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Abstract 
In this article, we consider a new life test scheme called a progressively first-failure censoring 
scheme introduced by Wu and Kus [1]. Based on this type of censoring, the maximum likelihood, 
approximate maximum likelihood and the least squares method estimators for the unknown pa-
rameters of the inverse Weibull distribution are derived. A comparison between these estimators 
is provided by using extensive simulation and two criteria, namely, absolute bias and mean 
squared error. It is concluded that the estimators based on the least squares method are superior 
compared to the maximum likelihood and the approximate maximum likelihood estimators. Real 
life data example is provided to illustrate our proposed estimators. 
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1. Introduction 
Let T  follow ( )  a two-parameter Weibull distribution ( ),α β  with the probability density function (pdf)  
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then 1X
T

=  has an ( )IW  distribution with pdf 

( ) ( ) ( )1; , e ,    0xf x x x
ββ αα β αβ α

−− − −= >                          (1) 

where 0α > and 0β > , are the scale and shape parameters, respectively. 
If ( )IW ,X α β , then the cumulative distribution function (cdf) of X  is given by: 

( ) ( ); , e ,    0.xF x x
βαα β

−−= >                                (2) 

The IW distribution, also known as type 2 extreme value or the Frechet distribution (Johnson et al. [2]), has a 
long right tail compared to other known distributions. The hazard function of the IW distribution is similar to 
that of the log-normal and inverse gaussian distributions (Murthy et al. [3]). Carriere [4] used the IW dis- 
tribution to model the mortality curve of a population. Keller and Kamath [5] suggested that this distribution 
was suitable to model the failure of the degradation phenomena of mechanical components of diesel engines 
such as pistons, crankshafts, and main bearings. Furthermore, Erto [6] showed that the IW distribution provided 
a good fit to several data such as the time to breakdown of an insulating fluid subjected to the action of a 
constant tension (Nelson [7]). 

Several researches have been carried out on the IW distribution using classical and Bayesian approaches. For 
example, Calabria and Pulcini [8] obtained the maximum likelihood estimates (MLE) and least squares esti- 
mates of the parameters of the IW distribution. Calabria and Pulcini [9] considered the Bayesian approach to 
predict the ordered lifetimes in a future sample when those lifetimes are assumed to follow the IW distribution. 
Panaitescu et al. [10] developed the Bayesian and non-Bayesian analysis in the context of recording statistic 
values from a modified IW distribution. All these studies have been done based on a complete sample. However, 
there are many scenarios in life testing and reliability experiment when researchers can not obtain complete 
information on failure times for all the units in the experiment as in the case of accidental breakage of an 
experimental unit or if an individual under study drops out. Moreover, there are many situations in which the 
researcher intentionally removes units prior to their failure and this is due to the lack of funds and/or time 
constrains. Data obtained from such experiments are called censored data. Therefore, we consider estimation 
procedures based on censored samples. 

The most common censoring schemes are type-I censoring in which the test ceases at a pre-fixed time, and 
type-II censoring that allows the experiment to be terminated at a predetermined number of failures. These 
methods do not allow the removal of active units during the experiment; therefore, the focus in the last few years 
has been on progressive censoring due to its flexibility that allows the experimenter to remove active units 
during the experiment. A progressively type-II censoring is a generalization of type-II censoring. Many authors 
have discussed inference under progressive censoring using various lifetime distributions, among others, Cohen 
[11], Mann [12], Wingo [13], Balakrishnan and Sandhu [14], Aggarwala and Balakrishnan [15], Balakrishnan 
and Asgharzadeh [16]. For a comprehensive recent review of progressive censoring, readers are referred to 
Balakrishnan [17]. 

Johnson [18] introduced the first-failure censoring plan where the experimenter could arrange k  items into 
n  sets, then all the k n×  items were tested simultaneously until the first failure in each n  set occurred. 
However, in situations where the lifetime of a product is high and test facilities are limited but test material is 
cheap. Balasooriya [19] modified Johnson [18] approach by testing each set one after the other until the first 
failure in each set occurred. This modified approach can save time and money. 

However, due to certain situations such as loss of contact with the individuals under study or loss of experi- 
ment units as mentioned above, it is desirable for researchers to be able to remove sets before the final termina- 
tion point. This situation leads to the area of progressive censoring. 

Wu and Kus [1] wanted to improve the efficiency of the test by developing a new life test scheme, pro- 
gressively first-failure censoring scheme, by combining the concept of first failure censoring with the pro- 
gressive censoring. In this scheme sets with no failures can be removed from the test before the end of the 
experiment. Based on this scheme, Wu and Kus [1] derived the MLEs and constructed exact and approximate 
confidence intervals for the parameters of the Weibull distribution. Wu and Huang [20] developed the reliability 
sampling plans for the Weibull distribution. Soliman et al. ([21] [22]) derived Bayes and frequentist estimators 
for the parameters of Gompertz and Burr type XII distributions respectively. Hong et al. [23] used the same  
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scheme to construct MLE for the lifetime performance index CL based on progressively first-failure censoring 
from Weibull distribution. Ahmadi et al. [24] developed a confidence interval and ML estimator for CL based on 
the progressive first-failure censored sample under the Weibull distribution when the shape parameter was 
known. 

In this study and based on m progressively first-failure censored sample from IW model, we consider the 
problem of estimating the parameters of the model using the maximum likelihood, the approximate maximum 
likelihood and the least square estimators (LSE). Balakrishnan et al. [25] conducted inference on progressive 
type-II censored data for extreme value distribution. They derived the MLE and approximate values for the 
maximum likelihood estimators (AMLE) using the Taylor expansion. They also concluded that the MLEs and 
AMLEs were almost identical in terms of bias and variance. Kim et al. [26] derived the maximum likelihood 
and the Bayes estimates for the three-parameter exponentiated Weibull distribution for type-II progressively 
censored sample. Gusmao et al. [27] studied the properties of a mixture of two generalized IW distribution and 
derived the maximum likelihood estimator of the parameters of this mixture based on censored data. 

This article unfolds as follows: In Section 2 we describe the formulation of a progressive first-failure cen- 
soring scheme as described by Wu and Kus [1]. The MLEs, approximate MLEs, and LSE methods for estimat- 
ing the unknown parameters based on the progressive first-failure censoring scheme are derived in Section 3, 4 
and 5 respectively. Simulation studies, results and conclusion are presented in Section 6. All methods that are 
discussed in this article are illustrated in Section 7 through a real life data set coming from highways pavement 
projects in Amman-Jordan during 2012. 

2. A Progressive First-Failure Censoring Scheme 
The progressive first-failure censoring can be described as follows: Given m n≤  and 1 2, , , mR R R=R   non-  

negative integers such that 
1

m

i
i

n m R
=

= +∑ . Let n independent groups with k  items within each group be placed  

on a life testing experiment and only m  failures are completely observed. The censoring occurs progressively 
in m  stages. At the time of the first failure 1: : :m n kX , 1R  random groups and the group with the observed 
failure are randomly removed. Similarly, at the time of the second failure 2: : :m n kX , 2R  random groups and the 
group with the observed failure are randomly removed and so on. Finally, at the time of the m -th failure all the 
remaining active groups ( )mR  and the group with the observed failure are removed. Then  

1: : : 2: : : : : :m n k m n k m m n kX X X< < <  is the progressive first-failure censored order statistics. 
The main advantage of this scheme is that it reduces the time in which more items are used but only m out of 

k n×  items are observed. Moreover, it includes as special cases, the progressively type-II scheme (when k = 1), 
first-failure scheme (when ( )0,0, ,0=R  ), conventional type II scheme (when k = 1 and ( )0,0, ,n m= −R    
and the complete sample (when 1,  k n m= =  and ( )0,0, ,0=R  ). Furthermore, the progressively first- 
failure censored sample 1: : : 2: : : : : :m n k m n k m m n kX X X< < <  can be considered as a progressively type-II censored  
sample from a population with distribution function ( )( )1 1

k
F x− −  (Wu and Kus [1]) which enables us to  

extend all the results on progressively type-II censored order statistics to progressively first-failure censored 
order statistics. 

