ) and £’ such that the ma-
trix A forall 0<e¢, =¢, <¢, and the matrix A for all 0<¢, =&, <&, are all Hurwitz, and then
x=y=0, o,=0, and o, =0, Isanexponentially stable equilibrium point of the closed-loop system (27)
forall 0<e¢, =¢, <¢  and 0<eg, =&, <& . Moreover, if all assumptions hold globally, and then it is
globally exponentially stable.

3.2. Synthetic Method

The control laws u, and u, are taken as,

-1 X X X X X X X
Uy ==&, (0!1 XKt aX + T X+ 0y 1Oy T X V1 T QoY o+ 0y ym)

. -1 X X X X X X
Oy :8/3x(ﬂlx1+ﬂzxz+“'+ﬂnxn +ﬁn+ly1+ a2 Yo Tooot n+mym)

) (34)
— - y y y y y y y
Uy ==&y (X +adX + @)X, + @) a0, F @+ AL Yo+ Y

y n+m+1

L _ o1 y y y y y y
O-y_gﬂy(ﬂlxl+ﬁzxz+"'+ﬂnxn+ Y1t Ppia Yo too0 n+mym)

where o, o, Bf. B!, €. €4y €5 and g, (i=12,-n+m+1j=12--n+m) are all positive

constants.
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In the same way as Subsection 3.1, the closed-loop system can be rewritten as,

= A7+F(Xy,w) (35)
where nz[xT y' o,—0y oy—ayo]T,
0 1 0 0 0 0 0 0
0 0o . 0 0 0 0 0 0
0 0o - 1 0 0 0 0 0
—ENOL TENQy t Euly —Eulha ~Enlng Tt €l ~Ea@nima 0
0 0 - 0 0 1 0 0 0
A=l o 0 - 0 0 0 .0 0 0
0 0 - 0 0 0o - 1 0 0
—e 0] —en0) e —ena —ena)y —enal, v —e,a)a 0 &yt
epB e B epBia Enbre v Epban 0 0
L ‘%;ﬂly é‘;;ﬂzy Eﬁﬁny Sﬁﬁnyﬂ Eﬁﬁnﬁz €l}§ﬂny+m 0 0 |

and F (X, y,W) isan n+m+2x1 matrix, all its elements are equal to zero except for
f=f, (% y,w)—f,(0,0,w)-[g,(x,y.w)-g,(0,0,w)]f,(0,0,w)g,*(0,0,w) and

fooms =, (X, y, W)= f,(0,0,w)~[ g, (x,y,w)-g, (0,0,w) | f,(0,0,w)g,"(0,0,w).

Moreover, by the same way as Subsection 3.1, the functions g, (x,y,w) and g, (x,y,w) are integrated
into ¢,, and ¢, , respectively.

The matrix A can be designed to be Hurwitz for all 0<¢, <¢,,, 0<g,, <&,
0<eg,y < g;y . Thus, a quadratic Lyapunov function,

V(n)=n"Pn (36)

can be obtained. Where P is the solution of Lyapunov equation PA+ ATP =-Q with any given positive de-
fine symmetric matrix Q.

Thus, using V (77) as Lyapunov function candidate, and then its time derivative along the trajectories of the
closed-loop systems (35) is,

0< Egy < Epy and

V(n)=n"(PA+ATP)7+ a\gf;y) F (% y,W)=—7"Qq+2P 7t + 2P, (37)
where
Po=[Pu = Pum Pons = Ponemez]
and
Prun=[Prums =" Prmn Prmna " Premoemez |-
Now, using the inequalities (15)-(20), obtain,
[ Fosll < il 5] (38)
foomall < 5 X1+ 5% Y] (39)

X y X y e
where «y,, &y, Ky and xp are all positive constants.

