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Abstract 
In the framework of the elliptic restricted three-body problem, using a semi-analytic approach, we 
investigate the effects of oblateness, radiation and eccentricity of both primaries on the periodic 
orbits around the triangular Lagrangian points of oblate and luminous binary systems. The fre-
quencies of the long and short orbits of the periodic motion are affected by the oblateness and 
radiation of both primaries, so are their eccentricities, semi-major and semi-minor axes. 
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1. Introduction 
There exist five co-planar equilibrium points in the restricted three-body problem (R3BP), three collinear with 
the primaries (collinear points) and two, form equilateral triangles with the line ( ξ -axis) joining the primaries. 
The collinear points are generally unstable, while the triangular points are conditionally stable. As a result of ro-
tational motion, long and short periodic orbits exist around these points. The shapes, orientation and sizes of the 
orbits are determined by the eccentricities, inclination and the semi-major axes of the orbits. Let us briefly recall 
that the R3BP consists of two massive bodies (primaries) moving in orbits (circular or elliptic) around their 
common barycenter and a third body of negligible mass being influenced, but not influencing them. A typical 
example of the ER3BP is the motion of an asteroid under the gravitational attraction of the Sun and Jupiter. The 
solution to this type of problem which has been developed over the centuries from [1]-[6] and others, forms the 
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basis of the study of the dynamics of celestial bodies, from the computation of the ephemerides to the recent ad-
vances in flight dynamics. 

It is a well-known fact that when at least one of the primary bodies is a source of radiation, the classical re-
stricted three-body problem fails to adequately discuss the motion of the infinitesimal body. Radzievsky [7] was 
the first to circumvent this inadequacy by formulating the photogravitational CR3BP in the cases of the Sun- 
Planet-Particle and Galaxy Kernel-Sun-Particle. The photogravitational restricted three-body problem models 
adequately, the motion of a particle of a gas-dust cloud which is in the field of two gravitating and radiating stars. 
The summary action of gravitational and light repulsive forces may be characterized by the mass reduction fac-
tor q. The effect of radiation pressure(s) has been the subject of many studies. The existence and stability of 
equilibrium points were studied by [8] and [9] in the case when only one body radiates, while [10]-[26] in the 
cases when both bodies are luminous. Also, Das et al. [10] examined numerically the effect of radiation on the 
stability of retrograde trajectories around Jupiter and the smaller of the primaries in RW-Monocerotis and Kruger- 
60. They found a reduction of the size of the region of stability around the binaries due to third order resonances. 
The double stellar systems form a considerable part of all stellar systems; as a result, the motion of a particle in 
their neighborhood may be of particular interest. Lastly, [23] investigated the motion of a dust particle in orbit 
with a dark oblate, degenerate primary and a stellar secondary companion moving in elliptic orbits around their 
common centre of mass. 

The classical restricted three-body problem considers the bodies to be strictly spherical, but in the solar (e.g., 
Earth, Jupiter and Saturn) and stellar (e.g., Achernar, Alfa Arae, Regulus, VFTS 102, Vega and Altair) systems, 
some planets and stars are sufficiently oblate to justify the inclusion of oblateness in the study of motion of ce-
lestial bodies. Therefore, [19], [23]-[35] have included oblateness and/or radiation of one or both primaries in 
their communications. Taking account of the oblateness of the Earth, Ammar et al. [35] have conducted an ana-
lytic study of the motion of a satellite and solved the equations of the secular variations in a closed form, while 
Abouelmagd [34] analyzed the effect of oblateness of the more massive primary up to J4 in the planar CR3BP 
and proved that the positions and stability of the triangular points are affected by this perturbation. 

The orbits of most celestial and stellar bodies are elliptic rather than circular; as a result, the study of the ellip-
tic restricted three-body problem (ER3BP) can have significant effects. When the primaries’ orbit is elliptic, a 
nonuniformly rotating-pulsating coordinate system is commonly used. These new coordinates have the felicitous 
property that, the positions of the primaries are fixed; however, the Hamiltonian is explicitly time-dependent [5]. 
Such an oscillating coordinate system has been introduced by using the variable distance between the primaries 
as a unit of length of the system by which distances are divided. Several studies [23]-[26], [36]-[42] and [43] 
have examined the influence of the eccentricity of the orbits of the primary bodies with or without radiation 
pressure(s). Zimovshchikov and Tkhai [39] established the conditions of stability of the collinear and triangular 
points for various values of the eccentricity of the Keplerian orbits and the mass ratio of the primary bodies. Fi-
nally, Singh and Umar [23]-[26] considering both luminous primaries to be oblate spheroids as well investigated 
the existence of triangular, collinear and the out of plane equilibrium points in the ER3BP respectively. 

