
Advances in Linear Algebra & Matrix Theory, 2015, 5, 1-15
Published Online March 2015 in SciRes. http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2015.51001

How to cite this paper: Tabanjeh, M.M. (2015) New Approach for the Inversion of Structured Matrices via Newton’s Itera-
tion. Advances in Linear Algebra & Matrix Theory, 5, 1-15. http://dx.doi.org/10.4236/alamt.2015.51001

New Approach for the Inversion of
Structured Matrices via Newton’s Iteration
Mohammad M. Tabanjeh
Department of Mathematics and Computer Science, Virginia State University, Petersburg, VA, USA
Email: mtabanjeh@vsu.edu

Received 14 January 2015; accepted 5 February 2015; published 10 February 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Newton’s iteration is a fundamental tool for numerical solutions of systems of equations. The
well-known iteration () 1 2 , 0i i iX X I MX i+ = − ≥ rapidly refines a crude initial approximation

0X to the inverse of a general nonsingular matrix. In this paper, we will extend and apply this me-
thod to n n× structured matrices M , in which matrix multiplication has a lower computational
cost. These matrices can be represented by their short generators which allow faster compu-
tations based on the displacement operators tool. However, the length of the generators is tend to
grow and the iterations do not preserve matrix structure. So, the main goal is to control the grow-
th of the length of the short displacement generators so that we can operate with matrices of low
rank and carry out the computations much faster. In order to achieve our goal, we will compress
the computed approximations to the inverse to yield a superfast algorithm. We will describe two
different compression techniques based on the SVD and substitution and we will analyze these
approaches. Our main algorithm can be applied to more general classes of structured matrices.

Keywords
Newton Iteration, Structured Matrices, Superfast Algorithm, Displacement Operators,
Matrix Inverse.

1. Introduction
Frequently, matrices encountered in practical computations that have some special structures which can be
exploited to simplify the computations. In particular, computations with dense structured matrices are ubiquitous
in sciences, communications and engineering. Exploitation of structure enables dramatic acceleration of the
computations and a major decrease in memory space, but sometimes it also leads to numerical stability problems.

http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2015.51001
http://dx.doi.org/10.4236/alamt.2015.51001
http://www.scirp.org
mailto:mtabanjeh@vsu.edu
http://creativecommons.org/licenses/by/4.0/

M. M. Tabanjeh

2

The best-known classes of structured matrices are Toeplitz and Hankel matrices, but Cauchy and Vandermonde
types are also quite popular. The computations with such matrices are widely applied in the areas of algebraic
coding, control, signal processing, solution of partial differential equations and algebraic computing. For ex-
ample, Toeplitz matrices arise in some major signal processing computations and Cauchy matrices appear in the
study of integral equations and conformal mappings. The complexity of computations with n n× dense
structured matrices dramatically decreases in comparison with the general n n× matrices, that is, from the
order of 2n words of storage space and nω arithmetic operations (ops) with 2.37 3ω< ≤ in the best
algorithms, to ()O n words of storage space and to ()2logO n n ops (and sometimes to ()logO n n ops)
(Table 1). The displacement rank r for an m n× Toeplitz and Hankel matrix is at most 2. A matrix is
Toeplitz-like or Hankel-like if r is small or bounded by a small constant independent of m and n . Those
matrices can be represented by ()m n r+ entries of its short displacement generators instead of mn entries
which leads to more efficient storage of the entries in computer memory and much faster computations [1]. In
this paper, we will focus our study on Newton’s iteration for computing the inverse of a structured matrix and
we will analyze the resulting algorithms. This iteration is well-known for its numerically stability and faster
convergence. Newton’s iteration

()1 2 , 0i iX X I MX i+ = − ≥i (1)

for matrix inversion was initially proposed by Schultz in 1933 and studied by Pan and others. The authors of [2]
described quadratically convergent algorithms for the refinement of rough initial approximations to the inverse
of Toeplitz and Toeplitz-like matrices and to the solutions of Toeplitz and Toeplitz linear systems of equations.
The algorithms are based on the inversion formulas for Toeplitz matrices. The Cauchy-like case was studied in
[3]. Since those matrices can be represented by their short generators, which allow faster com- putations based
on the displacement operators tool, we can employ Newton’s iteration to compute the inverse of the input
structured matrices. However, Newton’s iteration destroys the structure of the structured matrices when used.
Therefore, in Section 5 we will study two compression techniques in details, namely, truncation of the smallest
singular values of the displacement and the substitution of approximate inverses for the inverse matrix into its
displacement expression to preserve the structure. Finally, each iteration step is reduced to two multiplications
of structured matrices and each iteration is performed by using nearly linear time and optimal memory space
which leads to superfast algorithm, especially if the input matrix is a well-conditioned structured matrix. Our
main algorithm of Section 6 can be applied to more general classes of structured matrices. We will support our
analysis with numerical experiments with Toeplitz matrices in Section 7.

2. Definition of Structured Matrices
Definition 1 A matrix

1
, , 0

n
i j i j

T t
−

=
 =   is a Toeplitz matrix if , 1, 1i j i jt t + += for every pair of its entries ,i jt and

1, 1i jt + + . A matrix
1

, , 0

n
i j i j

H h
−

=
 =   is a Hankel matrix if , 1, 1i j i jh h − += for every pair of its entries ,i jh and

1, 1i jh − + . For a given vector () 1

0

n
i i

v −

=
=v , the matrix ()V V= v of the form

1

, 0

nj
i i j

V v
−

=
 =   is called a Vander-

monde matrix. Given two vectors s and t such that i js t≠ for all i and j , the n n× matrix (),C C= s t

is a Cauchy (generalized Hilbert) matrix where ()
1

, 0

1,
n

i j i j

C
s t

−

=

 
=  

−  
s t .

Example 1
3 4 6

1 3 4
2 1 3

T
− 
 = − 
 − 

,
2 1 3
1 3 4
3 4 6

H
− 

 = − 
 − 

, ()
1 2 4
1 1 1
1 3 9

V
 
 = − 
 
 

v , and ()

1 11
4 5
1 1, 1

2 7
1 1 1

10 5 11

C

 − 
 
− − = − 

 
  
 

s t

are 3 3× Teoplitz, Hankel, Vandermonde, and Cauchy matrices respectively that can be represented by the
5-dim vector ()T6 4 3 1 2= −T , the 5-dim vector ()T2 1 3 4 6= −H , the 3-dim vector

()T2 1 3= −v , and the 3- dim vectors ()T1 5 7= −s and ()T3 2 4= − − −t respectively.
We refer the reader to [4] and [5] for more details on the basic properties and features of structured matrices.