3. Maximum Likelihood Estimation 
Suppose that n  independent units are placed on a test. The ordered m  failures are observed under the 
progressively first-failure. 

Let ( )1: : : 2: : : : : :, , ,m n k m n k m m n kX X X=X   with 1: : : : : :m n k m m n kX X< <  denote the progressively first-failure cen- 
sored ordered statistics with the progressive censoring scheme R  from a population with pdf and cdf given in 
Equations (1) and (2), respectively. For notation simplicity, we will write iX  for : : :i m n kX . The likelihood func- 
tion based on progressively first-failure censored sample (see Wu and Kus [1]) is given by: 

( ) ( ) ( ) ( )1 1

1
, ; ; , 1 ; , i

m k Rm
i i

i
L Ak f x F xα β α β α β

+ −

=

 = − ∏X                      (3) 

where, 
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( )( ) ( )1 1 2
1

1 2 1 .
m

i
i

A n n R n R R n R
=

 = − − − − − − + 
 

∑  

In accordance with (1), (2) and (3), the log-likelihood function of α  and β  based on progressively first- 
failure censored sample X  becomes 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
1

1 1

ln , ; constant ln 1 ln

1 1 ln 1 e .i

m

i
i

m m
x

i i
i i

L m x

x k R
ββ α

α β αβ β α

α
−

=

− −

= =

= + − +

− + + − −

∑

∑ ∑

X
               (4) 

The MLEs of the parameters α  and β  can be obtained by deriving (4) with respect to α  and β  and 
equating the normal equations to 0 as follows: 

( ) ( )
( )( )( ) ( )

( )1 1

1 1 e
ln , ; 1 e 0

i

i

xm m
i i

i xi i

k R x
m x

L

β

β

β α
β

α

α
α

α β
α α

−

−

− −
−

−= =

+ −
− + −

∂ −= =
∂

∑ ∑X
          (5) 

( ) ( ) ( )( )
( )( )( ) ( ) ( )

( )

1

1

ln , ;
ln 1

1 1 e ln
0.

1 e

i

i

m

i i
i

xm
i i i

xi

L m x x

k R x x
β

β

β

β α

α

α β
α α

β β

α α
−

−

−

=

− −

−=

∂
= − −

∂

+ −
− =

−

∑

∑

X

                  (6) 

The MLEs are exist and unique (see Calabria and Pulcini [8] and Marusic et al. [28]). Notice that there are no 
explicit solutions to (5) and (6). Hence, numerical methods are applied to solve the required equations. The 
maximum likelihood estimation method based on progressively censored data has been studied extensively, but 
traditionally, the Newton Raphson (NR) method was utilized to obtain the MLEs (Ng et al. [29]). However, the 
MLEs via the NR method are very sensitive to their initial parameters estimation value. In this article we 
propose using the Expectation-Maximization (EM) algorithm for computing the MLEs. 

4. Approximate Maximum Likelihood Estimation 
Since the MLE does not provide explicit estimators for the shape and scale parameters of the IW distribution as 
mentioned before, we derive approximate MLE (AMLE) for the parameters α  and β . 

Balakrishnan ([30]-[34]) and Balakrishnan and Vardan [35] developed the AMLE procedure. This procedure 
depends on the Taylor expansion of the likelihood function when the pdf under consideration belongs to the 
location-scale families. However, the IW distribution does not have the location-scale structure required for the 
AMLE procedure, but if we consider the transformation lnY X= − , then Y   extreme value distribution and 
this distribution has this feature. 

The pdf  and cdf  of Y  are given respectively by 

( )
e1; , e ,    

y
y

h y y
µ

σµ
σµ σ

σ

−
−

−
= −∞ < < ∞                           (7) 

and, 

( ) e; , 1 e
y

H y
µ

σµ σ
−

−= −                                         (8) 

where, lnµ α=  and 1σ
β

=  are the location and scale parameters respectively. 

Hence, the AMLE procedure can be used to estimate the parameters α  and β  of the IW distribution. 
Let ( )1 2, , , mY Y Y Y=   with 1 2 mY Y Y< < <  denotes a progressively first-failure censored sample from (7) 

and (8). Then the joint pdf based on the censored sample is given by: 
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( )
( )( )1 1

1 2
1

, , , ; , 1
ik Rm

i i
m m

i

y ycL y y y g G
µ µ

µ σ
σ σσ

+ −

=

−  −    = −    
    

∏              (9) 

where, 

( ) ( )1 1 2 1= 1 1 .mc n n R n R R R m−− − − − − − − +   

If i
i

y
z

µ
σ
−

= , then (9) can be written as  

( ) ( ) ( )( ) ( )( )1 1
1 2

1
, , , ; , 1 i

m k R
m i im

i

cL z z z g z G zµ σ
σ

+ −

=

= −∏                  (10) 

with log-likelihood equation 

( ) ( ) ( )( ) ( )( )1
1 1

ln , , ; , ln ln 1 1 ln 1 .
m m

m i i i
i i

L z z c m g z k R G zµ σ σ
= =

= − + + + − −∑ ∑           (11) 

Taking derivatives with respect to µ  and σ  and equating them to zero, gives 

( ) ( )
( ) ( )( ) ( )

( )1 1

ln ; ,
1 1 0

1

m m
i i i

i i i
i ii i

L z g z g zm z k R z
g z G z

µ σ
σ σ = =

′∂
= − − + + − =

∂ −∑ ∑             (12) 

( ) ( )
( ) ( )( ) ( )

( )1 1

ln ; ,
1 1 0.

1

m m
i i i

i
i ii i

L z g z g z
k R

g z G z
µ σ

µ = =

′∂
= − + + − =

∂ −∑ ∑                  (13) 

Because of the presence of the terms ( )
( )1
i

i

g z
G z−

 and ( )
( )

i

i

g z
g z
′

, Equations (12) and (13) do not have explicit 

solution. Hence, we consider a first-order Taylor approximation to ( )
( )1

i

i

g z
g z
′

∆ =  and ( )
( )2 1
i

i

g z
G z

∆ =
−

 around  

[ ]: : : :i m n i m nE Zν =  (see Balakrishnan and Aggarwala [36]; for reasoning). 
From Balakrishnan and Aggarwala [36], if : :i m nu  1, 2, ,i m=   denote a progressively first-failure censored  

sample from Uniform ( )0,1  with censoring scheme ( )1, , mR R , then 1: :

: :

1
1

m i m n
i

m i m n

U
V

U
− +

−

−
=

−
, 1, 2, ,i m=   are 

statistically independent random variables from Beta ( )( )
1

1 1 ,1
m

l
l m j

i k R
= − +

 
+ + − 

 
∑  with 

: :
1

1 ,    1, 2, ,
m

i m n l
l m i

U V i m
= − +

= − =∏                               (14) 

and, 

[ ] ( )
( )( )

( )( )
1

: :
1 1

1

1 1
1 1 .

