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Abstract 
In this paper, we propose a new time dependent model for solving total variation (TV) minimi- 
zation problem in image denoising. The main idea is to apply a priori smoothness on the solution 
image. This is a constrained optimization type of numerical algorithm for removing noise from 
images. The constraints are imposed using Lagrange’s multipliers and the solution is obtained 
using the gradient projection method. 1D and 2D numerical experimental results by explicit nu-
merical schemes are discussed. 
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1. Introduction 
In many image processing problems, a denoising step is required to remove noise or spurious details from 
corrupted images. The presence of noise in images is unavoidable. It may be introduced at the stage of image 
formation like image recording, image transmission, etc. These random distortions make it difficult to perform 
any required image analysis. For example, the feature oriented enhancement introduced in [1] is very effective 
in restoring blurry images, but it can be “frozen” by an oscillatory noise component. Even a small amount of 
noise is harmful when high accuracy is required, especially in case of medical images. 

In practice, to estimate a true signal in noise, the most frequently used methods are based on the least squares 
criteria. This procedure is L2-norm dependent. L2-norm based regularization is known to remove high frequency 
components in denoised images and make them appear smooth. 

Most of the classical image deblurring or denoising techniques, due to linear and global approach, are 
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contaminated by Gibb’s phenomenon resulting into smearing near edges. In order to preserve edges Rudin et al. 
[2] [3] introduced total variation (TV) norm models based on variational approach. TV norms are essentially L1 
norms derivatives, hence L1 estimation procedures are more appropriate for the subject of image restoration. For 
more details we refer to [1] [4]-[7]. 

In this paper we present a new time dependent model constructed by evolving the Euler-Lagrange equations 
of the optimization problem. We propose to apply priori smoothness on the solution image and then denoise it 
by minimizing the total variation norm of the estimated solution. We have tested our algorithm on various types 
of signals and images and found our model (11) better than previously known model (10). To quantify results, 
the experimental values in terms of PSNR are given in Tables 1-3. 

2. Image Denoising Models 
Formation of a noisy image is typically modeled as 

( ) ( ) ( )0 , , , ,u x y u x y n x y= +                                   (1) 

where ( ),u x y  denote the desired clean image, ( )0 ,u x y  denote the pixel values of a noisy image for 
,x y∈Ω , Ω  is a bounded open subset of 2  and ( ),n x y  is additive white noise assumed to be close to 

Gaussian. The values ( ),n i j  of n at the pixels ( ),i j  are independent random variables, each with a Gaussian 
distribution of zero mean and variance 2σ . 

We wish to reconstruct u from 0u . Most conventional variational methods involve a least squares 2L  fit 
because this leads to linear equations. The first attempt along these lines was made by Phillips [8] and later 
refined by Twomey et al. [9] [10] in one-dimensional case. In two dimensional continuous framework their 
constrained minimization problem is, 

( )2
minimize  d d ,xx yyu u x y

Ω

+∫                                      (2) 

subject to constraints involving the mean 

0d d d d ,u x y u x y
Ω Ω

=∫ ∫                                         (3) 

and standard deviation 

( )2 2
0 d d .u u x y σ

Ω

− =∫                                       (4) 

The resulting linear system is now easy to solve using modern numerical techniques. 
The total variation based image denoising model, which is based on the constrained minimization problem 

appeared in [2], is as follows: 
2 2minimize d d d d ,x yu x y u u x y

Ω Ω

∇ = +∫ ∫                              (5) 

subject to constraints 

0d d d d ,u x y u x y
Ω Ω

=∫ ∫                                         (6) 

and 

( )2 2
0

1 d d .
2

u u x y σ
Ω

− =∫                                      (7) 

The first constraint corresponds to the assumption that the noise has zero mean, and the second constraint uses 
a priori information that the standard deviation of the noise ( ),n x y  is σ . 

The Euler-Lagrange equation is given by, 

( )1 2 00 ,u u u
u

λ λ
 ∇

= ∇ ⋅ − − −  ∇ 
                                 (8) 
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in Ω , with 0u
n
∂

=
∂

 on the boundary of the domain. 

Since (8) is not well defined at points where 0u∇ = , due to the presence of the term 1
u∇

, it is common to 

slightly perturb the TV algorithm to become 
2 2d d d d ,x yu x y u u x y

β
β

Ω Ω

∇ = + +∫ ∫                                (9) 

where β  is a small positive parameter [11]. 
The solution procedure uses a parabolic equation with time as an evolution parameter, or equivalently, the 

gradient descent method. This means that we solve 

( )0 ,t
uu u u
u

λ
 ∇

= ∇ ⋅ − −  ∇ 
                                   (10) 

for 0, ,t x y> ∈Ω  with ( ), ,0u x y  given as initial data and 0u
n
∂

=
∂

 on the boundary of the domain. 