Substituting (38) and (39) into (37), and using || <[ and |y| <], obtain,
V (7)<~ Q)1 +2(x5 VIR + 2, ]+ 2 1) Pl

<—(4n(@)-2(x} +x7) ey -

O,

x|| +x],

(40)
P ea

n+m

ea
Pn

X y
Egx — Z(Kfy Ky )
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where ||P,|=|P“|l€.c and [Pl =[Pl €.y -
By Theorems 1 and 2, and Propositions 1 and 2, obtain,
||Pn||= B €ax =0 Vey, e(O,g;x) as ¢, —0,
IPnll= [Pl €ay = 0 Veg, e(O,e;y) as ¢, —0

Thus, there exist &, and &, such that

J (Q) > 2(;«:x +Kfyx) pe

n+m

ea
Pn

X y
Euy + Z(Kfy K )

&,y (41)

holds forall 0<e,, <&, and 0<g,, <&, . Consequently, we have V (77)<0.

Using the fact that Lyapunov function V (77) is a positive define function and its time derivative is a nega-
tive define function if the inequality (41) holds, we conclude that the closed-loop system (35) is stable. In fact,
\Y (77) =0 means x=y=0, o, =0, and o, =0, By invoking LaSalle’s invariance principle, it is easy to
know that the closed-loop system (35) is exponentially stable. As a result, the following theorem can be estab-
lished.

Theorem 5: Under Assumptions 1 and 2, if there exist the gains o', o, g and ) such that the ma-
trix A isHurwitz forall O<e¢, <¢, 0<g, <é&,, 0<g, <g, and 0<g, <g, ,andthen x=y=0,

X ! ax !
o,=0, and o,=o0, is an exponentially stable equilibrium point of the closed-loop system (35)

for all for all O<e¢, <&y, 0<ey <égp, O0<é, <g, and O<eg, <eg, . Moreover, if all assumptions

hold globally, then it is globally exponentially stable.

In the same way, for the case of ¢, =¢, and ¢, =¢,, , we have the following theorem.

Theorem 6: Under Assumptions 1 and 2, if there exist the gains o', o, g and B’ such that the ma-
trix A is Hurwitz for all 0<¢, =¢, <& and O<g, =¢, <¢,, and then x=y=0, o, =0, and

o, =0,, Isanexponentially stable equilibrium point of the closed-loop system (35) forall 0<¢,, = ¢, < &,

y yo0
and O<e,, =& < g;* . Moreover, if all assumptions hold globally, then it is globally exponentially stable.

Discussion 6: From Decomposition and Synthetic methods above, it is obvious that: 1) although they are de-
veloped with two variable systems, it is not hard to extend them to the multiple variable systems; 2) as the sub-
systems increase, Decomposition method is simpler and more practical than Synthetic method since we can de-
sign the controllers for every subsystems, respectively, and then combine them such that the whole closed-loop
system is asymptotically stable; 3) for designing a high performance controller, Synthetic method is more excel-
lent than Decomposition method since we can use all the state variables to design the controller and integrator.

Discussion 7: From the procedure of stability analysis above, it is obvious that so long as the bounded condi-
tions (13)-(20) are satisfied, the asymptotically stable control can be achieved. This shows that the striking fea-
ture of linear general integral control, that is, its robustness with respect to f, ( X, y,W), g, (x, y,w) , fy (x, y,W)
and g, (x, y,w), is clearly demonstrated by Equal ratio gain technique. Therefore, Equal ratio gain technique is
a powerful tool to solve the control design problem of uncertain nonlinear system, and then makes the engineers
more easily design a stable controller. Moreover, for the 2-order system, linear general integral control can be
reduced to PID control. Thus, Equal ratio gain technique can clearly explain the reason why PID control has
good robustness, too.

Discussion 8: Form all the statements of Sections 3 and 4, it is not hard to see that although Equal ratio gain
technique is demonstrated by a class of special system and linear general integral control, its application is not
limited in them and can be extend to solve the other relevant problem since Routh’s stability criterion, Lyapunov
equation and Lyapunov method are all universal. For examples: 1) if the system is not given in the form (10),
one can find a transformation matrix that takes the given system to this form if the system is controllable; 2) by
combining Equal ratio gain technique with Feedback linearization technique, we can achieve the design of non-
linear integral controller; 3) as the integrator gains are equal to zero, the control is reduced to proportional con-
trol, and the similar conclusions can still be obtained.