M. M. Tabanjeh

3

3. Displacement Representation of Structured Matrices
The concept of displacement operators and displacement rank, initially introduced by Kailath, Kung, and Morf
in 1979, and studied by other authors such as Bini and Pan, is a powerful tool for dealing with matrices with
structure. The displacement rank approach was intended for more restricted use when it was initially introduced
in [6] (also [7]), namely, to measure how “close” to Toeplitz a given matrix is. Then the idea turned out to be
even deeper and more powerful, thus it was developed, generalized and extended to other structured matrices. In
this paper, we consider the most general and modern interpretation of the displacement of a matrix M (see
Definition 2). The main idea is, for a given structured matrix M , we need to find an operator L that
transforms the matrix M into a low rank matrix ()L M , such that one can easily recover M from its image
()L M and operate with low rank matrices instead. Such operators that shift and scale the entries of the

structured matrices turn out to be appropriate tools for introducing and defining the matrices of Toeplitz-like,
Hankel-like, Vandermonde-like, and Cauchy-like types which we will introduce in Definition 4.

Definition 2 For any fixed field F (say the complex field C) and a fixed pair { },A B of operator
matrices, we define the linear displacement operators : m n m nL F F× ×→ of Sylvester type { },A BL = ∇ :

() (),A BL M M AM MB= ∇ = − (2)

and Stein type { },A BL = ∆ :

() { } (),A BL M M M AMB= ∆ = − . (3)

The image ()L M of the operator L is called the displacement of the matrix M . The operators of
Sylvester and Stein types can be transformed easily into one another if at least one of the two associated operator
matrices is nonsingular. This leads to the following theorem.

Theorem 1 { } { }1, ,A B A B
A −∇ = ∆ if the operator matrix A is nonsingular, and { } { }1, ,A B A B

B−∇ = −∆ if the

operator matrix B is nonsingular.
Proof. { } () () { } ()1

1 1
, ,A B A B

M AM MB AM AA MB A M A MB A M−
− −∇ = − = − = − = ∆ , and

{ } () () () { } ()1
1 1 1

, ,A B A B
M AM MB AMB B MB AMB M B M AMB B M B−

− − −∇ = − = − = − = − − = −∆ . 

The operator matrices that we will use are the unit f-circulant matrix

()1 1 0

0 0
1 0

, , ,

0 1 0

f n

f

Z f−

 
 
 = =
 
 
 



 



   



e e e , and the diagonal matrix () ()() 1

1
diag

n
i i

D v
−

=
=v . Note that

()0 1 1, , ,0nZ Z −= = e e is unit lower triangular Toeplitz matrix.

()

0 1 1

1 1 0
0

1

1 1 0

n

n i
f i fi

n

n

u fu fu
u u

Z u Z
fu

u u u

−

−

=
−

−

 
 
 = =
 
 
 

∑



 

  



u is an f-circulant for a vector ()iu=u . For example,

() ()0Z Z=u u is a lower triangular matrix.

Table 1. Parameters and flops (floating point arithmetic operations) count.

m n× Matrix M Number of parameters flops for Mv

General mn 2mn m n− −

Toeplitz 1m n+ − () ()()logO m n m n+ +

Hankel 1m n+ − () ()()logO m n m n+ +

Vandermonde m () ()()2logO m n m n+ +

Cauchy m n+ () ()()2logO m n m n+ +

M. M. Tabanjeh

4

Example 2 (Toeplitz Matrices). Let
1

, 0

n
i j i j

T t
−

− =
 =   . Then if we apply the displacement operator of Sylvester

type (2) to Toeplitz matrix T using the shift operator matrices 1Z and 0Z , we will get:

{ } ()
1 0

1 2 0 1 1 1 1 1 1 0

0 1 1 1
1 0,

3 1

2 1 1 2 0 1

0
0 0

0
0 0 0

n n n n n

n n
Z Z

n

n n n

t t t t t t t t t t
t t t t

T Z T TZ
t t

t t t t t t

− − − − − − −

− − −

− −

− − − − −

− −     
     
     ∇ = − = − =
     
     

    

  

     

        

  

.

This operator displaces the entries of the matrix T so that the image can be represented by the first row and
the last column. Furthermore, the image is a rank 2 matrix

Notice that the operator matrices vary depending on the structure of the matrix M . We use shift operator
matrices (such as fZ and T

fZ for any scalar f) for the structures of Toeplitz and Hankel type, scaling
operator matrices (such as ()D x) for the Cauchy structure, and shift and scaling operator matrices for the
structure of Vandermonde type. One can restrict the choices of f to 0 and 1. However, other operator
matrices may be used with other matrix structures (see Table 2).

Definition 3 For an m n× structured matrix M and an associated operator { },A BL = ∇ , or { },A BL = ∆ ,
the number ()()rankr L M= is called the L -rank or the displacement rank of the matrix M .

The constant r in Definition 3 usually remains relatively small as the size of M grows large, that is, r is
small relative to ()min ,m n , say ()1r O= or { }()min ,r O m n= as m and n grow large. In this case, we

call the matrix L -like and having structure of type L . Now let us recall the linear operators L of (2) and (3)
that map a matrix M into its displacements:

() { } () T
,A BL M M AM MB GH= ∇ = − = (4)

and

() { } () T
,A BL M M M AMB GH= ∆ = − = (5)

where A and B are operator matrices of Table 2, ()1, , lG = g g and ()1, , lH = h h are l n× ma-
trices. Then the matrix pair (),G H is called a (nonunique) L -generator (or displacement generator) of length
l for M , ()()rankl r L M≥ = (the L -rank or the displacement rank of M). If M is an m n× matrix
and l is small relative to m and n , then M is said to have L -structure or to be an L -structured matrix.
The displacement () TL M GH= (as a matrix of small rank) can be represented with a short generator defined
by only a small number of parameters. For instance, the singular value decomposition (SVD) of the matrix
()L M of size m n× gives us its orthogonal generator that consists of two generator matrices G and H

having orthogonal columns and of sizes m r× and n r× respectively, that is a total of ()m n r+ entries. The
matrix pair (),G H is called an L -generator (or displacement generator) of length r for M . It is also a
generator of length r for ()L M . Note that the pair (),G H is nonunique for a fixed ()L M . In particular,
for Toeplitz, Hankel, Vandermonde, and Cauchy matrices, the length r of the associated generators (4) and (5)
is as small as 1 or 2 for some appropriate choices of the operator matrices A and B of Table 2. The four
classes of structured matrices are naturally extended to Toeplitz-like, Hankel-like, Vandermonde-like, and Cauchy-
like matrices, for which r is bounded by a fixed (not too large) constant.