1 1 1

m

lm m
l m j

i m n j m
j m i j m i

l
l m j

j k R
E U E V

j k R

= − +

= − + = − +

= − +

+ + −
= − = −

+ + + −

∑
∏ ∏

∑
              (15) 

The approximation is around [ ]( )( ): : : :ln ln 1i m n i m nE Uν = − −  upon expanding 1∆  and 2∆  around the point 
: :i m nν  and keeping only the first two terms, we get 

( ) ( ) ( )( )1 1 1i i i i i i i iz z zν ν ν ε β′∆ ≅ ∆ + ∆ − = −                         (16) 

where, 
( ) ( ) ( )
( )

1 1

1

1 e e ,

e ,                                  1, 2, ,

i i

i

i i i i i

i i i m

ν ν

ν

ε ν ν ν ν

β ν

′= ∆ − ∆ = − +

′= −∆ = = 
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and, 

( ) ( ) ( )( )2 2 2i i i i i i i iz z zν ν ν γ δ′∆ ≅ ∆ + ∆ − = +                          (17) 

where, 

( ) ( )
( )

2 2

2

e e ,

e ,                             1, 2, , .

i i

i

i i i i i

i i i m

ν ν

ν

γ ν ν ν ν

δ ν

′= ∆ − ∆ = −

′= ∆ = = 

 

Plugging (16) and (17) in (12) and (13) we get 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1

2

1 1
2

2
1 1

ln ; ,
0

                      0

                      0

m m
i

i i i i i i i i i
i i
m m

i i i i i i i i
i i

m m
ii

i i i i i i
i i

L z
m z z R z z

m R z R z

yy
m R R

µ σ
ε β γ δ

σ

ε γ δ β

µµ
ε γ δ β

σ σ

∗

= =

∗ ∗

= =

∗ ∗

= =

∂
≅ − − − + + =

∂

= − − − + + =

−−
= − − − + + =

∑ ∑

∑ ∑

∑ ∑

            (18) 

and, 

( ) ( ) ( )

( ) ( )

( ) ( )

1 1

1 1

1 1

ln ; ,
0

                      0

                      0

m m
i

i i i i i i i
i i

m m

i i i i i i i
i i
m m

i
i i i i i i

i i

L z
z R z

R R z

y
R R

µ σ
ε β γ δ

µ

ε γ δ β

µ
ε γ δ β

σ

∗

= =

∗ ∗

= =

∗ ∗

= =

∂
≅ − − + + =

∂

= − − + + =

−
= − − + + =

∑ ∑

∑ ∑

∑ ∑

                       (19) 

where, ( )1 1i iR k R∗ = + − . Equations (18) and (19) can be rewritten as  
20 m A Bσ σ= + +                                        (20) 

D Cµ σ= +                                             (21) 

where, 

( )( ) ( )( )

( )

( )

( )

( )

2

1 1

1 1

1 1

;       0;

;                 .

m m

i i i i i i i i
i i

m m

i i i i i i i
i i

m m

i i i i i i
i i

A R y D B R y D

R R y
C D

R R

ε γ δ β

ε γ δ β

δ β δ β

∗ ∗

= =

∗ ∗

= =

∗ ∗

= =

= − − = − + − ≤

− − +
= =

+ +

∑ ∑

∑ ∑

∑ ∑

 

The solutions to (20) and (21) yield the AMLEs 

( )2

AMLE AMLE AMLE

4
ˆ ˆ ˆ,    .

2
A A mB

D C
m

σ µ σ
− + −

= = +                       (22) 

One of the drawbacks of the AMLEs is that they are biased. Moreover, the exact bias of AMLEµ̂  and AMLEσ̂  
can not be theoretically computed because of the intractability encountered of 2 4B AC− . On the other hand, 
the AMLEs provide an excellent starting value for the iterative solution of the likelihood equations. 

5. Least Squares Estimation Method 
The LS method which is originally suggested by Swain et al. [37] is computationally easier to handle, it 
provides simple closed form solutions for estimates (Hossain and Zimmer [38]). In addition it can also be used 
quite effectively to estimate the shape and scale parameters of the IW distribution. Finally Marusic et al. [28] 
showed that the least squares estimators (LSE) for estimating the parameters of the IW distribution did exist.  
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In this section we will discuss the least squares method for estimating α  and β  using the set up in Section 
1; that is, 1 2 mX X X< < <  are progressively first-failure censored sample from the IW distribution with 
censoring scheme ( )1, , mR R . The LS method is a combination of parametric ( )F  and non-parametric ( )F̂  
distribution functions. It depends on the choice of F̂  which should be as effective as possible. In our study we 
use F̂  which is proposed by Montanari and Cacciari [39] as a non-parametric cdf  for progressive type-II 
censored sample.  

( ) 0.5ˆ
0.25i

i
X

J
F x

n
−

=
+

                                  (23) 

where, 

1 0,    1, 2, ,   and  0i iJ J i m J−= + ∆ = =  

and, 

( )
11

.
1 1

i
m

w
w i

n J

k R

−

=

+ −
∆ =

+ +∑
 

For the parametric cdf ( )F x , Balakrishnan and Aggarwala [36] and Kim and Han [40], proposed 

( ) ( )( ),
1

1
1 1 ,    1, 2, ,i

j

j ri j
X j

i i

a
F x l F x j m

r
∗

−
=

= − − =∑                       (24) 

where, 

( ) ( )( ) ( )( )1
11

,
1

1 1 ,    ,    1 1 1 ,

1 ,                  1 .

j mk
j w i w

ww
j

i j
w w i
w i

F x F x l r r m i k R

a i j m
r r

∗
−

==

=
≠

= − − = = − + + + −

= ≤ ≤ ≤
−

∑∏

∏
 

The procedure attempts to minimize the following function with respect to α  and β  

( ) ( )( )2

1

ˆ .
j i

m

X X
j

F x F x
=

−∑                                    (25) 

The LSE estimates of α  and β  are denoted by LSEα̂  and LSEβ̂  respectively.  

6. Simulation Study 
The purpose of the simulation study is to compare the performance of the MLE, AMLE and LSE estimates 
based on progressively first-failure censored samples generated from the IW distribution with ( ),α β =  
( )0.1,3.0 , ( )0.5,3.0 , ( )0.9,3.0 , ( )1.5,2.5 , ( )2.5,2.5 , ( )4.0,4.0 , using different combinations of ,  ,  n m k  
and different censoring schemes ( )1, , mR R=R  . The data are simulated using Balakrishnan and Aggarwala 
[36] algorithm based on the fact that progressively first-failure censored sample with distribution ( )F x  can be  
viewed as a progressively type II censored sample from a population with distribution function ( )( )1 1

k
F x− − . 

We obtain the MLEs of α  and β  by solving the nonlinear Equations (5) and (6), in which the AMLEs are 
used as starting values of the MLE iterations. The AMLE and LSE are computed using (22) and (25) respec- 
tively. The criteria used for comparing all the above estimates are the absolute bias (ABias) and the mean squared 
error (MSE). Suppose îθ  ( ),i iα β=  is the estimate of θ  ( ),α β=  for the i-th simulated data set, then the 
ABias and MSE are computed as follows:  

1) 
7000

1

1 ˆABias
7000 i

i
θ θ

=

= −∑ . 

2) ( )
7000 2

1

1 ˆMSE
7000 i

i
θ θ

=

= −∑ . 
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6.1. Data Analysis and Comparison Study 
Due to the large number of tables, only part of them is reported. Results are summarized in Tables 1-4 provided 
at the end of this section as follows: 
• Table 1 and Table 2 provide the ABias and MSE values for the estimates of α . 
• Table 3 and Table 4 provide the ABias and MSE values for the estimates of β .  

Throughout this section we will refer to ( ),0, ,0n m= −R   by n mL − , ( ), , ,0, ,0a a=R    by , ,a aL


  
(where a n m= −∑ ), ( )0, ,0, n m= −R   by n m

∗
−R , ( )0, ,0, , ,a a=R    by , ,a a

∗R


,  
( )0, ,0, ,0, ,0n m= −R    by n mC − , and finally ( )0, ,0, , , ,0, ,0a a=R     by , ,a aC



. Moreover, we will 
refer to schemes n mL − , n m

∗
−R , and n mC −  by group-1, similarly we will refer to the schemes , ,a aL



, , ,a a
∗R


, 
and , ,a aC



 by group-2. A summary of the results is provided below. 
 

