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Abstract 
The aim of the present study was to investigate the status of oxidative stress in the serum of chil-
dren affected with autism spectrum disorder. Twenty autistic children aged 3 to 12 years, were 
gender and age-matched with 20 typically developing children. Changes in the levels of the re-
dox-sensing transcription factor nuclear factor-kappa B (NF-κB) was measured in serum of autis-
tic children and controls. Other oxidative stress biomarkers such as malondialdehyde, reduced 
glutathione, total antioxidant capacity, catalase activity, and paraoxonase 1 activity were deter-
mined in serum as well. Significant increase was observed in serum NF-κB of autistic children 
compared to that in controls (by 138.6%). There was also marked increase in malondialdehyde 
level by 87.3% in autistic patients. Meanwhile, there were significant decreases in reduced glu-
tathione (by 24%), catalase activity (by 40.8%), paraoxonase 1 activity (by 36.6%), and total an-
tioxidant capacity (by 36.5%) compared to the control group. These data clearly demonstrate in-
creased oxidative stress in serum of autistic children and suggest that the NF-κB signaling path-
way is activated in autism, possibly due to increased oxidative burden. 
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1. Introduction 
Autism spectrum disorder is a pervasive neurodevelopmental disorder that affects children and is characterized 
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by difficulties in communication and social interaction, defects in attention, cognitive, and learning abilities and 
by repetitive and stereotypic behaviors [1]. More males are affected than females with a ratio of 4:1 [2] [3]. The 
exact cause of autism is still not known. Increased oxidative stress [4], impaired mitochondrial function [5], 
immune dysregulation [6], and increased brain inflammation [7], are among pathogenetic processes implicated. 
Both genetic [8], and environmental factors e.g., diet, bacterial or viral infection, xenobiotics [9]-[11] have been 
suggested to have a role in this disorder. 

Oxidative stress and neuroinflammation are the two major processes involved in neurodevelopmental and 
neurodegenerative disorders [12] [13]. Oxidative stress ensues when the cell’s antioxidant mechansims are 
overwhelmed by excessive free radicals. With its relatively low content of antioxidants, the high content of 
polyunsaturated fatty acids and the presence of redox active metals (Cu++, Fe+++), the brain tissue seems highly 
vulnerable to free radical attack [12]. Indeed oxidative stress is frequently encountered in several central nervous 
system diseases including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, multiple 
sclerosis, and schizophrenia [12] [14]-[16]. Several enzymatic and non-enzymatic antioxidants act to maintain 
the redox status of the cell [2] [17]. In brain, glutathione is the most abundant antioxidant in the cell and a de-
crease in this thiol is a feature in several neurodenenerative diseases. Glutathione serves as a reducing agent and 
as antioxidant. It exists in both a reduced state as well as an oxidized form, and the relative amounts of each de-
termine the redox status of the cell [18]-[20].  

Nuclear factor κB (NF-κB) is a protein transcription factor that functions to enhance the transcription of a 
number of genes, involved in the control of the cellular immune and inflammatory response [21]. NF-κB was 
first described in 1986 as a nuclear factor that binds to the enhancer element of the immunoglobulin kappa light- 
chain of activated B cells [22]. The NF-κB family of transcription factors comprise five members designated as 
p65 (RelA), RelB, c-Rel, NF-κB1 and NF-κB2 and that in quiescent cells bound to inhibitory molecules of the 
IκB family of proteins. NF-κB is kept in the cytoplasm inactivated by IκB. Once activated by release from the 
IκB/NF-κB complex, NF-κB translocates to the nucleus and acts to orchestrate the transcription of enzymes e.g., 
inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2), cytokines e.g., interleukin 1β (IL-1β), 
IL-2, 6, 8, tumour necrosis factor-alpha (TNF-α), interferon, growth factors, cell adhesion molecules, immu-
noreceptors, monocytes chemoattractant protein-1 (MCP-1) and stress proteins [21] [23]-[25].  