Applying a priori smoothness on the solution image, our new time dependent model becomes, 

( )0. ,t
G u

u G u u
G u
σ

σ
σ

λ
 ∇ ∗

= ∇ − ∗ −  ∇ ∗ 
                           (11) 

for 0, ,t x y> ∈Ω  with ( ), ,0u x y  given as initial data and 0u
n
∂

=
∂

 on the boundary of the domain. It should  

be noticed that (11) only replaces u in (10) by its estimate G uσ ∗ . 
Witkin [12] noticed that the convolution of the signal with Gaussians at each scale was equivalent to solving 

the heat equation with the signal as initial datum. The term ( ) ( ) ( ) ( ), , , ,G u x y t G u x y tσ σ∗∇ = ∇ ∗ , which 
appears inside the divergence term of (11), is simply the gradient of the solution at time σ  of the heat equation 
with ( ), ,0u x y  as initial datum. In order to preserve the notion of scale in the gradient estimate, it is 
convenient that this kernel Gσ  depends on a scale parameter [13]. In fact, the function Gσ  can be considered 
as “low-pass filter” or any smoothing kernel, i.e., a denoising technique is used before solving the nonlinear 
diffusion problem [14] [15]. 

The first constraint (8) is dropped because it is automatically enforced by the evolution procedure, i.e., the 
mean of ( ), ,0u x y  is the same as that of ( )0 ,u x y . As t increases, a denoised version of image is realised. 

To compute ( )tλ , we multiply (10) by ( )0u u−  and integrate by parts over Ω . If steady state has been 
reached, the left side of (10) vanishes. We then have, 

( ) ( )00
2

1 d d .
2

yx yx
u uu u

u x y
u u

λ
σ Ω

  
= − ∇ − +   ∇ ∇   

∫                       (12) 

This gives us a dynamic value ( )tλ , which appears to converge as t →∞ . The theoretical justification for 
this approach comes from the fact that it is merely the gradient projection method of Rosen [16]. 

We still write G uσ ∗  as u. Let 
n
iju  be the approximation to the value ( ), ,i j nu x y t , where 

, , , 1,2, , ,i jx i x y j x i j N= ∆ = ∆ =   

1,  ,  0,1, ,nN x t n t n∆ = = ∆ =   

( ), , ,n
ij i j nu u x y t=  

( ) ( )0
0 , , .iju u i x j x i x j xσφ= ∆ ∆ + ∆ ∆                           (13) 

The modified initial data are chosen so that the constraints are satisfied initially, i.e., φ  has mean zero and 
2L  norm one. 
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The explicit partial derivatives of model (10) and model (11) can be expressed as: 

( ) ( )
( )

( )
2 2

03
2 2 2

2
.xx y xy x y yy x

t

x y

u u u u u u u
u u u

u u

β β
λ

β

+ − + +
= − −

+ +
                  (14) 

We define the derivative terms as, 

1, 1, , 1 , 1;    ;
2 2

n n n n
i j i j i j i jx y

ij ij

u u u u
u u

x x
+ − + −− −

= =
∆ ∆

 

1, , 1, , 1 , , 1
2 2

2 2
;    ;

n n n n n n
i j i j i j i j i j i jxx yy

ij ij

u u u u u u
u u

x x
+ − + −− + − +

= =
∆ ∆

 

1
1, 1 1, 1 1, 1 1, 1 , ,; .

4

n n n n n n
i j i j i j i j i j i jxy t

ij ij

u u u u u u
u u

x x t

+
+ + − + + − − −− − + −

= =
∆ ∆ ∆

 

We let, 

( )( ) ( )( )2 2
2 ,n xx y xy x y yy x

ij ij ij ij ij ij ij ijr u u u u u u uβ β= + − + +                    (15) 

and 

( ) ( )( )
3

2 2 2 .n x y
ij ij ijp u u β= + +                                (16) 

Then (14) reads as follows: 

( )( )0 , ,
n

ijt n
ij ijn

ij

r
u u u i x j x

p
λ= − − ∆ ∆                              (17) 

with boundary conditions 

, , 1 , 1,

1, 2, ,1 ,2

,  ,  

,  .

n n n n
i N i N N j N j

n n n n
j j i i

u u u u

u u u u
− −= =

= =
                               (18) 

The explicit method is stable and convergent for 2 0.5t
x
∆

≤
∆

, see [17]. 

