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Abstract 
Volatility is an important variable in the financial market. We propose a model-free implied vola-
tility method to measure the volatility and test the volatility risk premium. The model-free im-
plied volatility does not depend on the option pricing model, and extracts information from all the 
option contracts. We provide empirical evidence from the S & P 500 index option that model-free 
implied volatility is more accurate to forecast the future volatility and the volatility risk premium 
does not exist. 
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1. Introduction 
During the past twenty years, volatility forecasting and volatility risk premium are becoming more and more 
important in financial engineering. Many works have been found in the theoretical and practical fields. Engle [1] 
proposed the first ARCH model in 1982, Bollerslev [2] and Taylor [3] added the old conditional variance into 
the new estimation of conditional variance, which is the generalized autoregressive conditional heteroskedastic-
ity model (GARCH). Model-free implied volatility originated from the variance swap theory. Dupire [4] and 
Neuberger [5], Demeterfi, Derman, Kamal and Zou (DDKZ) [6] [7], Britten-Jones and Neuberger [8] expanded 
it further. When the underlying asset price jumps exist, Britten-Jones and Neuberger did not state explicitly. 
Since the jump is important in financial asset prices, Jiang and Tian [9] proved the conclusions from Britten- 
Jones and Neuberger remain valid when the price jumps exist, thus ensuring the generalizability of this method. 
Jiang and Tian [10] also demonstrated that DDKZ’s variance fair value and Britten-Jones and Neuberger’s 
yields squares are the same. Besides, they came to a conclusion that the model-free implied volatility has more 
information content than the Black-Scholes implied volatility. In this paper, the theories of the model-free im-
plied volatility and the time series model are used in the American S & P500 index option market. We compare 
model-free implied volatility method with GARCH model from the empirical aspect and test the volatility risk 
premium. 

2. Model-Free Implied Volatility 
The squared volatility can be expressed as the integration of call option forward prices [8]: 
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where, tF  denotes the forward price of the underlying asset at time t. ( ),FC T K  denotes the forward price of 
the call option at time 0, and K is the strike price. 

Through the prices of current option contracts, we can get the long-term expectation for the market volatility. 
The Chicago Board Options Exchange began to use this new approach to calculate S & P500 volatility index 
(VIX) in 2003. 

In Equation (1), strike prices range from zero to infinite, and expiration dates of different options are the same. 
But in the real market, strike prices are discrete and finite, and then Equation (1) can be simplified to Equation 
(2): 
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The above process will bring two types of errors: truncation errors and discretization errors. 
Truncation errors derive from the limited range of strike prices. Strike prices are within a certain range of un-

derlying asset prices. Jiang and Tian [9] discovered that if cut-off points ( maxK  or minK ) are far from 0F , 
truncation errors are small. Truncation errors are negligible if min 0 02K F Fσ< −  or max 0 02K F Fσ> + . Other-
wise, volatilities of cut-off points should be used to replace those out of the strike price interval ( )min max,K K , 
which means volatilities outside the interval are constant. 

Discretization errors derive from discrete strike prices. The interval K∆  between each strike price may vary, 
but will not tend to zero. When K∆  is smaller, the discrete errors is smaller. Jiang and Tian [9] found that the 
discretization error can be ignored when 00.35K Fσ∆ < , where σ  is the realized volatility of the underlying 
assets within the remaining maturity of the option. If 00.35K Fσ∆ > , the cubic spline interpolation method 
should be used to add the missing option prices. 

3. Volatility Forecasting 
Since S & P500 index option is very active during past ten years, we choose all the call options (26 days to 
the expiration date) from February 2006 to February 2014.  

Before the calculation of model-free implied volatility, errors should be analyzed at first. The realized 
volatility σ  varies each day, also does the forward price 0F .  