The aim of the present study was to investigate the antioxidant status in children affected with autism spec-
trum disorder by measuring the changes in the levels of the redox transcription factor NF-κB in serum autistic 
children and controls. Other indices of oxidative stress, namely serum malondialdehyde as an index of damage 
to macromolecules (lipid peroxidation) [26], reduced glutathione, catalase as well as total antioxidant capacity 
were also measured. We in addition determined the activity of paraoxonase 1 enzyme, a detoxifying enzyme in-
volved in the hydrolysis of organophosphate and many xenobiotics [27] and which has been shown of signifi-
cance in neurological diseases [28].  

2. Patients and Methods 
2.1. Patients Selection  
This cross sectional case-control study was conducted on 20 autistic children and adolescents diagnosed accord-
ing to the 4th edition of Diagnostic and Statistical Manual of Mental Disorders (DSM IV) [1] that was done by a 
child psychiatrist. Patients were recruited from Pediatric Psychiatry Clinic, Children’s hospital, Faculty of 
Medicine, Cairo University, Egypt during the period from 2013-2014. They were 15 males and 5 females. Their 
ages ranged between 3 and 12 years with a mean age 5.67 ± 0.59 years. None of the patients had underlying 
conditions apart from autism (syndromic causes, chromosomal or metabolic abnormalities). Autistic patients 
were studied in comparison to 20 healthy age-, sex- and pubertal stage-matched children and adolescents serving 
as controls. The latter had no clinical findings suggesting neither neuropsychiatric manifestations nor any or-
ganic health problems and medications affecting our result. An informed written consent of participation in the 
study was signed by the parents or legal guardians of the studied subjects. This study was approved by the Bio-
ethical Research Committee, Faculty of Medicine, Cairo University hospitals, Egypt. 

2.2. Laboratory Investigations 
2.2.1. Quantification of NF-κB 
NF-κB was measured in serum using commercially available human NF-κB ELISA kit (Glory Science Co., Ltd., 
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Del Rio, TX, USA) according to manufacture instructions. The kit uses a double antibody sandwich enzyme- 
linked immunosorbent assay to assay the level of NF-κB. The detection range of the kit is: 100 U/L - 2000 U/L. 

2.2.2. Determination of Lipid Peroxidation 
Lipid peroxidation was assayed in serum by measuring the thiobarbituric-acid-reacting substances in tissue ho-
mogenates, as previously described by Ruiz-Larrea et al. [29] in which the thiobarbituric acid reactive sub-
stances react with thiobarbituric acid to produce a red colored complex having peak absorbance at 532 nm (us-
ing UV-VI8 Recording Spectrophotometer (Shimadzu Corporation, Australia)). 

2.2.3. Determination of Reduced Glutathione 
Reduced glutathione was determined according to the method of Beutler et al. [30]. The procedure is based on 
the reduction of Ellman’s reagent by-SH groups of GSH to form 2-nitro-s-mercaptobenzoic acid, which is in-
tense yellow in colour and determined spectrophotometrically at 412 nm. 

2.2.4. Determination of Total Antioxidant Capacity 
Total serum antioxidant activity was determined by the reaction of antioxidants in the sample with a defined 
amount of exogenously provide hydrogen peroxide (H2O2). The antioxidants eliminate a certain amount of the 
provided H2O2. The residual H2O2 is determined colorimetrically by an enzymatic reaction which involves the 
conversion of 3, 5, dichloro-2-hydroxy benzensulphate to a colored product [31]. 

2.2.5. Determination of Catalase Activity 
Catalase activity in brain supernatants was determined spectrophotometrically at 510 nm using a commercially 
available kit (Biodiagnostics, Cairo, Egypt). Catalase reacts with a known quantity of H2O2. The reaction is 
stopped after exactly one minute with catalase inhibitor. In the presence of peroxidase, remaining H2O2 reacts 
with 3,5-dichloro-2-hydroxybenzene to form a chromophore with a color intensity inversely proportional to the 
amount of catalase in the original sample [32]. 