Table 1. Bias and MSE (parentheses) of ( )α̂ ⋅  when ( ) ( ), 0.1,3 .α β =                                                      

   k = 1 k = 3 k = 5 

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.0022 
(0.0009) 

0.0107 
(0.0012) 

0.0048 
(0.0010) 

0.0051 
(0.0006) 

0.0107 
(0.0013) 

0.0073 
(0.0007) 

0.0062 
(0.0006) 

0.0101 
(0.0019) 

0.0107 
(0.0007) 

  (0,0,15,0,0) 0.0025 
(0.0008) 

0.0114 
(0.0010) 

0.0081 
(0.0009) 

0.0067 
(0.0007) 

0.0157 
(0.0016) 

0.0084 
(0.0009) 

0.0082 
(0.0007) 

0.0172 
(0.0023) 

0.0219 
(0.0014) 

  (0,0,0,0,15) 0.0019 
(0.0006) 

0.0084 
(0.0010) 

0.0015 
(0.0007) 

0.0077 
(0.0006) 

0.0130 
(0.0031) 

0.0043 
(0.0007) 

0.0098 
(0.0008) 

0.0140 
(0.0049) 

0.0095 
(0.0007) 

  (3,3,3,3,3) 0.0039 
(0.0007) 

0.0116 
(0.0012) 

0.0067 
(0.0007) 

0.0081 
(0.0007) 

0.0145 
(0.0029) 

0.0063 
(0.0008) 

0.0097 
(0.0008) 

0.0151 
(0.0042) 

0.0320 
(0.0013) 

 15 (5,...,0,0) 0.0003 
(0.0007) 

0.0062 
(0.0007) 

0.0011 
(0.0007) 

0.0031 
(0.0004) 

0.0077 
(0.0008) 

0.0065 
(0.0005) 

0.0042 
(0.0004) 

0.0080 
(0.0012) 

0.0076 
(0.0005) 

  (1,1,1,1,1,0,...,0) 0.0001 
(0.0006) 

0.0060 
(0.0007) 

0.0015 
(0.0007) 

0.0033 
(0.0004) 

0.0087 
(0.0009) 

0.0067 
(0.0005) 

0.0045 
(0.0004) 

0.0094 
(0.0013) 

0.0072 
(0.0005) 

  (0,..,0,5,0,...,0) 0.0001 
(0.0006) 

0.0061 
(0.0007) 

0.0032 
(0.0006) 

0.0036 
(0.0004) 

0.0099 
(0.0010) 

0.0071 
(0.0005) 

0.0049 
(0.0004) 

0.0112 
(0.0014) 

0.0077 
(0.0005) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.0001 
(0.0006) 

0.0061 
(0.0007) 

0.0033 
(0.0006) 

0.0036 
(0.0004) 

0.0099 
(0.0010) 

0.0072 
(0.0005) 

0.0049 
(0.0004) 

0.0112 
(0.0014) 

0.0078 
(0.0005) 

  (0,...,0,5) 0.0000 
(0.0006) 

0.0043 
(0.0006) 

0.0010 
(0.0006) 

0.0037 
(0.0004) 

0.0081 
(0.0013) 

0.0037 
(0.0004) 

0.0052 
(0.0004) 

0.0091 
(0.0020) 

0.0043 
(0.0005) 

  (0,...,0,1,1,1,1,1) 0.0002 
(0.0006) 

0.0052 
(0.0007) 

0.0034 
(0.0006) 

0.0037 
(0.0004) 

0.0091 
(0.0012) 

0.0051 
(0.0004) 

0.0052 
(0.0004) 

0.0104 
(0.0018) 

0.0080 
(0.0005) 

50 20 (30,0,............,0) 0.0016 
(0.0005) 

0.0063 
(0.0005) 

0.0038 
(0.0005) 

0.0024 
(0.0003) 

0.0049 
(0.0007) 

0.0040 
(0.0004) 

0.0029 
(0.0003) 

0.0040 
(0.0010) 

0.0034 
(0.0004) 

  (3,3,....,3,0...,0) 0.0017 
(0.0004) 

0.0064 
(0.0005) 

0.0040 
(0.0004) 

0.0033 
(0.0003) 

0.0075 
(0.0008) 

0.0046 
(0.0004) 

0.0039 
(0.0004) 

0.0078 
(0.0011) 

0.0039 
(0.0006) 

  (0,...0,30,0,...,0) 0.0019 
(0.0004) 

0.0068 
(0.0005) 

0.0059 
(0.0005) 

0.0037 
(0.0004) 

0.0091 
(0.0009) 

0.0049 
(0.0005) 

0.0043 
(0.0004) 

0.0100 
(0.0012) 

0.0034 
(0.0005) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.0018 
(0.0004) 

0.0073 
(0.0005) 

0.0072 
(0.0005) 

0.0038 
(0.0004) 

0.0099 
(0.0010) 

0.0052 
(0.0005) 

0.0045 
(0.0004) 

0.0109 
(0.0014) 

0.0039 
(0.0005) 

  (0.............,0,30) 0.0016 
(0.0003) 

0.0049 
(0.0003) 

0.0024 
(0.0003) 

0.0044 
(0.0004) 

0.0070 
(0.0021) 

0.0005 
(0.0004) 

0.0055 
(0.0004) 

0.0074 
(0.0031) 

0.0020 
(0.0003) 

  (0,...,0,3,3,...,3) 0.0014 
(0.0003) 

0.0061 
(0.0005) 

0.0036 
(0.0003) 

0.0042 
(0.0003) 

0.0087 
(0.0017) 

0.0018 
(0.0004) 

0.0156 
(0.0037) 

0.0283 
(0.0221) 

0.0067 
(0.0042) 

50 30 (20,0,............,0) 0.0002 
(0.0003) 

0.0037 
(0.0004) 

0.0017 
(0.0004) 

0.0014 
(0.0002) 

0.0035 
(0.0004) 

0.0036 
(0.0002) 

0.0019 
(0.0002) 

0.0032 
(0.0006) 

0.0030 
(0.0002) 

  (2,2,....,2,0...,0) 0.0004 
(0.0003) 

0.0035 
(0.0003) 

0.0024 
(0.0003) 

0.0017 
(0.0002) 

0.0046 
(0.0005) 

0.0037 
(0.0003) 

0.0022 
(0.0002) 

0.0049 
(0.0007) 

0.0027 
(0.0002) 

  (0,...0,20,0,...,0) 0.0004 
(0.0003) 

0.0037 
(0.0004) 

0.0027 
(0.0003) 

0.0020 
(0.0002) 

0.0057 
(0.0005) 

0.0041 
(0.0003) 

0.0026 
(0.0002) 

0.0064 
(0.0008) 

0.0028 
(0.0003) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.0004 
(0.0003) 

0.0038 
(0.0003) 

0.0030 
(0.0003) 

0.0020 
(0.0002) 

0.0058 
(0.0006) 

0.0042 
(0.0003) 

0.0026 
(0.0002) 

0.0066 
(0.0008) 

0.0029 
(0.0003) 

  (0.............,0,20) 0.0002 
(0.0002) 

0.0024 
(0.0003) 

0.0008 
(0.0003) 

0.0022 
(0.0002) 

0.0042 
(0.0009) 

0.0004 
(0.0002) 

0.0029 
(0.0002) 

0.0047 
(0.0014) 

0.0005 
(0.0003) 

  (0,...,0,2,2,...,2) 0.0002 
(0.0003) 

0.0031 
(0.0004) 

0.0009 
(0.0003) 

0.0021 
(0.0002) 

0.0052 
(0.0008) 

0.0011 
(0.0002) 

0.0028 
(0.0002) 

0.0058 
(0.0012) 

0.0007 
(0.0003) 
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Table 2. Bias and MSE (parentheses) of ( )α̂ ⋅  when ( ) ( ), 1.5,2.5 .α β =                                                   

   1k =  3k =  5k =  

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.0148 
(0.0341) 

0.0619 
(0.0355) 

0.0253 
 (0.0333) 

0.0320 
(0.0231) 

0.0615 
(0.0459) 

0.0421 
(0.0292) 

0.0385 
(0.0235) 

0.0565 
(0.0683) 

0.1276 
(0.0488) 

  (0,0,15,0,0) 0.0164 
(0.0276) 

0.0662 
(0.0340) 

0.0465  
(0.0319) 