Definition 4 An m n× matrix M is Toeplitz-like if ()()rankr L M= is small relative to { },m n and if

Table 2. Operator Matrices for { } (),A B M∇ and { } (),A B M∆ .

Structured Matrices Operator Matrices for { },A B∇ Operator Matrices for { },A B∆ Rank of { },A B∇ or { },A B∆

Toeplitz (),e fZ Z or ()T T,e fZ Z , e f≠ ()T ,e fZ Z or ()T,e fZ Z , 1ef ≠ rank 2≤

Hankel ()T,e fZ Z or ()T ,e fZ Z , 1ef ≠ ()T T,e fZ Z or (),e fZ Z , e f≠ rank 2≤

Vandermonde ()(), fD Zx or ()()1 T, fD Z− y ()()1 , fD Z− y or ()()T, fD Zx rank 1≤

Cauchy () ()(),D Dx y () ()()1,D D−x y or () ()()1 ,D D− x y rank 1≤

M. M. Tabanjeh

5

M is given with its L -generator of length ()l O r= , where ,e fZ ZL = ∇ , T T,e fZ Z
L = ∇ , T,e fZ Z

L = ∇ , and

T ,e fZ Z
L = ∇ for a fixed pair of scalars e and f . A matrix M is Hankel-like if MJ or JM is Toeplitz-

like where ()1 0

0 0 1
0

, ,
0
1 0 0

nJ −

 
 
 = =
 
 
 



  



  



e e is the reflection matrix.

Therefore, the problems of solving Toeplitz-like and Hankel-like linear systems are reduced to each other.
Remark 1 In the case where the operator L is associated with Toeplitz, Hankel, Vandermonde, or Cauchy

matrices M , we call an L -like matrix Toeplitz-like, Hankel-like, Vandermonde-like, or Cauchy-like matrix,
respectively, and we say that the matrix has the structure of Toeplitz, Hankel, Vandermonde, or Cauchy type
respectively. To take advantage of the matrix structure, we are going to COMPRESS the structured input matrix
M via its short L-generators based on Theorem 2 below, then we will OPERATE with L-generators rather
than with the matrix itself, and finally RECOVER the output from the computed short L-generators.

Definition 5 A linear operator L is nonsingular if the matrix equation () 0L M = implies that 0M = .
Definition 6 We define the norm of a nonsingular linear operator L and its inverse 1L− as follows:

()
()

, sup d
r d M

d

L M
L

M
µ µ

 
 = =
 
 

 and () ()
1

, sup d
r d M

d

M
L

L M
µ µ− −

 
 = =
 
 

, for 1,2,d = ∞ , or F , and where

the supremum is taken over all matrices M having a positive L -rank of at most r . In this case the condition
number κ of the operator L is defined as () () ()1

, ,cond r d r dL L Lκ µµ µ µ− − −= = =

Theorem 2 [8] Let G and H be a pair of n l× matrices, ()1, , lG = g g and ()1, , lH = h h , where
ig and ih denote the i -th columns of G and H respectively. Let () TL M GH= . Then we have one of

the following Toeplitz type matrices: () ()1

1 l
e j f jjM Z Z J

e f =
=

− ∑ g h , where ,e fZ ZL = ∇ , e f≠ .

() ()T
1

1
1

l
e j f jjM Z Z

ef =
=

− ∑ g h , where T,e fZ Z
L = ∆ , 1ef ≠ . () ()1

1 l
e j f jjM Z Z J

e f =
=

− ∑ g h , where

T,e fZ Z
L = ∇ , e f≠ . () ()T

1

1
1

l
e j f jjM Z Z J J

ef =
=

− ∑ g h , where T,e fZ Z
L = ∆ , 1ef ≠ .

Theorem 3 Let M be a nonsingular matrix, then we have the following:
1) () ()1 1 1

, ,A B B AM M M M− − −∇ = − ∇ .

2) () ()1 1 1 1
, ,A B B AM AM M A M− − − −∆ = ∆ , if A is a nonsingular matrix.

3) () ()1 1 1 1
, ,A B B AM M B M M B− − − −∆ = ∆ , if B is a nonsingular matrix.

Proof.
1) () () ()1 1 1 1 1 1 1 1 1

,A B M AM M B M B AM M BMM M MAM− − − − − − − − −∇ = − = − − = − −

 () ()1 1 1 1
, ,B AM BM MA M M M M− − − −= − − = − ∇

2) ()1 1 1 1 1 1 1 1 1 1 1 1 1
,A B M M AM B AA M AM BMM AM MA M AM BMAA M− − − − − − − − − − − − −∆ = − = − = −

() ()1 1 1 1 1 1
, ,B AAM M BMA A M AM M A M− − − − − −= − = ∆

3) ()1 1 1 1 1 1 1 1 1 1 1
,A B M M AM B M B B AM B M B MM B M MAM B− − − − − − − − − − −∆ = − = − = −

() ()1 1 1 1 1 1 1 1 1 1 1 1
, .B AM B MM B M B BMAM B M B M BMA M B M B M M B− − − − − − − − − − − −= − = − = ∆ 

Theorem 4 Let a pair of n l× matrices G and H form a ,A B∇ -generator of length l for a nonsingular
matrix M . Write 1M G U− = − and 1 TTH M W− = . Then ()1 T

,B A M UW−∇ = .
Proof. By Theorem 3, () ()1 1 1 1 T 1 T

, ,B A A BM M M M M GH M UW− − − − −∇ = − ∇ = − = , where 1M G U− = −

and T 1 TH M W− = . 