2.2.6. Determination of Paraoxonase 1 Activity 
Paraoxonase 1 activity was determined spectrophotometrically using phenylacetate as a substrate. Aryl esterase/ 
paraoxonase catalyze cleavage of phenyl acetate into phenol that is measured at wavelength 270 nm at 25˚C. 
The working reagent consisted of 20 mM Tris/HCl buffer, pH 8.0, containing 1 mM CaCl2 and 4 mM phenyl 
acetate as the substrate. Samples diluted 1:3 in buffer are added and the change in absorbance is recorded fol-
lowing a 20 sec lag time. Absorbance at 270 nm was taken every 15 s for 120 s. One unit of arylesterase activity 
is equal to 1 μM of phenol formed per minute. The activity is expressed in kU/L, based on the extinction coeffi-
cient of phenol of 1310 M−1∙cm−1 at 270 nm, pH 8.0, and 25˚C. Blank samples containing water are used to cor-
rect for the spontaneous hydrolysis of phenylacetate [33] [34]. 

3. Statistical Analysis 
Data are expressed as mean ± SEM. Statistical analysis of the data was analyzed by Student’t test, using SPSS 
software (SAS Institute Inc., Cary, NC). A probability value of less than 0.05 was considered statistically sig-
nificant. 

4. Results 
Serum NF-κB concentrations were significantly higher by 138.6% (P < 0.001) in patients with autism (322.52 ± 
18.2 U/L; range 195 - 610) compared with the control group (mean 135.14 ± 11.3 U/L; range 101.1 - 167.4) 
(Figure 1). 

In autistic children, serum malondialdehyde increased by 87.3% from a mean of 57.6 ± 3.2 μmol/L (range, 
44.3 - 66.30 μmol/L) in control group to 107.9 ± 6.1 μmol/L (range, 73.67 - 152.0 μmol/L) (P < 0.001) in chil-
dren with autistic disorder (Figure 2). Meanwhile, there was a significant decrease in reduced glutathione in se-
rum in children with autism by 24% (P < 0.001) from control values of 7.5 ± 0.29 μmol/L (range 7.13 - 8.5) in 
the control group to 5.71 ± 0.21 μmol/L (range 5.1 - 6.41) (Figure 3). 

Catalase activity in serum decreased by 40.8% in autistic children from control values of 21.01 ± 1.84 U/mL  
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Figure 1. Nuclear factor-kappa B (NF-κB) in serum of autistic 
children and healthy controls. ***P < 0.001 vs. control.             

 

 
Figure 2. Serum malondialdehyde levels in children with au-
tism and healthy subjects. ***P < 0.001 vs. control.                   

 

 
Figure 3. Serum reduced glutathione levels in children with au- 
tism and healthy subjects. **P < 0.01 vs. control.                        

 
(range 17.81 - 30.57) in the control group to 12.44 ± 1.07 U/mL (range 14.61 - 4.71) (Figure 4). In children with 
autistic disorder, serum total antioxidant capacity also decreased by 36.5% (P < 0.01) from a mean of 3.18 ± 0.29 
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μmol/L (range, 1.6 - 4.4 μmol/L) in control group to 2.02 ± 0.16 μmol/L (range, 1.10 - 4.3 μmol/L) in those with 
autism (Figure 5). Serum paraoxonase 1 activity also significantly decreased by 36.6% (P < 0.01) from control 
values of 297.42 ± 21.0 kU/L (range 229.1 - 335) in the control group to 188.58 ± 15.9 kU/L (range 137.3 - 
229.2) in autistic children (Figure 6). 
 

 
Figure 4. Catalase activity in serum of autistic children and 
healthy controls. ***P < 0.001 vs. control.                             

 

 
Figure 5. Total antioxidant capacity in serum of children with 
autism and healthy subjects. **P < 0.01 vs. control.                      