Discussion 9: Although the design procedure above looks quite complicated, there need not abstruse theory
since Routh’s stability criterion, Lyapunov equation and Lyapunov method are all simple enough to be pre-
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sented in the text book and practical enough to have been used in the real-word problem. Therefore, Equal ratio
gain technique has not only the important theoretical significance but also the broad application prospects.
4. Example and Simulation
Consider the pendulum system [1] described by,
6 =-asin(0)-bd+cT

where a, b, c>0, @ isthe angle subtended by the rod and the vertical axis, and T is the torque applied to
the pendulum. View T as the control input and suppose we want to regulate & to & . Now, taking
X, =0-5, %, =0,the pendulum system can be written as,

X =X
X, = —asin(x, +&)—hx, +cu

and then it can be verified that u, = asin(ﬁ)/c is the steady-state control that is needed to maintain equili-
brium at the origin and the control law is,

U=—¢," (% +a,% +;0)
6= 5/;1 (ﬁlxi +ﬁzxz)
Thus, the closed-loop system can be written as,
1= Ag+F(x,w)
where

n=[x % o-0,]', F(xw)=[0 asin(s)-asin(x +J) O]T and

0 1 0
A=|-gl'ca, -&)'c (az +é&, C’lb) —&.cay | .
-1 -1
&g B &g By 0

The normal parameters are a=c=10 and b=2, and in the perturbed case, b and c are reduced to 1
and 5, respectively, corresponding to double the mass. Thus, we have, [asin(&)-asin(x, + )| <10[| .

Now, if the gains are takenas o, =8, @, =5, @, =9, £, =5 and g, =3, and then with a=10, ¢=5
and b =1, the following inequality,

Ca,a, B, + ¢, (Coa, +bay B, —a, ) + €,6,ba, >0
holds for all 0<e¢, =¢, <oo, and then the matrix A is Hurwitz for all 0<e&, =¢, <. Therefore, we have,
Ep=&,=0.
By solving the Lyapunov equation PA+ AP =—1 with ¢=5, b=1 and £y =&, obtain,
20[R,[<1 VO<e&,=¢,<e, =6, =128

Thus, the asymptotical stability of the closed-loop system can be ensured for all 0<e¢, =¢, <1.28. Conse-
quently, taking ¢, =¢, =1.28, the simulation is implemented under the normal and perturbed cases, respec-
tively. Moreover, in the perturbed case, we consider an additive impulse-like disturbance d(t) of magnitude
80 acting on the system input between 15 s and 16 s.

Figure 1 showed the simulation results under normal (solid line) and perturbed (dashed line) cases. The fol-
lowing observations can be made: the system responses under the normal and perturbed cases are almost iden-
tical before the additive impulse-like disturbance appears. From the simulation results and design procedure, it is
obvious that by Equal ratio gain technique, we can tune a linear general integral controller with good robustness.
This demonstrates that not only linear general integral control can effectively deal with the uncertain nonlinear-
ity but also Equal ratio gain technique is a powerful tool to solve the control design problem of uncertain nonli-

©,
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Figure 1. System output under normal (solid line) and
perturbed (dashed line) cases.

near system, and then makes the engineers more easily design a stable controller. Consequently, Equal ratio gain
technique has not only the important theoretical significance but also the broad application prospects.

5. Conclusions

In conjunction with linear general integral control, this paper proposes a fire-new control design technique,
named Equal ratio gain technique, and then develops two kinds of control design methods, that is, Decomposi-
tion and Synthetic methods, for a class of uncertain nonlinear system. The main conclusions are as follows: 1) a
canonical system matrix can be designed to be always Hurwitz as any row controller gains, or controller and its
integrator gains increase with the same ratio; 2) as any row controller gains, or controller and its integrator gains
of a canonical system matrix tend to infinity with the same ratio, if it is always Hurwitz, and then the same row
solutions of Lyapunov equation all tend to zero; 3) theorems to ensure semi-globally asymptotic stability are es-
tablished in terms of some bounded information. Moreover, the striking robustness of linear general integral
control and PID control is clearly illustrated by Equal ratio gain technique. All these mean that Equal ratio gain
technique is a powerful tool to solve the control design problem of uncertain nonlinear system, and then makes
the engineers more easily design a stable controller. Consequently, Equal ratio gain technique has not only the
important theoretical significance but also the broad application prospects.
These conclusions above are further confirmed by the design example and simulation results.
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