M. M. Tabanjeh

6

4. Newton’s Iteration for General Matrix Inversion
Given an n n× nonsingular matrix A and an initial approximation 0X to its inverse 1A− that satisfies the
bound 0 1I X Aρ = − < for some positive ρ and some fixed matrix norm, Newton’s iteration (1) can be
written in the form

() ()1 2 2 2 ; 0i i i i i i i iX X I AX X X AX I X A X i+ = − = − = − ≥ (6)

and rapidly improves the initial approximation 0X to the inverse. 0X can be supplied by either some
computational methods such as preconditioning conjugate gradient method or by an exact solution algorithm
that requires refinement due to rounding errors.

Lemma 1 Newton’s iteration (6) converges quadratically to the inverse of an n n× nonsingular matrix A .
Proof. From (6) , since 1 2i i i iX X X AX+ = − , 0i ≥ , then

() () ()
12 4 2

1 1 02
i

i i i i i iI X A I X A X AX A I X A I X A I X A
+

+ −− = − + = − = − = = − . We define the error matrices
1

i iE A X−= − , 0i ≥ and the residual matrices i i iR E A I X A= = − , 0i ≥ . Since 0 1I X Aρ = − < , then
2i

iI X A ρ− < and hence the norm of the residual matrices iR is bounded above by 2i
ρ . This proves that

Newton’s iteration converges quadratically. 
If 0> is a given residual norm bound, the bound

iI X A− <  (7)

is guaranteed in 2
loglog
logρ

  
  

  


 recursive steps (6), where x   stands for the smallest integer not exceeded

by x . (7) also implies that 1
i iA A X I X A−⋅ − ≤ − <  . Since 1 1A A− ⋅ ≥ , it follows that

1

1

iA X

A

−

−

−
<  ,

so that the matrix iX approximates 1A− with a relative error norm less than  .
Remark 2 Each step of Newton’s iteration (6) involves the multiplication of A by iX , the addition of 2 to

all of the diagonal entries of the product, which takes n additions, and the pre-multiplication of the resulting
matrix by iX . The most costly steps are the two matrix multiplications; each step takes 3n multiplications and

3 2n n− additions for a pair of general n n× input matrices A and 0X . Of course, this cost will be reduced
if the input matrix is structured (see Section 5).

Example 3 (Newton’s iteration versus linear convergent schemes.) Let 1 2ρ = and 610−= . Then by
quadratic convergence of Newton’s iteration, we only need 5 iterative steps of (6) to compute 5X that satisfies
the bound ()326 2

5 10 1 2
i

I X A ρ−− < = < = and hence 1 1
5A X A− −− <  . If we consider any linearly

convergent scheme such as Jacobi’s or Gauss-Seidels’s iteration ([9], p. 611) for the same input matrix, the
norm of the error matrix of the computed approximation to 1A− decreases by factor 2 in each iteration step.
The error norm decreases to below 12 i− − in i iteration steps, so this will take 19 iteration steps to ensure the
bound (7) for the same 610−= .

5. Newton’s Iteration for Structured Matrix Inversion
5.1. Newton-Structured Iteration
In Section 4, we showed that for a general input matrix A , the computational cost of iteration (6) is quite high
because matrix products must be computed at every step (see Remark 2). However, for structured matrices M ,
matrix multiplication has a lower computational cost of ()1 2 logO r r n nβ flops for 2β ≤ , provided that we
operate with displacement generators of length 1r and 2r for the two input matrices M and 0X res-
pectively. So if M and 0X are structured matrices, say Toeplitz or Toeplitz-like, the computations required
for the Newton’s iteration can be carried out more efficiently. In general, for the four classes of structured
matrices of Definition 1, we usually associate various linear displacement operators L of Sylvester type

(),A B M∇ and/or Stein type (),A B M∆ . In this case, Newton’s iteration can be efficiently applied and rapidly
improves a rough initial approximation to the inverse, but also destroys the structure of the four classes of

M. M. Tabanjeh

7

structured matrices. Therefore, Newton’s iteration has to be modified to preserve the initial displacement struc-
ture of the input structure matrix during the iteration and maintain matrix structure throughout the computation.
The main idea here is to control the growth of the length of the short displacement generators so that we can
operate with matrices of low rank and carry out the computations much faster. This can be done based on one of
the following two techniques. The first technique is to periodically chop off the components corresponding to
the smallest singular values in the SVDs of the displacement matrices defined by their generators. This tech-
nique can be applied to a Toeplitz-like input matrix. For a Cauchy-like input matrix C , there is no need to
involve the SVD due to the availability of the inverse formula for 1C− [10]. The second technique is to control
the growth of the length of the generators. This can be done by substituting the approximate inverses for the
inverse matrix into its displacement. Here we assume that the matrices involved can be expressed via their
displacement generators. Now, let us assume that the matrices M and 0X have short generators ,A B∆ and

,B A∆ respectively. So by operating with short ∆ -generators of the matrices M , iX , and iMX (or iX M),
we will have to modify Newton’s iteration and use one of the above two techniques to control the length of a

,B A∆ -generator of iX , which seems to triple at every iterative step of (6). The same technique applies in the
case when ,A B∇ and ,B A∇ -generators are used. In this paper, we restrict our presentation to ∇ -generators
(see Theorem 1).

5.2. SVD-Based Compression of the Generators
For a fixed operator L and a matrix M , one can choose the orthogonal (SVD-based) L -generator matrices
to obtain better numerical stability [11].

Definition 7 A matrix m mU C ×∈ is said to be unitary iff U U I∗ = . For real matrices, U is orthogonal iff
TU U I= . If []1, , mU = u u is orthogonal, then iu form an orthogonal basis for mC .
Definition 8 Every m n× matrix W has its SVD (singular value decomposition):

, , m r n rW U V U C V C∗ × ×= Σ ∈ ∈ (8)

()1, diag , ,r rU U V V I σ σ∗ ∗= = Σ =  (9)

1 2 1 0r r nσ σ σ σ σ+≥ ≥ ≥ > = = =  (10)

where ()rankr W= , 1, , rσ σ are singular values of the matrix W, U ∗ and V ∗ denote the Hermitian
(conjugate) transpose of the orthogonal matrices U and V , respectively. That is,

T
U U∗ = and

T
V V∗ = .

Note that if U and V are real matrices, then TU U∗ = and TV V∗ = . Based on the SVD of a matrix W,
its orthogonal generator of the minimum length is defined by

, G U H V= = Σ (11)

However, one can use an alternative diagonal scaling, in this case (11) can be written as
1 2 1 2, G U H V= Σ = Σ . (12)

Note that if ()W L M= for a matrix M , then the pair (),G H is an orthogonal L-generator of minimum
length for the matrix M .