As Figure 1 shows, the horizontal axis represents observation sequence, and the vertical axis represents  

the multiple: for every highest strike price maxK  each day, max 0

0

multiple
K F

Fσ
−

= ; for every lowest one, 

min 0

0

multiple
K F

Fσ
−

= . Most of them exceed 02 Fσ , which means truncation errors are small.  

In the sample, the strike price interval K∆  is 5 points. Figure 2 shows that discretization errors are 
small in most cases. The horizontal axis represents the observation sequence, and the vertical axis represents 

00.35 Fσ  on each observation day. Almost all the intervals are less than 00.35 Fσ .  
Based on above analysis, discretization errors and truncation errors are relatively small for the sample, 

only a small part needs to use interpolation. 
For a better comparison, we estimate the GARCH model using dynamic scrolling windows, and take the 

out of sample forecasting method [11]. 
According to the AIC criterion, we get the GARCH(1,1) model: 

2
0 1 1 1 1t t th a hα α γ− −= + +  

where, 1 1 1 10 , 1, 1α γ α γ≤ ≤ + < . 
We give three volatility sequences in Figure 3. The horizontal axis represents observation days and the 
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Figure 1. Multiple for strike price (unit: 0Fσ ) 

 

 
Figure 2. Corresponding 00.35 Fσ  on each observation day. 

 
vertical axis represents volatility values. 

From Table 1 we can see these three volatility sequences present positive skewness, and each kurtosis is 
great. In the description of extreme volatility values, the maximum of model-free implied volatility MFσ  is 
closer to realized volatility REσ . Compared with the GARCH model, model-free implied volatility is more 
relevant to realized volatility. 

4. Volatility Risk Premium 
The deviation of implied volatility can be expressed as RE MFσ σ− . 
If the deviation is significantly greater than zero, the implied volatility is always underestimated. People pay 
lower prices to buy options. Investors get excess earnings by purchasing options. There is a positive volatility 
risk premium. 

Conversely, if the deviation is significantly less than zero, it means implied volatility is always overestimated. 
When people buy options, the option prices are higher than the theoretical prices. Investors pay a higher pre-
mium and there is a negative volatility risk premium. 

During the remaining term of the option, volatility determines the option price. But volatility is unknown at 
the time of option pricing and people need to estimate it. Empirical analysis in the previous section has shown 
that the model-free implied volatility is more effective to reflect people’s expectations for the future. It is more 
reasonable to use the model-free implied volatility method to test the volatility risk premium. 

We can see from Table 2 that for options with remaining term of 26 days, the negative deviation of implied  
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Figure 3. Volatility sequences. 

 
Table 1. Descriptive statistics. 

 Mean SD Skewness Kurtosis Min Max Corrcoef with REσ  

REσ  0.182 0.133 2.658 11.682 0.062 0.839 1 

MFσ  0.183 0.127 2.547 12.673 0.028 0.887 0.743 

GARσ  0.151 0.070 2.049 8.165 0.070 0.446 0.557 

 
Table 2. The deviation of implied volatility. 

 Mean Median SD Skewness Kurtosis t statistic P value 

26 days −0.0017 −0.0042 0.0936 1.2001 7.2166 −0.1706 0.8649 

 
volatility is not significant. We cannot reject the null hypothesis that the volatility risk premium does not exist. 

5. Conclusions 
Information in the financial markets are updating every moment. GARCH model uses only the historical yields 
information. The model free implied volatility considers the latest information in the current markets from all 
the option contracts, including strike prices, option prices, the remaining term of options, the risk-free interest 
rate and underlying asset prices. 

After empirical research with different models in the American S & P500 index option market, we found that, 
as a result of the model-free implied volatility method not relying on the option pricing model and extracting 
information from all the option contracts, the information content of the model-free implied volatility is more 
than GARCH model volatility. The model-free implied volatility is more effective to predict the future realized 
volatility. The volatility risk premium does not exist for options with remaining term of 26 days, and Investors 
avoid paying a higher premium in option trading. 
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