0.0414 
(0.0245) 

0.0906 
(0.0563) 

0.0359 
(0.0287) 

0.0505 
(0.0262) 

0.0982 
(0.0799) 

0.1871 
(0.0438) 

  (0,0,0,0,15) 0.0126 
(0.0234) 

0.0476 
(0.0320) 

0.0091  
(0.0249) 

0.0473 
(0.0244) 

0.0714 
(0.1139) 

0.0239 
(0.0262) 

0.0607 
(0.0276) 

0.0741 
(0.1794) 

0.0553 
(0.0263) 

  (3,3,3,3,3) 0.0248 
(0.0238) 

0.0668 
(0.0431) 

0.0385  
(0.0254) 

0.0502 
(0.0250) 

0.0809 
(0.1029) 

0.0484 
(0.0315) 

0.0601 
(0.0286) 

0.0814 
(0.1534) 

0.0625 
(0.0320) 

 15 (5,...,0,0) 0.0014 
(0.0251) 

0.0355 
(0.0249) 

0.0168 
(0.0245) 

0.0193 
(0.0147) 

0.0446 
(0.0303) 

0.0381 
(0.0173) 

0.0258 
(0.0155) 

0.0454 
(0.0445) 

0.0420 
(0.0190) 

  (1,1,1,1,1,0,...,0) 0.0019 
(0.0228) 

0.0347 
(0.0241) 

0.0079  
(0.0236) 

0.0209 
(0.0149) 

0.0500 
(0.0311) 

0.0391 
(0.0176) 

0.0277 
(0.0158) 

0.0539 
(0.0449) 

0.0442 
(0.0190) 

  (0,..,0,5,0,...,0) 0.0014 
(0.0212) 

0.0350 
(0.0234) 

0.0181  
(0.0216) 

0.0226 
(0.0156) 

0.0572 
(0.0422) 

0.0416 
(0.0187) 

0.0302 
(0.0161) 

0.0641 
(0.0497) 

0.0449 
(0.0191) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.0013 
(0.0211) 

0.0352 
(0.0234) 

0.0184  
(0.0214) 

0.0227 
(0.0155) 

0.0573 
(0.0455) 

0.0419 
(0.0186) 

0.0303 
(0.0161) 

0.0643 
(0.0503) 

0.0457 
(0.0194) 

  (0,...,0,5) 0.0003 
(0.0201) 

0.0247 
(0.0232) 

0.0010  
(0.0202) 

0.0221 
(0.0151) 

0.0456 
(0.0314) 

0.0212 
(0.0159) 

0.0322 
(0.0158) 

0.0505 
(0.0447) 

0.0247 
(0.0170) 

  (0,...,0,1,1,1,1,1) 0.0008 
(0.0203) 

0.0296 
(0.0233) 

0.0112  
(0.0202) 

0.0223 
(0.0152) 

0.0523 
(0.0318) 

0.0299 
(0.0160) 

0.0318 
(0.0159) 

0.0584 
(0.0449) 

0.0270 
(0.0176) 

50 20 (30,0,............,0) 0.0105 
(0.0190) 

0.0365 
(0.0184) 

0.0135  
(0.0177) 

0.0154 
(0.0122) 

0.0283 
(0.0233) 

0.0230 
(0.0151) 

0.0179 
(0.0117) 

0.0220 
(0.0344) 

0.0294 
(0.0138) 

  (3,3,....,3,0...,0) 0.0112 
(0.0143) 

0.0373 
(0.0174) 

0.0232  
(0.0155) 

0.0205 
(0.0125) 

0.0433 
(0.0279) 

0.0267 
(0.0159) 

0.0238 
(0.0130) 

0.0445 
(0.0392) 

0.0198 
(0.0146) 

  (0,...0,30,0,...,0) 0.0120 
(0.0134) 

0.0395 
(0.0179) 

0.0345  
(0.0170) 

0.0228 
(0.0129) 

0.0527 
(0.0312) 

0.0282 
(0.0170) 

0.0268 
(0.0138) 

0.0573 
(0.0435) 

0.0195 
(0.0223) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.0115 
(0.0127) 

0.0428 
(0.0186) 

0.0423  
(0.0170) 

0.0236 
(0.0128) 

0.0572 
(0.0358) 

0.0300 
(0.0180) 

0.0281 
(0.0140) 

0.0620 
(0.0508) 

0.0221 
(0.0211) 

  (0.............,0,30) 0.0093 
(0.0111) 

0.0276 
(0.0134) 

0.0057  
(0.0120) 

0.0274 
(0.0128) 

0.0380 
(0.0237) 

0.0092 
(0.0129) 

0.0339 
(0.0155) 

0.0383 
(0.0346) 

0.0105 
(0.0125) 

  (0,...,0,3,3,...,3) 0.0105 
(0.0115) 

0.0351 
(0.0137) 

0.0207  
(0.0123) 

0.0273 
(0.0128) 

0.0406 
(0.0257) 

0.0117 
(0.0148) 

0.0338 
(0.0154) 

0.0414 
(0.0349) 

0.0116 
(0.0130) 

50 30 (20,0,............,0) 0.0018 
(0.0124) 

0.0217 
(0.0129) 

0.0052  
(0.0135) 

0.0089 
(0.0076) 

0.0202 
(0.0157) 

0.0209 
(0.0087) 

0.0116 
(0.0078) 

0.0176 
(0.0230) 

0.0177 
(0.0089) 

  (2,2,....,2,0...,0) 0.0028 
(0.0110) 

0.0202 
(0.0121) 

0.0057 
(0.0115) 

0.0108 
(0.0077) 

0.0267 
(0.0166) 

0.0218 
(0.0091) 

0.0137 
(0.0082) 

0.0282 
(0.0235) 

0.0159 
(0.0093) 

  (0,...0,20,0,...,0) 0.0030 
(0.0099) 

0.0214 
(0.0127) 

0.0155 
(0.0106) 

0.0124 
(0.0081) 

0.0329 
(0.0191) 

0.0240 
(0.0101) 

0.0158 
(0.0086) 

0.0369 
(0.0274) 

0.0164 
(0.0102) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.0028 
(0.0098) 

0.0219 
(0.0130) 

0.0175  
(0.0103) 

0.0125 
(0.0081) 

0.0339 
(0.0199) 

0.0246 
(0.0103) 

0.0160 
(0.0086) 

0.0379 
(0.0287) 

0.0170 
(0.0103) 

  (0.............,0,20) 0.0015 
(0.0089) 

0.0136 
(0.0119) 

0.0038  
(0.0091) 

0.0134 
(0.0081) 

0.0236 
(0.0158) 

0.0026 
(0.0080) 

0.0179 
(0.0087) 

0.0255 
(0.0237) 

0.0026 
(0.0082) 

  (0,...,0,2,2,...,2) 0.0018 
(0.0090) 

0.0158 
(0.0119) 

0.0043  
(0.0092) 

0.0132 
(0.0082) 

0.0295 
(0.0160) 

0.0062 
(0.0086) 

0.0176 
(0.0086) 

0.0325 
(0.0239) 

0.0046 
(0.0104) 
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Table 3. Bias and MSE (parentheses) of ( )β̂ ⋅  when ( ) ( ), 0.1,3.0α β = .                                                 

   1k =  3k =  5k =  

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.3952 
(0.8406) 

0.2509 
(0.8384) 

0.2277 
(0.8371) 

0.3398 
(0.6624) 

0.2265 
(0.6705) 

0.0096 
(0.5997) 

0.3297 
(0.6258) 

0.2229 
(0.6688) 

0.0704 
(0.5040) 

  (0,0,15,0,0) 0.4901  
(1.0275) 

0.4286 
(0.6892) 

0.1824 
(0.9365) 

0.4350 
(0.8549) 

0.3974 
(0.6069) 

0.1780 
(0.8316) 

0.4234 
(0.8154) 

0.3930 
(0.6049) 

0.1698 
(0.7361) 

  (0,0,0,0,15) 0.4672  
(0.9443) 