3. Time Dependent Model for 1D 
The 2D model described before is more regular than the corresponding 1D model because the 1D original 
optimization problem is barely convex. For the sake of understanding the numerical behavior of our schemes, 
we also discuss the 1D model. The Euler-Lagrange equation in the 1D case reads as follows: 

( )1 2 00 .x

x x

u
u u

u
λ λ

 
= − − −  
 

                             (19) 

This equation can be written either as 

( )1 2 00 ,x

x x

u
u u

u
β

λ λ
 
 = − − −
 
 

                             (20) 

using the small regularizing parameter 0β >  introduced in [18], or 

( ) ( )1 2 00 ,x xxu u u uδ λ λ= − − −                               (21) 

using the δ -function. 
Our model in 1D will be 
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( )
( )03

2 2

,t xx

x

u u u u
u

β λ
β

= − −
+

                            (22) 

where 0β >  is small regularizing parameter. The parameter 0β >  in this model is estimated from the local 
amount of noise. We have found for our model, through our numerical experiments in 1D, that β  can be 
estimated as the standard deviation of the noise. 

We can also state our model in terms of the δ  function as 

( ) ( )0 .t x xxu u u u uδ λ= − −                                   (23) 

In this paper, we approximate δ , see the reference [18], by 

( ) ( )
3

2 2 .k kδ β β
−

≈ ⋅ +                                    (24) 

These evolution models are initialized with the noisy signal 0u , homogeneous Neumann boundary conditions, 
and with a prescribed Lagrange multiplier for slightly noisy signals. 

We have estimated 0λ >  near the maximum value such that the explicit scheme is stable under appropriate  

CFL 2 0.25t
x
∆ < ∆ 

 restrictions [18], provided β  is chosen to be the standard deviation of the noise. 

The following is the explicit numerical scheme of model (22). 
Let n

iu  be the approximation to the value ( ),i nu x t , where ix i x= ∆  and , 1nt n t n= ∆ ≥ . We define the 
derivative terms as, 

1
1 1 1 1

2
2; ; .

2

n n n n n n n
i i i i i i i

x t xx
u u u u u u uu u u

x t x

+
+ − + −− − − +

= = =
∆ ∆ ∆

 

We let, 

1 1 .
2

n n
i i

i
u u

b
x

+ −−
=

∆
                                    (25) 

Then (22) reads as follows: 

( )
( )( )1 1 1

03 2
2 2

2
.

n n n
n n ni i i
i i i i

i

u u u
u u t t u u x

x
b

β λ
β

+ + −

 
 − +

= + ∆ −∆ − ∆ + 

                   (26) 

4. Numerical Experiments for 1D 

We, as an example, have taken 1D signals ( ) ( ) ( ) [ ]exp 0.1 sin , 0,25u x x x x= ⋅ ∈  and 

( ) ( ) ( ) [ ]sin cos , 0,25u x x x x= + ∈  given in Figure 1(a) and Figure 1(b) respectively. When Gaussian white  

noise is added to them, we get noisy signals. 
In our test, we will use the signal to noise ratio (SNR) of the signal u to measure the level of noise, defined as 

2
SNR ,Lu u

σ
−

=                                   (27) 

where u  is the mean of the signal u, i.e., the ratio of the standard deviation of the signal over the standard 
deviation of the noise. 

The standard deviation of noisy signals (given in Figure 1(c) and Figure 1(d)) are approximately 0.5σ ≈  
and 0.04σ ≈  respectively whereas their SNR are 0.99 and 0.95 respectively. 

We use β σ=  (σ  is the standard deviation of the noise) and the Langrange multiplier 0.005λ =  [18]. 
Figure 1(e) and Figure 1(f) represent the denoised signals after 80 iterations with SNR 1.1≈  and 1.12 
respectively. 
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(a)                                      (b)                                      (c) 

 
(d)                                      (e)                                      (f) 

Figure 1. (a) (b) Original signals; (c) (d) Corresponding noisy signals; (e) (f) Corresponding denoised signals by model (22).    
 

We have performed many other experiments on 1D signals obtaining similar results. 

5. Numerical Experiments for 2D 
In our tests, we use peak signal to noise ratio (PSNR) as a criteria for the quality of restoration. This quality is 
usually expressed in terms of the logarithmic decibel scale: 

( ) ( )( )

2

10
2

new
,

PSNR 10log ,
1 , ,

n

i j

R

u i j u i j
mn

 
 
 =
 − 
 

∑
                     (28) 

where ( ) ( )( )new, ,u i j u i j−  are the differences of the pixel values between the original and denoised images  

and R is the maximum fluctuation in the input image data. 
When Gaussian white noise with mean zero and variance 2σ  is added to the original images, we get noisy 

images. In our experiment, we have considered the images corrupted with different levels of Gaussian noise. 
Figures 3(a)-(c), Figures 4(a)-(c) and Figures 5(a)-(c) contain noisy images with different levels of Gaussian 
noise. The results obtained by using models (10) and (11) are shown in Figures 3-5 and Tables 1-3. We have 
taken Lagrange multiplier 0.85λ =  as was used in references [19] and [11]. We can choose 3210β −=  [11], 
the smallest positive machine number. 