A vast number of researches [44]-[52] have been conducted on periodic orbits in the R3BP under various 
considerations. The consideration of the primaries as either point masses or spherical in shape may leave out a 
good number of practical problems. This is as a result of the fact that most celestial and stellar bodies are axi-
symmetric and their orbits are elliptic. The re-entry of artificial satellites and the minimization of station keeping 
have shown the importance of periodic orbits. The existence of two families of periodic motions near the La-
grangian solutions in the plane CR3BP was shown for arbitrary values of the parameter μ by Charlier [44] and 
Plummer [45], while Sarris [36] studied the families of symmetric-periodic orbits in the three-dimensional ellip-
tic problem with a variation of the mass ratio μ and the eccentricity e. Khanna and Bhatnagar[22], [49] and [53] 
have studied the long and short periodic orbits around the Lagrangian point(s). Also, Mittal et al. [32] in ex-
amining periodic orbits, determined periodic orbits for different values of the mass parameter μ, energy constant 
h, and oblateness factor A. Beevi and Sharma [52] and Abdouelmagd and El-Shaboury [54] explored the effect 
of the oblateness of Saturn on the periodic orbits and the regions of quasi-periodic motion around both primaries 
in the Saturn-Titan system and combined effects of oblateness and radiation on periodic orbits in the circular 
framework of the restricted three-body problem respectively. 

In this communication, we investigate in the elliptic framework the long and short periodic orbits around the 
triangular points when both primary bodies emit light energy simultaneously and are oblate spheroids as well. 
The analytic results obtained are applied to the binary systems of mass ratio 0 0.03µ< ≤  and to Algol. 
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The paper is organized as follows: Section 2 provides the equations of motion for the system under investiga-
tion; Section 3 computes the long and short periodic orbits and Section 4 describes the eccentricities, semi-ma- 
jor and semi-minor axes; while Sections 5 & 6 are the numerical analysis and conclusion respectively. 

2. Equations of Motion 
2.1. Force Due to Radiation Pressure 
The radiation pressure force pF  acts opposite to the gravitational attraction force gF  and changes with distance 
by the same law, this force tends to reduce the effective mass of a particle. The resulting force on the particle is 
given by 

( ) 1 pi
gi pi ig i gi

gi

F
F F F F q F

F
 

= − = − =  
 

 

where 1 pi
i

gi

F
q

F
= − , a constant for a given particle, is the mass reduction factor. We denote the radiation factors as  

iq  ( )1,2i =  for the bigger and smaller primaries such that 0 1 1iq< −  . So that instead of mass 1m  and 2m , 
we have 1 1m q  and 2 2m q  in the force function. 

2.2. Force Due to Oblateness 
The force due to oblateness of the primaries of masses im  ( )1,2i =  is given by [55] as,  
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where iAE  and iAP  are the dimensional equatorial and polar radii of the bigger and smaller primaries. 

Let iV  be the potential due to oblateness, then, i

i

V
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= −
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Equating their right hand sides, and then integrating with respect to ir  , we obtain 
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Thus, the equations of motion of the test particle are presented here in a dimensionless-rotating-pulsating 
coordinate system as: 

2 ,    2 ,    ξ ζξ η η ξ η ζ′′ ′ ′′ ′ ′′− = Ω + = Ω = Ω                            (1) 

with the force function 

( ) ( ) ( )2 21 2 1 1 12 2 2 2
2 3 3

1 2 1 2

1 111
2 2 2

q A qq A qe
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µ µµ µξ η−  − − +

Ω = − + + + +  
   

             (2) 

The mean motion, n , is given by 
  

( )
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1 22
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2
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a e

 + + + 
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+
                                             (3) 

( )22 2 2 2
1 2

1 2

,    ,    1 ,    i i
mr

m m
ξ ξ η ζ ξ µ ξ µ µ= + + + = − = − =

+
                     (4) 

with, 1 2 m m  as the masses of the bigger and smaller primaries positioned at the points ( )0,0iξ , 1, 2i = ; 1q , 
2q  are their radiation pressure factors; 1 2 A A  are their oblateness coefficients; ir , ( )1,2i =  are the distances 
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of the infinitesimal mass from the bigger and smaller primaries, respectively; while a  and e  are respectively 
the semi-major axis and eccentricity of the orbits. 