Example 4 Consider the following matrix
T

T0.96 1.72 0.6 0.8 3 0 0.8 0.6
2.28 0.96 0.8 0.6 0 1 0.6 0.8

W U V
−     

= = = Σ     −     
.

Using Matlab command “ [] (), ,U S V svd W= ” produces the above results. Clearly, 1 3σ = is the largest
singular value and 2 1σ = is the smallest singular value. ()rank 2r W= = , 12 3W σ= = , and

2 2 2
1 2 10FW σ σ= + = (Frobenius norm). Furthermore, by (12), 1 2 1.0392 0.8

1.3856 0.6
G U

− 
= Σ =  

 
 and

1 2 1.3856 0.6
1.0392 0.8

H V  
= Σ =  − 

. Note that () T 0.96 1.72
2.28 0.96

W L M GH  
= = =  

 
.

Remark 3 In numerical computation of the SVD with a fixed positive tolerance ε to the output errors
caused by rounding (ε is the output error bound which is also an upper bound on all the output errors of the

M. M. Tabanjeh

8

singular values iσ and the entries of the computed matrices U and V and for ()W L M=), one truncates
(sets to zero) all the smallest singular values iσ up to ε . This will produce a numerical orthogonal generator
(),G Hε ε of ε -length rε for a matrix W , which is also a numerical orthogonal L-generator for M . Here,
rε is the ε -rank of the matrix ()W L M= , which is equal to the minimum number of the singular values of
the displacement ()L M exceeding ε , ()rankr r Wε ≤ = .

Theorem 5 ([9], p. 79) Given a matrix W of rank r and a nonnegative integer k such that k r< , it
holds that ()1 rank 2mink S k W Sσ + ≤= − . That is, the error in the optimal choice of an approximate of W whose

rank does not exceed k is equal to the ()1k + -th singular value of W .
Theorem 6 If M is a nonsingular matrix, then ()() ()()1

, ,rank rankA B B AM M −∇ = ∇ .

Proof. ()() () ()1 1 1 1
,rank rank rankB A M BM M A B M AM− − − −∇ = − = − . On the other hand,

()() () () ()() ()1 1 1
,rank rank rank rank rankA B M AM MB M AM B B M AM B M AM− − −∇ = − = − = − − = − . This

implies that ()() ()()1
, ,rank rankA B B AM M −∇ = ∇ . 

Definition 9 Let ()(),ranki B A ik k X= = ∇ , 3k r≤ , i∀ . We define
1 1

, , 1, 2, and d i i i id
e X M d e X M− −= − = ∞ = − (13)

1 1
,ˆ ˆ, 1, 2, and d i i i id

e Y M d e Y M− −= − = ∞ = − . (14)

6. Our Main Algorithm and Results
Outline of the Techniques

By Theorem 6, we assume that ()() ()()1
, ,rank rankA B B Ar M M −= ∇ = ∇ and ()()0 , 0rank A Br X= ∇ . The ma-

trices iX that approximate 1M − for large i have a nearby matrix of ,B A∇ -displacement rank r for large
i . This fact motivates the following approach to decrease the computational cost of the iteration in (6): We will
replace iX in (6) with a nearby matrix iY having ,B A∇ -displacement rank of at most r and then restart the
iteration with iY instead of iX . The advantage of this modification is the decrease of the computational cost at
the i -th Newton step and at all subsequent steps. However, the disadvantage is a possible deterioration of the
approximation, since we do not know 1M − , and the transition from iX to iY may occur in a wrong direction.
But since iX and iY are supposed to lie close to 1M − , hence they both lie close to each other. This
observation enables us to bound the deterioration of the approximation relative to the current approximation
error, so that the quadratic improvement in the error bound at the next step of Newton’s iteration will imme-
diately compensate us for such a deterioration. Furthermore, the transition from iX to a nearby matrix iY of a
small displacement rank can be done at a low computational cost. In the next main algorithm we describe this
approach for Sylvester type operators only. The same results can be extended to Stein operators L using
Theorem 1 with slight modifications to the technique and the theory.

Algorithm 1 (Newton’s Iteration Using Sylverster Type Operators)
INPUT: An integer 0r > , two matrices A and B defining the operator ,A B∇ , an n n× nonsingular

structured matrix M having ,A B∇ -rank r and defined by its ,A B∇ -generator (),G H of length at most r ,
a sufficiently close initial approximation 0Y to the inverse 1M − given with its ,B A∇ -generator of length at
most r , an upper bound λ on the number of Newton’s iteration steps, and a compression subalgorithm 1C
or 2C for the transition from a ,B A∇ -generator of length at most 3r for an n n× matrix approximating

1M − to ,B A∇ -generator of length at most r for a nearby matrix.
OUTPUT: A ,B A∇ -generator of length at most r for a matrix Yλ approximating 1M − .
COMPUTATION: For 0, , 1i n= − , recursively compute a ,B A∇ -generators of length at most 3r for the

matrices

()1 2i i iX Y I MY+ = − (15)

and then apply the compression subalgorithm 1C or 2C (transition from 1iX + to 1iY +) to the matrix 1iX +
to compute ,B A∇ -generators of length at most r for the matrices 1iY + .

M. M. Tabanjeh

9

At the i -th step of (15) of Algorithm 1, a ,B A∇ -generator of length at most 3r for the matrix 1iX + can be
computed using ()logO rn nβ flops, for 2β ≤ . As mentioned earlier, the main idea is to control the growth of
the length of the short displacement generators. So the question is how can we control the length of the
computed L -generators? That is, we need to compress the length of the generators. Therefore, to complete
Algorithm 1, we need to introduce two compression subalgorithms, namely, subalgorithm 1C and 2C . First,
we describe the compression subalgorithm 1C based on the SVD of the displacement (),B A iX∇ . To do this,
we compute the SVD based orthogonal generator of the displacement () (),i B A iW L X X= = ∇ and decrease the
length of the L -generator to r by zeroing (truncating) all singular values iσ for 1i r≥ + . Then output the
resulting orthogonal ,B A∇ -generator of at most r for a nearby matrix iY which is unique and lies near iX .