 

 
Figure 6. Paraoxonase 1 activity in serum of children with au-
tism and healthy subjects. **P < 0.01 vs. control.                        
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5. Discussion 
The findings in the present study provided the evidence that the redox sensitive transcription factor NF-κB is in-
creased in serum of children with autism spectrum disorder. This transcription factor has been shown to be an 
important regulator of the expression of many cytokines, chemokines, cell adhesion molecules and acute phase 
proteins and enzyme genes involved in the cellular inflammatory and immune response [21]-[25]. NF-κB is a 
sensor of oxidative stress in that its activity is regulated by the levels of intracellular reactive oxygen metabolites 
and activation can be inhibited by a variety of antioxidants and by overexpression of antioxidant enzymes [21]. 
Measurement of NF-κB activity can thus be used as a functional biomarker of oxidative stress [35]. IκBα/NF-κB 
pathway is also involved in regulating redox-dependent regulation of cytokines [24].  

There is evidence to suggest the involvement of the NF-κB signaling pathway in the inflammatory process in 
the autistic brain. Significant increase in NF-κB DNA binding activity in blood samples from children with au-
tistic disorder has also been reported using electrophoretic mobility shift assay [36]. Studies indicated increased 
NF-κB activity in brain of autistic individuals. In human post-mortem samples of orbitofrontal cortex tissue, 
concentrations of NF-κB were elevated, especially in activated microglia. Neurons, astrocytes, and microglia all 
demonstrated increased extra nuclear and nuclear translocated NF-κB p65 expression [37]. Malik et al. [38], 
however, suggested that the NF-κB signaling pathway is not disregulated in the brain of autistic subjects. In their 
study, the level of IKKα kinase, which phosphorylates the inhibitory subunit IκBα (and thus the dissociation of 
NF-κB from the IκB/NF-κB complex and its translocation to the nucleus) was significantly increased in the 
cerebellum of autistic subjects but the expression and phosphorylation of IκBα were not altered.  