0.4485 
(1.0773) 

0.0993 
(0.7441) 

0.5305 
(1.0838) 

0.5904 
(1.5607) 

0.3799 
(1.0991) 

0.5388 
(1.1071) 

0.5898 
(1.5602) 

0.0127 
(1.0111) 

  (3,3,3,3,3) 0.5226  
(1.0838) 

0.6008 
(1.5919) 

0.1362 
(0.8806) 

0.4521 
(0.8823) 

0.4351 
(1.0524) 

0.3536 
(0.8638) 

0.4523 
(0.8785) 

0.4337 
(1.0516) 

0.3031 
(0.6174) 

 15 (5,...,0,0) 0.2727  
(0.5034) 

0.2086 
(0.4627) 

0.1796 
(0.5299) 

0.2536 
(0.4192) 

0.1985 
(0.4616) 

0.0559 
(0.4236) 

0.2463 
(0.4010) 

0.1935 
(0.4581) 

0.1240 
(0.4043) 

  (1,1,1,1,1,0,...,0) 0.2870  
(0.5211) 

0.2396 
(0.4554) 

0.1744 
(0.5403) 

0.2659 
(0.4350) 

0.2286 
(0.4551) 

0.0976 
(0.4444) 

0.2551 
(0.4146) 

0.2240 
(0.4509) 

0.1324 
(0.4760) 

  (0,..,0,5,0,...,0) 0.3039  
(0.5416) 

0.2927 
(0.5030) 

0.1746 
(0.5919) 

0.2877 
(0.4690) 

0.2803 
(0.5028) 

0.1236 
(0.4981) 

0.2780 
(0.4515) 

0.2757 
(0.4983) 

0.1535 
(0.4500) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.3034  
(0.5400) 

0.2947 
(0.5099) 

0.1775 
(0.5911) 

0.2883 
(0.4696) 

0.2824 
(0.5097) 

0.1228 
(0.4989) 

0.2788 
(0.4529) 

0.2777 
(0.5051) 

0.1504 
(0.4504) 

  (0,...,0,5) 0.3018  
(0.5252) 

0.3218 
(0.6662) 

0.0040 
(0.4452) 

0.3025 
(0.4892) 

0.3198 
(0.6346) 

0.1992 
(0.4717) 

0.2986 
(0.4850) 

0.3161 
(0.6295) 

0.1554 
(0.4616) 

  (0,...,0,1,1,1,1,1) 0.3028  
(0.5292) 

0.3232 
(0.6320) 

0.0827 
(0.4675) 

0.3060 
(0.4937) 

0.3214 
(0.6698) 

0.2616 
(0.4977) 

0.3036 
(0.4930) 

0.3180 
(0.6647) 

0.1797 
(0.5039) 

50 20 (30,0,............,0) 0.2215  
(0.3003) 

0.0733 
(0.2724) 

0.1641 
(0.3699) 

0.1421 
(0.2401) 

0.0633 
(0.2676) 

0.0463 
(0.2582) 

0.1401 
(0.2317) 

0.0646 
(0.2701) 

0.0443 
(0.2257) 

  (3,3,....,3,0...,0) 0.3028  
(0.5292) 

0.3232 
(0.2604) 

0.0827 
(0.4675) 

0.1770 
(0.2761) 

0.1319 
(0.2403) 

0.0542 
(0.2996) 

0.1726 
(0.2650) 

0.1322 
(0.2428) 

0.1270 
(0.2779) 

  (0,...0,30,0,...,0) 0.2230  
(0.3678) 

0.1910 
(0.6320) 

0.2068 
(0.4477) 

0.1966 
(0.3043) 

0.1780 
(0.2555) 

0.0786 
(0.3403) 

0.1921 
(0.2934) 

0.1781 
(0.2579) 

0.1607 
(0.3168) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.2257  
(0.3664) 

0.2167 
(0.3062) 

0.2153 
(0.4950) 

0.2062 
(0.3176) 

0.2024 
(0.2995) 

0.0846 
(0.3798) 

0.2040 
(0.3125) 

0.2027 
(0.3029) 

0.1610 
(0.3526) 

  (0.............,0,30) 0.2351  
(0.3702) 

0.2655 
(0.4825) 

0.0336 
(0.3275) 

0.3012 
(0.3582) 

0.2795 
(0.4750) 

0.2470 
(0.3607) 

0.2389 
(0.4000) 

0.2633 
(0.4818) 

0.2199 
(0.3850) 

  (0,...,0,3,3,...,3) 0.2427  
(0.3793) 

0.2834 
(0.5672) 

0.0433 
(0.3725) 

0.2484 
(0.3829) 

0.2802 
(0.5587) 

0.3203 
(0.4757) 

0.2550 
(0.3693) 

0.2829 
(0.5671) 

0.2466 
(0.5135) 

50 30 (20,0,............,0) 0.1484  
(0.2006) 

0.0675 
(0.1995) 

0.1197 
(0.2753) 

0.1074 
(0.1665) 

0.0636 
(0.1927) 

0.0070 
(0.1934) 

0.1063 
(0.1603) 

0.0639 
(0.1928) 

0.0785 
(0.1773) 

  (2,2,....,2,0...,0) 0.1779  
(0.2055) 

0.0992 
(0.1738) 

0.1279 
(0.2730) 

0.1176 
(0.1731) 

0.0969 
(0.1707) 

0.0408 
(0.1987) 

0.1149 
(0.1648) 

0.0968 
(0.1711) 

0.1132 
(0.1805) 

  (0,...0,20,0,...,0) 0.1661  
(0.2208) 

0.1423 
(0.1901) 

0.1524 
(0.3087) 

0.1323 
(0.1913) 

0.1310 
(0.1849) 

0.0563 
(0.2292) 

0.1381 
(0.1842) 

0.1309 
(0.1853) 

0.1302 
(0.2095) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.1760  
(0.2164) 

0.1376 
(0.1894) 

0.1408 
(0.3137) 

0.1341 
(0.1933) 

0.1362 
(0.1930) 

0.0560 
(0.2363) 

0.1373 
(0.1871) 

0.1359 
(0.1934) 

0.1324 
(0.2153) 

  (0.............,0,20) 0.1523  
(0.2137) 

0.1705 
(0.3002) 

0.0090 
(0.2088) 

0.1629 
(0.2057) 

0.1656 
(0.2762) 

0.1459 
(0.2124) 

0.2128 
(0.2072) 

0.1665 
(0.2773) 

0.1480 
(0.2230) 

  (0,...,0,2,2,...,2) 0.1771  
(0.2107) 

0.1609 
(0.2795) 

0.0554 
(0.2017) 

0.1488 
(0.2090) 

0.1663 
(0.2988) 

0.2209 
(0.2393) 

0.2567 
(0.2122) 

0.1674 
(0.3001) 

0.1518 
(0.2590) 
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Table 4. Bias and MSE (parentheses) of ( )β̂ ⋅  when ( ) ( ), 1.5,2.5α β = .                                                 

   1k =  3k =  5k =  

n m Scheme MLE AMLE LSE MLE AMLE LSE MLE AMLE LSE 

20 5 (15,0,0,0,0) 0.3239 
(0.5727) 

0.2049 
(0.5684) 

0.1923 
(0.6001) 

0.2831 
(0.4600) 

0.1887 
(0.5603) 

0.0080 
(0.4164) 

0.2747 
(0.4346) 

0.1858 
(0.5590) 

0.0106 
(0.3500) 

  (0,0,15,0,0) 0.4024 
(0.7003) 

0.3524 
(0.4719) 

0.1562 
(0.6383) 

0.3625 
(0.5937) 

0.3312 
(0.4656) 

0.1483 
(0.5775) 

0.3528 
(0.5662) 

0.3275 
(0.4645) 

0.1415 
(0.5112) 

  (0,0,0,0,15) 0.4295 
(0.7370) 

0.4944 
(1.0855) 

0.0784 
(0.5102) 