Remark 4 By Theorem 5 we can deduce that () () () ()1
, , , ,2B A i B A i B A i B AX Y X M −∇ −∇ ≤ ∇ −∇ because

()()1
,rank B A M r−∇ ≤ and this also implies that iY lies near iX if the operator ,B A∇ is invertible.

Lemma 2 (1) () () ()(), , 1 ,2B A i B A i r B A iX Y Xσ +∇ −∇ = ∇ , (2) () () ()1
, ,B A B A i iM X A B e−∇ −∇ ≤ + , where

ie as in (13).
Proof. 1) Since ()12M Mσ= (largest singular value), then (1) follows from this fact. 2) Since

()1 1 1
,B A M BM M A− − −∇ = − then (),B A i i iX BX X A∇ = − . Now,

() () () ()1 1 1 1 1
, ,B A B A i i i i iM X BM M A BX X A B M X M X A− − − − −∇ −∇ = − − + = − − −

() ()1 1 1 1

i i i iX M A B X M X M A B X M− − − −= − − − ≤ − ⋅ + ⋅ −

() ()1 .i iA B X M A B e−≤ + − = +



Lemma 3 () () (), , 2,2 22B A i B A i iX Y A B e∇ −∇ ≤ + , where 2,ie as in (13).

Proof. Using the estimate from ([9], p. 442), that is, for any two matrices A and E ,
() () ()1 2j jA E A E Eσ σ σ+ − ≤ = for 1, ,j n=  and conclude that

()() ()() () ()1 1
, , , , 2j B A i j B A B A i B AX M X Mσ σ − −∇ − ∇ ≤ ∇ −∇ where ()j Wσ are defined in (8) - (10) of

Definition 8. For all j r> we have ()()1
, 0j B A Mσ −∇ = and then we obtain

()() () ()1
, , , 2j B A i B A i B AX X Mσ −∇ ≤ ∇ −∇ . Now, we use (2) of Lemma 2 and deduce

()() (), 2,2 2j B A i iX A B eσ ∇ ≤ + , for j r> . If we combine the latest inequality with equation (1) of Lemma 2
for 1j r= + , then we conclude that () () (), , 2,2 22B A i B A i iX Y A B e∇ −∇ ≤ + . 

Now let us use Lemma 2 and Lemma 3 to prove the bound in the next theorem.
Theorem 7 If ,B A∇ is a nonsingular linear operator and 2,ie is a positive scalar defined in (13), then the

bound ()()1
2,2 21i iY M A B eµ− −− ≤ + + holds for ()()1

,2 ,r B A Mµ µ− −= ∇ of Definition 6.

Proof. By Definition 6 replacing L by ,B A∇ , d = 2, and M by Xi − Yi we have
()

2

, 2

sup i i
M

B A i i

X Y
X Y

µ−
 −
 =
 ∇ − 

,

which implies that () () (), , ,2 2 2i i B A i i B A i B A iX Y X Y X Yµ µ− −− ≤ ∇ − ≤ ∇ −∇ by linearity of ,B A∇ . Now,
1 1 1

22 2 2i i i i i i iM Y M X X Y M X X Y− − −− = − + − ≤ − + − . Then replace 1
2, 2i ie M X−= − and

() (), ,2 2i i B A i B A iX Y X Yµ−− ≤ ∇ −∇ to deduce

() ()1
2, 2, , ,2 22i i i i i B A i B A iM Y e X Y e X Yµ− −− ≤ + − ≤ + ∇ −∇ . Finally, use the inequality of Lemma 3 to

conclude that () ()()1
2, 2, 2,2 2 2 22

1i i i iM Y e A B e A B eµ µ− − −− ≤ + + = + + . This completes the proof. 

Subalgorithm 1 (1C : Compression of Displacement by Truncation of their Smallest Singular Values.)
INPUT: An integer 0r > , two matrices A and B defining the operator ,A B∇ for an n n× nonsingular

structured matrices M , ()() ()()1
, ,rank rankA B B Ar M M −= ∇ = ∇ , and a ,B A∇ -generator (),i iG H of length

M. M. Tabanjeh

10

at most ik k= for a matrix iX such that r k≤ , () T
,B A i i iX G H∇ = .

OUTPUT: A ,B A∇ -displacement generator of length at most r for a matrix iY such that

()()1
2,2 22

1i iY M A B eµ− −− ≤ + + , where 2,ie as in (13) and ()1
,2 ,r A Bµ µ− −= ∇ of Definition 6.

COMPUTATIONS: Compute the SVD of the displacement () T
,B A i i i iX U V∇ = Σ (the computation is not

costly since it is performed with T
i iG H , where iG , in k

iH C ×∈ and since ik is small, see [11]). Set to zero
the diagonal entries 1, ,r kσ σ+  of iΣ , that is, turning iΣ into a diagonal matrix of rank at most r .
(1, ,r kσ σ+  are k r− smallest singular values of the matrix (),B A iX∇ .) Compute and output the matrices

iG∗ , iH ∗ obtained from i iU Σ and iV respectively, by deleting their last k r− columns.
Example 5 For e f≠ , consider the operator ,e fZ ZL = ∇ , () () ()1

l
i e j f jje f X Z Z J

=
− = ∑ g h where the

pair () 1

l
j j

G
=

= g , () 1

l
j j

H
=

= h is the orthogonal, SVD based generator for the displacement ()iL X . Let

()() ()()1
,rank rank

f eZ ZL M M r l− = ∇ = ≤ . Then Subalgorithm 1 is applied to the matrix iX and outputs the

matrix () () ()1
1

r
i e j f jjY e f Z Z J−

=
= − ∑ g h . The computational cost of performing Subalgorithm 1 is dominated

by the computation of the SVD of the displacement which requires ()2 logO ir n nβ flops for 2β ≤ .
Next, we will present the second compression technique based on substitution which does not depend on the

SVD. By Theorem 4 we conclude that () ()1 1 T 1 T 1
,B AL M M UW M GH M− − − −= ∇ = = − , and by Theorem 3 we

also have () () ()1 1 1 1 1
, ,B A A BL M M BM M B M− − − − −= ∆ = ∆ if B is nonsingular, and

() () ()1 1 1 1 1
, ,B A A BL M M M A M M A− − − − −= ∆ = ∆ if A is nonsingular. Clearly this expresses the displacement

of 1M − via the displacement of M , the operator matrices A and B , and the product of the inverse with
2r specified vectors, where ()()rankr L M= for ,A BL = ∇ or ,A BL = ∆ . Now since

()1 1 T 1
,B A M M GH M− − −∇ = − , let us substitute iX for 1M − on the right hand side and define a short ,B A∇ -

generator for the matrix iY :

() T T T T
, , , n r r n

B A i i i i i i i i iY X GH X U W U X G C W H X C× ×∇ = − = = − ∈ = ∈ (16)

Since 1
iX M −≈ , we expect 1

iY M −≈ because () ()1
, ,B A i B AY M −∇ ≈ ∇ .