In the cell both antioxidant enzymatic machinery and non-enzymatic antioxidant molecules act to neutralize 
excess free radicals and maintain the intracellular redox balance. These are the cytosolic copper-zinc superoxide 
dismutase and the mitochondrial manganese superoxide dismutase, catalase, glutathione peroxidase, glutathione 
reductase, and non-enzymatic antioxidants e.g., thiols, ascorbate, tocopherols, carotenoids, and uric acid [17] [39] 
[40]. “Oxidative stress” is the term used to describe the state in which there is an imbalance between prooxidants 
and antioxidants in favor of the prooxidants. The result is damage to cellular macromolecules (proteins, lipids, 
DNA) and disruption of redox signaling and cell control [40] [41]. Increased levels of oxidative damage, how-
ever, does not necessarily indicate increased oxidative stress (i.e., increased free radical generation), but can be 
encountered when antioxidant mechanisms are reduced and become inadequate to control the levels of reactive 
oxygen species [41]-[43]. The present study demonstrated increased oxidative stress, i.e., increased serum con-
centrations of the lipid peroxidation product malondialdehyde, a surrogate of increased free radical attack on 
membrane lipids. Moreover the present study showed reduced concentrations of the antioxidant molecule re-
duced glutathione and the antioxidant enzyme catalase in autistic children. The tripeptide glutathione (γ-gluta- 
mylcysteinylglycine) is the most abundant nonprotein thiol in cells [20]. In the brain tissue where there is pau-
city of antioxidant mechanisms, glutathione plays an important role in preventing oxidative stress and maintain-
ing the redox equilibrium in the cell. Glutathione participates either by directly scavenging reactive oxygen and 
nitrogen intermediates (e.g., superoxide, nitric oxide, hydroxyl radical, and peroxynitrite) or by acting as a 
co-factor for glutathione peroxidase and glutathione reductase [44] [45]. In autistic children there is evidence for 
glutathione redox imbalance both in the peripheral blood and brain. Thus, decreased total glutathione content in 
peripheral blood from autistic patients has been reported [46]. Significantly increased non-protein-bound iron (a 
pro-oxidant factor) has also been found in plasma of autistic children. Erythrocyte glutathione decreased and 
4-hydroxynonenal protein adducts increased in erythrocyte membranes and in plasma, indicting lipid peroxida-
tion-induced protein damage [47]. Moreover, lymphoblastoid cells derived from autistic children exhibited de-
creased reduced glutathione/oxidized glutathione redox ratio and increased percentage of oxidized glutathione in 
both cytosol and mitochondria [48]. Significant decreases in reduced glutathione and increases in oxidized glu-
tathione were detected in the cerebellum and temporal cortex from subjects with autism [49]. It has also been 
shown that the activity of glutathione peroxidase and glutathione-S-transferase enzymes as well as glutamate 
cysteine ligase, the rate limiting enzyme for glutathione synthesis decreased in cerebellar tissue of autistic pa-
tients [50]. Glutathione depletion plays important role in several neuropathological disease states e.g., Parkin-
son’s disease, schizophrenia, and major depression and replenishing cellular glutathione have been advocated as 
a therapeutic approach in these conditions [19] [51] [52]. Increasing glutathione levels through nasal or intrave-
nously given glutathione or via its oral precursor N-acetylcysteine might also prove of value in autistic individu-
als.  
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Methods for measuring total antioxidant capacity were developed as simple, single and quick tests for evalu-
ating the oxidative status in plasma and biological tissues. Instead of measuring the concentrations of individual 
antioxidants, the total antioxidant capacity is largely thought to reflect the overall capacity of antioxidants and 
antioxidant enzymes in a biological sample [53]-[55]. Total antioxidant capacity decreases in patients with CRF 
[54], HIV patients [56], during chemotherapy for malignancy [57] [58]. In this study, reduced total antioxidant 
capacity was demonstrated in sera of autistic children, suggesting decreased endogenous antioxidants. 

Paraoxonases are a group of detoxifying enzymes which comprises three isoforms: PON1, PON2 and PON3. 
Paraoxonases hydrolyze the toxic oxon metabolites of several organophosphate insecticides (e.g., chlorpyrifos 
oxon, diazoxon), the nerve agents such as sarin, soman as well as many different substrates and xenobiotics [25]. 
The paraoxonase family of enzymes has recently received attention for their postulated role in several neuro-
logical disorders [26]. The paraoxonase 1 (PON1) enzyme is synthesized in the liver and released into circula-
tion where it binds with high density lipoproteins and protects low density lipoproteins and cellular membranes 
from oxidative damage [33] [59] [60]. It possesses organophosphatase, arylesterase and lactonase activities [60] 
and exerts peroxidase activities that may be important in neurodegenerative disorders associated with oxidative 
stress [26]. Plasma levels of this enzyme decreases in neurological diseases such as multiple sclerosis during re-
lapse [61], major depression [62], patients with Alzheimer’s disease or other dementias [63] [64]. In the present 
study, we observed significantly decreased arylesterase activity in serum of autistic children. Gaita et al. [65] 
reported significantly decreased serum PON 1 arylesterase, but not diazoxonase activity, in patients with autism 
compared to controls and first-degree relatives. A functional rather than quantitative change in protein amounts 
accounting for the reduction in PON 1 activity has been suggested. Serum PON1 (and PON3) is inactivated un-
der oxidative stress [66] [67] and it is possible that the decreased arylesterase activity of the enzyme observed in 
neurological diseases and in autism is due to the increased level of oxidative stress in these disease conditions. 

In summary, we demonstrated increased lipid peroxidation and decreased antioxidant mechanisms in serum of 
children with the autistic disorder compared to healthy controls. The increased oxidative stress is likely to ac-
count for the activation of the NF-κB pathway in these patients. 
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