0.4421 
(0.7526) 

0.4920 
(1.0838) 

0.3166 
(0.7633) 

0.4490 
(0.7688) 

0.4915 
(1.0835) 

0.0586 
(0.7021) 

  (3,3,3,3,3) 0.3839 
(0.6434) 

0.3686 
(0.7339) 

0.1096 
(0.5713) 

0.3768 
(0.6127) 

0.3626 
(0.7308) 

0.2946 
(0.5999) 

0.3769 
(0.6101) 

0.3614 
(0.7303) 

0.2526 
(0.4288) 

 15 (5,...,0,0) 0.2325 
(0.3490) 

0.1761 
(0.3233) 

0.1459 
(0.3698) 

0.2113 
(0.2911) 

0.1654 
(0.3206) 

0.0466 
(0.2941) 

0.2074 
(0.2786) 

0.1635 
(0.3201) 

0.1139 
(0.2821) 

  (1,1,1,1,1,0,...,0) 0.2446 
(0.3615) 

0.2016 
(0.3187) 

0.1416 
(0.3773) 

0.2216 
(0.3021) 

0.1905 
(0.3160) 

0.0813 
(0.3086) 

0.2168 
(0.2884) 

0.1885 
(0.3156) 

0.1257 
(0.3321) 

  (0,..,0,5,0,...,0) 0.2587 
(0.3758) 

0.2457 
(0.3520) 

0.1418 
(0.4135) 

0.2398 
(0.3257) 

0.2336 
(0.3492) 

0.1030 
(0.3459) 

0.2358 
(0.3142) 

0.2315 
(0.3488) 

0.1315 
(0.3141) 

  ( )5 5 50 ,1 ,0∗ ∗ ∗  0.2583 
(0.3747) 

0.2474 
(0.3568) 

0.1443 
(0.4133) 

0.2402 
(0.3261) 

0.2354 
(0.3540) 

0.1023 
(0.3464) 

0.2366 
(0.3151) 

0.2332 
(0.3535) 

0.1289 
(0.3147) 

  (0,...,0,5) 0.2566 
(0.3643) 

0.2705 
(0.4660) 

0.0014 
(0.3093) 

0.2550 
(0.3428) 

0.2679 
(0.4652) 

0.2180 
(0.3456) 

0.2571 
(0.3429) 

0.2673 
(0.4650) 

0.1540 
(0.3484) 

  (0,...,0,1,1,1,1,1) 0.2575 
(0.3671) 

0.2715 
(0.4421) 

0.0651 
(0.3259) 

0.2521 
(0.3397) 

0.2665 
(0.4407) 

0.1660 
(0.3276) 

0.2529 
(0.3374) 

0.2656 
(0.4404) 

0.1332 
(0.3203) 

50 20 (30,0,............,0) 0.1351 
(0.2050) 

0.0589 
(0.1871) 

0.1336 
(0.2514) 

0.1184 
(0.1668) 

0.0527 
(0.1858) 

0.0386 
(0.1793) 

0.1151 
(0.1580) 

0.0517 
(0.1856) 

0.0388 
(0.1533) 

  (3,3,....,3,0...,0) 0.1681 
(0.2329) 

0.1178 
(0.1682) 

0.1577 
(0.2745) 

0.1475 
(0.1918) 

0.1099 
(0.1669) 

0.0452 
(0.2081) 

0.1421 
(0.1802) 

0.1086 
(0.1666) 

0.1037 
(0.1886) 

  (0,...0,30,0,...,0) 0.1839 
(0.2503) 

0.1576 
(0.1789) 

0.1749 
(0.3040) 

0.1638 
(0.2113) 

0.1484 
(0.1774) 

0.0655 
(0.2363) 

0.1583 
(0.1996) 

0.1469 
(0.1772) 

0.1318 
(0.2152) 

  ( )5 10 50 ,3 ,0∗ ∗ ∗  0.1861 
(0.2491) 

0.1786 
(0.2099) 

0.1828 
(0.3361) 

0.1719 
(0.2206) 

0.1686 
(0.2080) 

0.0705 
(0.2638) 

0.1679 
(0.2122) 

0.1670 
(0.2077) 

0.1312 
(0.2392) 

  (0.............,0,30) 0.2001 
(0.2576) 

0.2339 
(0.3881) 

0.0304 
(0.2217) 

0.2070 
(0.2659) 

0.2335 
(0.3880) 

0.2069 
(0.3303) 

0.2103 
(0.2721) 

0.2335 
(0.3879) 

0.2090 
(0.3532) 

  (0,...,0,3,3,...,3) 0.1937 
(0.2513) 

0.2189 
(0.3302) 

0.0346 
(0.2549) 

0.2058 
(0.2641) 

0.2329 
(0.3821) 

0.2010 
(0.3070) 

0.2089 
(0.2698) 

0.2328 
(0.3821) 

0.2025 
(0.3303) 

50 30 (20,0,............,0) 0.1402 
(0.1362) 

0.0572 
(0.1344) 

0.0973 
(0.1925) 

0.0895 
(0.1157) 

0.0530 
(0.1338) 

0.0058 
(0.1343) 

0.0883 
(0.1111) 

0.0523 
(0.1337) 

0.0653 
(0.1230) 

  (2,2,....,2,0...,0) 0.1418 
(0.1434) 

0.0853 
(0.1190) 

0.1087 
(0.1929) 

0.0980 
(0.1202) 

0.0808 
(0.1185) 

0.0340 
(0.1380) 

0.0955 
(0.1142) 

0.0800 
(0.1184) 

0.0950 
(0.1253) 

  (0,...0,20,0,...,0) 0.1471 
(0.1515) 

0.1146 
(0.1289) 

0.1193 
(0.2173) 

0.1102 
(0.1328) 

0.1092 
(0.1284) 

0.0469 
(0.1591) 

0.1080 
(0.1276) 

0.1083 
(0.1283) 

0.1049 
(0.1451) 

  ( )10 10 100 , 2 ,0∗ ∗ ∗  0.1524 
(0.1509) 

0.1191 
(0.1346) 

0.1195 
(0.2243) 

0.1117 
(0.1342) 

0.1135 
(0.1340) 

0.0467 
(0.1641) 

0.1143 
(0.1297) 

0.1126 
(0.1340) 

0.1098 
(0.1494) 

  (0.............,0,20) 0.1210 
(0.1470) 

0.1389 
(0.2075) 

0.0051 
(0.1429) 

0.1840 
(0.1451) 

0.1386 
(0.2075) 

0.1241 
(0.1662) 

0.2132 
(0.1470) 

0.1385 
(0.2075) 

0.1259 
(0.1799) 

  (0,...,0,2,2,...,2) 0.1206 
(0.1475) 

0.1392 
(0.1920) 

0.0466 
(0.1442) 

0.1216 
(0.1429) 

0.1380 
(0.1918) 

0.1158 
(0.1475) 

0.1769 
(0.1435) 

0.1378 
(0.1918) 

0.1229 
(0.1548) 



A. Helu 
 

 
86 

6.1.1. Scale Parameter α  
• For progressively first-failure censoring ( )3& 5k =  we can easily notice that n mL −  is the most efficient  

scheme in terms of ABias and MSE values for MLE and AMLE, while scheme n m
∗
−R  is the most efficient  

scheme for LSE. On the other hand when 1k = , that is the progressively type-II censoring, scheme n m
∗
−R  

is the most efficient for all estimates namely MLE, AMLE and LSE. 
• Notice that when α  is small ( )1< , the MSE values are almost identical for all the estimates regardless of 

the different schemes and the different values of k , this indicates that the estimates of α  are sensitive to 
the choice of α . 

• In general, LSE and MLE have comparable ABias and MSE values, which makes LSE estimates very good 
competitors to the MLE estimates. 