Subalgorithm 2 (2C : Compression of the displacement by substitution.)
INPUT: An integer 0r > , a pair of n n× operator matrices A and B defining the operator ,B A∇ , a

,A B∇ -generator of length r for a nonsingular n n× matrix M where ()() ()()1
, ,rank rankA B B Ar M M −= ∇ = ∇ ,

and a ,B A∇ -generator ()1 1,i iG H+ + of length at most 3r for a matrix 1iX + of Newton’s iteration (6).
OUTPUT: A ,B A∇ -generator ()1 1,i iU W+ + of length at most r for a matrix 1iY + satisfying the equation

() T
, 1 1 1B A i i iY U W+ + +∇ = with the bound

1
1 1î i i ie Y M eν−
+ += − ≤ (17)

where ()T 12i iGH e Mν µ− −= + , ()1
, ,r l B Aµ µ− −= ∇ of Definition 6, 1îe + of (14), and for ie of (13).

COMPUTATIONS: Compute the matrix products

()1 12i i i iU Y MY I G X G+ += − = − (18)

and

()T T T
1 12i i i iW H Y MY I H X+ += + = . (19)

Now the pair ()1 1,i iU W+ + is a ,B A∇ -generator of length at most r for a matrix 1iY + satisfying the equation
() T

, 1 1 1B A i i iY U W+ + +∇ = . Here we assume the operator ,B AL = ∇ , then the matrix 1iY + is uniquely defined by its L-
generators 1iU + , 1iW + and thus (18) and (19) completely define Newton’s process without involving the matrix

1iX + in ()1 1 2i i iX Y I MY+ += − . This subalgorithm achieves compression because () ()T T
1 1rank ranki iU W GH+ + ≤ ,

and preserves approximation. Since 1
1iX M −
+ ≈ , we deduce from Theorem 3 that

M. M. Tabanjeh

11

()T 1 T 1 1
1 1 ,i i B AU W M GH M M− − −
+ + ≈ − = ∇ . The computation of the n r× matrices of (16) is reduced to multi-

plication of the matrix 1iX + by the ()2n r× matrix (),G H− which requires ()2 logO r n nβ flops for
2β ≤ .

Now, we need to prove bound (17).
Theorem 8 For the matrices j jU X G= − , T T

j jW H X= , T T
j j jE UW U W= − , and for 1

j je X M −= − , we
have ()T T T 12j j j j jE U W UW GH e e M −= − ≤ + .

Proof. Recall the matrix equations 1U M G−= − , and T T 1W H M −= . Then we can write
()1 1 1 1

j j j jU X G X G M G M G X M G M G− − − −− = = − + = − + , and

()T T T T 1 T 1 T 1 T 1
j j j jW H X H X H M H M H X M H M− − − −= = − + = − + . Now, let us write T T

j j jE UW U W= − ,
then

() () () ()
() () () ()

1 T 1 1 T 1 1 T 1 1 T 1

1 T 1 1 T 1 1 T 1 1 T 1 .

j j j j j

j j j j

E M GH M X M GH X M M GH X M X M GH M

M GH M X M GH X M M GH X M X M GH M

− − − − − − − −

− − − − − − − −

= − + − − + − + −

+ = − − + − + −

Now, take the norm of jE :
1 T 1 1 T 1 1 T 1

T 1 T T 1 .

j j j j j

j j j j

E X M GH X M M GH X M X M GH M

e GH e M GH e e GH M

− − − − − −

− −

≤ − ⋅ ⋅ − + ⋅ ⋅ − + − ⋅ ⋅

= + ⋅ + ⋅

Simplifying the latest inequality yield the following bound:

()T T T 1 12 for j j j j j j jE U W UW GH e e M e X M− −= − ≤ + = − (20)



Theorem 9 For 1
î ie M Y−= − and ()T 12i iGH e Mν µ− −= + for ie in (13) and ()1

,B Aµ µ− −= ∇ of
Definition 6. Then we have 1 1 1î i ie eν+ + +≤ for 0i ≥ .

Proof. Recall that ()1 1
1 1 , 1î i B A ie Y M Y Mµ− − −
+ + += − ≤ ∇ − , and since the operator ,B A∇ is linear, then we

have () ()1 T T
1 , 1 , 1 1 1î B A i B A i i ie Y M U W UW Eµ µ µ− − − −
+ + + + +≤ ∇ −∇ ≤ − ≤ . If we use (20) for 1j i= + , we get

()T 1
1 1 1 1 1 1ˆ 2i i i i i ie E GH e e M eµ µ ν− − −
+ + + + + +≤ ≤ + = . Therefore, 1 1 1î i ie eν+ + +≤ . 

7. Numerical Experiments
Algorithm 1 was tested numerically for n n× Toeplitz input matrices M by applying the compression Su-
balgoritm 1. We use Matlab 8.3.0 on a Window 7 machine to run our tests. The Matlab SVD subroutine was
used to obtain the singular value decomposition. In general, the complexity of the SVD on an n n× square
matrix is ()3O n arithmetic operations. However, it is actually applied to structured matrices with smaller rank,
so it is not really expensive. In addition, CLAPACK is one of the faster SVD algorithms that can be applied on
real and complex matrices with less time complexity (see [11]). The tests results are summarized in the follow-
ing example.

Example 6 N refers to number of Newton’s steps, n is the matrix size, K is number of times we ran the
test, ε is a selected bound, and () () () ()2 1cond rM M M Mκ σ σ= = is the condition number of M ,
where ()i Mσ is the i -th condition number of the matrix M . We restricted our numerical experiments to the
following classes of n n× Toeplitz matrices:

1) Real symmetric tridiagonal Toeplitz matrices: () 1
, , 0

n
i j i j

t
−

=
, , 0i jt = where 1i j− > , 1, , 1 1i j i jt t+ += = ,

, 4i it = (the first table of Table 3) or 2− (the second table of Table 3) (see Figure 1).