We have used three gray scale images, Goldhill ( )256 256× , Rice ( )256 256×  and Boat ( )512 512×  
shown in Figure 2 for our denoising experiments. 

The values of PSNR obtained using model (11) given in Tables 1-3 are larger than that of using model (10) at 
the same iteration number. Thus based on PSNR values and also on human perception, we conclude that the 
model (11) gives better denoised images than that of model (10). 

6. Concluding Remarks 
We have presented a new time dependent model (11) to solve the nonlinear total variation problem for image 
denoising. The main idea is to apply a priori smoothness on the solution image. Nonlinear explicit schemes are  
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(a)                                      (b)                                      (c) 

Figure 2. Original test images used for different experiments. (a) Goldhill: 256 × 256; (b) Rice: 256 × 256; (c) Boat: 512 × 
512.                                                                                                          
 

 
(a)                                      (b)                                      (c) 

 
(d)                                      (e)                                      (f) 

 
(g)                                      (h)                                      (i) 

Figure 3. (Top row) Noisy Goldhill images with different levels of Gaussian noise (a)-(c), σ2 = 0.06, 0.08, 0.10, respectively; 
(Second row) (d)-(f) corresponding denoised images by model (10); (Third row) (g)-(i) by model (11).                                    
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(a)                                      (b)                                      (c) 

 
(d)                                      (e)                                      (f) 

 
(g)                                      (h)                                      (i) 

Figure 4. (Top row) Noisy Rice images with different levels of Gaussian noise (a)-(c); σ2 = 0.06, 0.08, 0.10, respectively; 
(Second row) (d)-(f) corresponding denoised images by model (10); (Third row) (g)-(i) by model (11).                       
 
Table 1. Results obtained by using models (10) and (11) applied to the images in Figure 3 with three different levels of 
Gaussian noise (σ2 = 0.06, 0.08 and 0.10).                                                                     

Images PSNR Images PSNR Images PSNR 

 (Noisy images)  (Model-10)  (Model-11) 

Figure 3(a) 13.18 Figure 3(d) 18.79 Figure 3(g) 19.30 

Figure 3(b) 12.23 Figure 3(e) 17.43 Figure 3(h) 18.06 

Figure 3(c) 11.52 Figure 3(f) 16.35 Figure 3(i) 17.10 

- - No. of 
iterations 

5 No. of 
iterations 

5 
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(a)                                      (b)                                      (c) 

 
(d)                                      (e)                                      (f) 

 
(g)                                      (h)                                      (i) 

Figure 5. (Top row) Noisy Boat images with different levels of Gaussian noise (a)-(c); σ2 = 0.06, 0.08, 0.10, respectively; 
(Second row) (d)-(f) corresponding denoised images by model (10); (Third row) (g)-(i) by model (11).                           
 
Table 2. Results obtained by using models (10) and (11) applied to the images in Figure 4 with three different levels of 
Gaussian noise (σ2 = 0.06, 0.08 and 0.10).                                                                      

Images PSNR Images PSNR Images PSNR 

 (Noisy Images)  (Model-10)  (Model-11) 

Figure 4(a) 13.36 Figure 4(d) 19.10 Figure 4(g) 19.39 

Figure 4(b) 12.38 Figure 4(e) 17.85 Figure 4(h) 18.26 

Figure 4(c) 11.64 Figure 4(f) 16.86 Figure 4(i) 17.38 

- - No. of 
iterations 

5 No. of 
iterations 

5 
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Table 3. Results obtained by using models (10) and (11) applied to the images in Figure (5) with three different levels of 
Gaussian noise (σ2 = 0.06, 0.08 and 0.10).                                                                               

Images PSNR Images PSNR Images PSNR 

 (Noisy images)  (Model-10)  (Model-11) 

Figure 5(a) 12.96 Figure 5(d) 17.07 Figure 5(g) 17.50 

Figure 5(b) 11.97 Figure 5(e) 15.75 Figure 5(h) 16.28 

Figure 5(c) 11.27 Figure 5(f) 14.73 Figure 5(i) 15.33 

- - No. of 
iterations 

5 No. of 
iterations 

5 

    

 
used to discretize models (10) and (11). The model (11) gives larger PSNR values than that of model (10), at the 
same iteration numbers. Besides, a new time dependent model (22) to solve the signal denoising in 1D has also 
been given. 
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