6.1.2. Shape Parameter β  
• When 3& 5k =  scheme n mL −  is the most efficient scheme in terms of ABias and MSE values for MLE 

and LSE. 
• For progressively type-II censoring ( )1k =  scheme n mL −  is the most efficient in terms of ABias and MSE 

values for MLE while scheme ∗
−mnR  is the most efficient for LSE. 

• As for the AMLE estimates, we notice that the scheme n mL −  is the most efficient in terms of ABias whereas  
scheme , ,a aL



 is the most efficient in terms of MSE values for all values of k . 

• In addition, LSEβ̂  generally has the smallest ABias while MLEβ̂  has the smallest MSE values.  

6.2. Conclusions and Recommendations 

In the past few years, progressive censoring has received a great attention by many researchers. This is due to its 
advantages in reducing the cost and time of the tests. Moreover, the availability of high speed computing re- 
sources enhances the focus on progressive censoring. In this article, we have considered the MLE, approximate 
MLE and LSE to estimate the unknown parameters of the IW distribution when data under consideration are 
progressively first-failure censoring. 

It is out of question that all estimates are affected by the choice of k , and our goal is to compare the three 
methods namely MLE, AMLE and LSE and decide which is the most efficient for estimating α  and β . It is 
important to point out the following: 
• The results for group-1 and group-2 are very similar with slight edge improvement in favor of group-1. 
• ABias and MSE values decrease as the effective sample proportion m n  increases for fixed &k n  and for 

all estimates of α  and β . 
• In general, progressively first-failure censoring (i.e. 3& 5k = ) is more efficient compared to progressive 

type-II censoring ( )1k =  in terms of ABias and MSE values. This is true for MLE and LSE estimates. 
• Table 1 and Table 2 clearly show that the MSE values for LSE and MLE are almost identical and their 

ABias is comparable. Moreover, Table 3 and Table 4 show the similarity in performance between LSE and 
MLE for estimating β . Keep in mind that LSE formula is simple and easy to implement compared to the 
formula of the MLE. 

Based on this, we highly recommend using LSE method and progressively first-failure censoring scheme for 
estimating the parameters of the IW distribution. 

7. Real Life Data 
In this example, we consider a real life data set to illustrate the proposed method and verify how our estimators 
work in practice. The validity of the IW model is checked using Kolmogrov-Smirnov ( )K S−  test, as well as 
Anderson-Darling ( )A D−  and chi-square tests. The data set for this application came from a real highway 
construction project in Amman/Jordan supervised by the Greater Amman Municipality and executed by a local 
contractor in 2012 (http://www.ammancity.gov.jo/en/gam/index.asp). The data consist of 64 readings that de- 
monstrate the percentage of asphalt content in hot mix asphalt specimens sampled from the mentioned project 
above. Percentage of asphalt content is one of the main elements of a hot mix asphalt sample characteristics that 
has a direct effect on the quality and durability of the pavement. That is why this data is used in this example. 

http://www.ammancity.gov.jo/en/gam/index.asp
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( )4.45,4.82  ( )4.69,4.79  ( )4.95,4.87  ( )4.29,4.70  ( )4.87,4.54  ( )4.87,4.73  

( )4.86,4.26  ( )4.29,4.54  ( )4.72,4.62  ( )4.54,4.73  ( )4.52,4.74  ( )4.58,4.93  

( )4.98,4.28  ( )4.61,4.35  ( )4.65,4.85  ( )4.70,4.70  ( )4.87,4.98  ( )4.46,4.66  

( )4.87,4.44  ( )4.86,4.60  ( )4.77,4.58  ( )4.82,5.08  ( )4.73,4.62  ( )5.11,4.89  

( )4.84,4.76  ( )5.04,4.88  ( )4.75,4.74  ( )4.80,4.77  ( )4.72,4.72  ( )4.77,4.53  

( )4.51,4.59  ( )4.70,4.82      

 
We fit the IW distribution based on 0.209α =  and 29.083β = . We observe that 0.0864K S− =  with 

value 0.8177p = , 0.3621A D− =  and chi-square distance = 0.6468 with a corresponding value 0.98576p = . This 
indicates that the IW model provides a good fit. The initial estimates for the MLEs are chosen by using pseudo 
complete estimates of the MLEs. We group the data into 32 sets with 2 items in each. We modify the data to 
consider four types of censoring as follows: 
 

Case Type of censoring Censoring scheme 

1 Complete data set ( )1,  0,0, ,0k R= =   

2 First failure censoring ( )2,  0,0, ,0k R= =   

3 Progressive type-II ( )391,  0 , 24k R ∗= =  

4 Progressive first-failure censoring ( )2,  12,0, ,0k R= =   

 
The modified data sets are provided in Table 5. The evaluated Hessian matrix to guarantee the uniqueness of 

the MLEs is presented in Table 6. Finally, the estimates of α  and β  based on different estimation methods 
are provided in Table 7. 
 
Table 5. Progressive first-failure censored samples for the percentage of asphalt content in hot mix samples.                        

Case n m Censored data 
1 64 64 4.26 4.28 4.29 4.29 4.35 4.44 4.45 4.46 4.51 4.52 4.53 4.54 
   4.54 4.54 4.58 4.58 4.59 4.60 4.61 4.62 4.62 4.65 4.66 4.69 
   4.70 4.70 4.70 4.70 4.72 4.72 4.72 4.73 4.73 4.73 4.74 4.74 
   4.75 4.76 4.77 4.77 4.77 4.79 4.80 4.82 4.82 4.82 4.84 4.85 

   4.86 4.86 4.87 4.87 4.87 4.87 4.87 4.88 4.89 4.93 4.95 4.98 
   4.98 5.04 5.08 5.11         

2 32 32 4.45 4.69 4.87 4.29 4.54 4.73 4.26 4.29 4.62 4.54 4.52 4.58 

   4.28 4.35 4.65 4.70 4.87 4.46 4.44 4.60 4.58 4.82 4.62 4.89 
   4.76 4.88 4.74 4.77 4.72 4.53 4.51 4.70     

3 64 40 4.26 4.28 4.29 4.29 4.35 4.44 4.45 4.46 4.52 4.54 4.54 4.54 

   4.58 4.60 4.61 4.62 4.65 4.66 4.69 4.70 4.70 4.70 4.72 4.73 
   4.73 4.74 4.79 4.82 4.85 4.86 4.86 4.87 4.87 4.87 4.87 4.87 
   4.93 4.95 4.98 4.98         

4 32 20 4.35 4.44 4.45 4.46 4.51 4.53 4.58 4.60 4.62 4.65 4.70 4.70 
   4.72 4.74 4.76 4.77 4.82 4.87 4.88 4.89     

 
Table 6. The eigne-values and the determinant of the Hessian matrix for each of the four data sets.                              

Case 1 Case 2 Case 3 Case 4 

Eigen values Hessian  Eigen values Hessian  Eigen values Hessian  Eigen values Hessian  

0.220
70083
− 

 − 
 1541.56 

0.186
41514
− 

 − 
 7719.1 

0.127
36313
− 

 − 
 4626.0 

0.083
44025
− 

 − 
 3650.6 
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Table 7. The corresponding estimates.                                                                             

Method MLEα̂  AMLEα̂  LSEα̂  MLEβ̂  AMLEβ̂  LSEβ̂  

Case 1 0.2172 0.2037 0.2169 22.5324 40.9753 27.7880 

Case 2 0.2159 0.2172 0.2121 18.2934 33.4149 06.6950 

Case 3 0.2174 0.2168 0.2196 22.5052 31.7096 26.1792 

Case 4 0.2137 0.2133 0.2193 22.5059 39.1295 24.2470 

 
It is quite clear that all the estimates for the scale parameter ( )α  are quite close to each other. It is of great 

importance to notice through this analysis that the estimates based on progressively first-failure are comparable 
with the values of the estimates based on progressively type-II censored samples and they are very close to those 
of the complete data set. Although AMLEβ̂  is higher than MLEβ̂  and LSEβ̂ , it is however comparable with its 
value when data is complete. Moreover, in this case AMLEβ̂  is the closest to the complete case. 
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