2) The matrices
1

, 0

1
1

n

i j
i j

−

=

 
  + − 

 (third table represents symmetric positive definite and the fourth table

represents symmetric positive indefinite of Table 3) (see Figure 1).
3) Randomly generated Toeplitz matrices, whose entries are chosen randomly from the interval [)0,1 and

M. M. Tabanjeh

12

are uniformly distributed with mean 0 and standard deviation of 1 (see Table 4 and Figure 2).

For a symmetric positive definite matrix M, the initial matrix 0 0
F

IX Y
M

= = was used, whereas for unsym-

metric and symmetric indefinite Toeplitz matrices M, Newton’s iteration was initialized with
T

0 0
1

MX Y
M M

∞

= = .

Table 3. First top two tables represent Tridiagonal Matrices of Class 1 and the last two tables
represent matrices of Class 2.

n κ N
50 2.9924 6

100 2.9981 6

150 2.9991 6

200 2.9995 6

250 2.9997 6

300 2.9998 6

350 2.9998 6

n κ N
50 31.0535 10× 20

100 34.1336 10× 22

150 39.2402 10× 23

200 41.6373 10× 24

250 42.5533 10× 24

300 42.6719 10× 25

350 44.9931 10× 25

n κ N

50 16.2215 11

100 19.6417 12

150 21.6801 12

200 23.1380 12

250 24.2739 12

300 25.2047 12

350 25.9933 13

n κ N

50 316.2215 10× 8

100 319.6417 10× 8

150 321.6801 10× 9

200 423.1380 10× 9

250 424.2739 10× 9

300 425.2047 10× 9

350 425.9933 10× 9

M. M. Tabanjeh

13

Table 4. Random Matrices of Class 3.

 100n = 0.050=ε

K κ ε N

3 93.8994 0.050 20

7 97.8369 0.050 20

12 23.5604 0.050 17

15 35.1519 0.050 18

190 103.3290 0.050 20

20 82.4028 0.050 20

23 89.0855 0.050 21

 100n = 0.013=

K κ ε N

1 102.0477 0.013 21

4 24.8330 0.013 17

8 58.9206 0.013 19

14 299.1225 0.013 25

17 643.5464 0.013 28

22 258.7756 0.013 25

25 144.0435 0.013 22

 100n = 0.025=

K κ ε N

1 102.0477 0.025 21

3 93.8994 0.025 20

4 24.8330 0.025 17

8 58.9206 0.025 19

10 42.4488 0.025 18

11 139.8939 0.025 23

22 258.7756 0.025 24

 100n = 0.00001=

K κ ε N

1 102.0477 0.00001 23

3 93.8994 0.00001 21

4 24.8330 0.00001 18

7 97.8369 0.00001 22

10 42.4488 0.00001 20

17 643.5464 0.00001 29

22 89.0855 0.00001 22

M. M. Tabanjeh

14

Figure 1. Error verses iterations.

Figure 2. Error verses iterations.

M. M. Tabanjeh

15

Acknowledgements
We thank the editor and the referees for their comments.

References
[1] Kailath, T. and Sayed, A. (1999) Fast Reliable Algorithms for Matrices with Structure. Society for Industrial and Ap-

plied Mathematics, Philadelphia. http://dx.doi.org/10.1137/1.9781611971354
[2] Pan, V.Y., Branham, S., Rosholt, R. and Zheng, A. (1999) Newton’s Iteration for Structured Matrices and Linear Sys-

tems of Equations, SIAM Volume on Fast Reliable Algorithms for Matrices with Structure. Society for Industrial and
Applied Mathematics, Philadelphia.

[3] Pan, V.Y., Zheng, A.L., Huang, X.H. and Dias, O. (1997) Newton’s Iteration for Inversion of Cauchy-Like and Other
Structured Matrices. Journal of Complexity, 13, 108-124. http://dx.doi.org/10.1006/jcom.1997.0431

[4] Bini, D. and Pan, V.Y. (1994) Polynomial and Matrix Computations, Vol. 1 Fundamental Algorithms. Birkhäuser,
Boston.

[5] Pan, V.Y. (2001) Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhäuser, Boston.
[6] Kailath, T., Kung, S.-Y. and Morf, M. (1979) Displacement Ranks of Matrices and Linear Equations. Journal of Ma-

thematical Analysis and Applications, 68, 395-407. http://dx.doi.org/10.1016/0022-247X(79)90124-0
[7] Kailath, T. and Sayed, A.H. (2002) Displacement Structure: Theory and Applications. SIAM Review, 37, 297-386.

http://dx.doi.org/10.1137/1037082
[8] Pan, V.Y. and Rami, Y. (2001) Newton’s Iteration for the Inversion of Structured Matrices. In: Bini, D., Tyrtyshnikov,

E. and Yalamov, P., Eds., Structured Matrices: Recent Developments in Theory and Computation, Nova Science Pub-
lishers, New York, 79-90.

[9] Golub, G.H. and Van Loan, C.F. (2013) Matrix Computations. 4th Edition, John Hopkins University Press, Baltimore.
[10] Heinig, G. (1995) Inversion of Generalized Cauchy Matrices and the Other Classes of Structured Matrices. The IMA

Volume in Mathematics and Its Applications, 69, 63-81.
[11] Pan, V.Y. (1993) Decreasing the Displacement Rank of a Matrix. SIAM Journal on Matrix Analysis and Application,

14, 118-121. http://dx.doi.org/10.1137/0614010

http://dx.doi.org/10.1137/1.9781611971354
http://dx.doi.org/10.1006/jcom.1997.0431
http://dx.doi.org/10.1016/0022-247X(79)90124-0
http://dx.doi.org/10.1137/1037082
http://dx.doi.org/10.1137/0614010

http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	New Approach for the Inversion of Structured Matrices via Newton’s Iteration
	Abstract
	Keywords
	1. Introduction
	2. Definition of Structured Matrices
	3. Displacement Representation of Structured Matrices
	4. Newton’s Iteration for General Matrix Inversion
	5. Newton’s Iteration for Structured Matrix Inversion
	5.1. Newton-Structured Iteration
	5.2. SVD-Based Compression of the Generators

	6. Our Main Algorithm and Results
	Outline of the Techniques

	7. Numerical Experiments
	Acknowledgements
	References