3. Periodic Orbits 
The triangular Lagrangian points ( )4,5 0 0,L ξ η±  are given by [23] 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )( )

2 3 2 3 2 3 2 32 2
1 1 2 1 1 2 1 2 2 2

2 3 2 32
1 1 2 1 1

1
22 3 2 3 2 3 2 32 2

1 1 2 1 1 2 1 2 2 2

1 1 1 1 ,
2 2

1

1   1 2 1 2 1 .
4

aq e A A A aq aq e A A A aq

aq e A A A aq

aq e A A A aq aq e A A A aq

ξ µ

η

− −

−

− −

 = − + − − − + − − − − +  

= ± − − − +

− + − − − + − − − − + 

    (5) 

We give these points a small displacement ( ),x y  and obtain the characteristic equation as [24] 

( ) ( )24 0 0 2 0 0 04 0ξξ ηη ξξ ηη ξηλ λ− Ω +Ω − +Ω Ω − Ω =  

The superscript 0 indicate that the partial derivatives are to be evaluated at the equilibrium points ( )0 0,ξ η , 
and we consider only linear terms in 1a α= − , 1i iq χ= −  ( )1,2i = , neglecting the products of α , iχ  and 

iA  and 2e  in evaluating the partial derivatives. The characteristic eqn. has pure imaginary roots in the interval 
0 cµ µ< < , where 0.0385cµ =  is the critical mass ratio. Thus, motion in this vicinity is bounded and made up 
of two harmonic motions with frequencies 1s  and 2s  given by 
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and 
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The terms 1C , 1S , 1C  and 1S  are called the long period terms while 2C , 2S , 2C  and 2S  are the short 
period terms, 1 11q χ= −  and 2 21q χ= −  finally, E  is the eccentric anomaly. 

4. Elliptic Orbits 
The function Ω  around the triangular point 4L  is expressed as 

( ) ( ) ( ) ( )
0 0

0 2 0 2 3 30
2 2

x xy y x yξξ ηη
ξη

Ω Ω
Ω = Ω + +Ω + +                      (7) 

Which is a quadratic form in x  and y , indicating that the periodic orbits around 4L  are elliptic and we 
write it as 2 2Px Qxy Ry LΩ = + + + , with 
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Using the transformation, cos sinx x yψ ψ= − ; sin cosy x yψ ψ= +  by introducing the variables x  and 
y , we obtain what is equivalent to a rotation of the coordinate system x, y through an angle ψ . Ψ  is chosen 

such that the term containing x y in Ω  vanishes. The new quadratic form is thus 2 2Px Qxy Ry LΩ = + + + . 
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But 0Q = , means 
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H
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5. Eccentricities of the Ellipses 
The function around the triangular point is given by Equation (7), but, 2C = Ω  implies that 
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The determinant of which is 
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The characteristic equation of the associated matrix is thus 
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The roots are 
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The eccentricities of the ellipses are given by (Szebehely 1967) ( )
1

2 21i ie φ= − , 2
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i

i

s
s

φ
λ

=
+  

where λ  is one of the roots of Equation (10). For 1i = , we have 
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( ) ( ) ( ) ( )( )( )
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And therefore, 
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Semi-Major and Semi-Minor Axes 
The semi-major and semi-minor axes of the periodic orbits are given by 
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and 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

2 32 3
1

2 32 3 2

2 22 2

2 32 3
1 2

22
1 2

3 211 1 1 12 1
2 6

1       4 2 1 38 1 10 1
3
8 4 40 32       1 1 1
9 9 9 3
4 2 20 16       1 1 1
9 9 9 3

8 4       1 3 1
3 3

 

b

e

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ α

µ µ µ µ µ µ χ χ

µ µ µ µ µ χ χ

= + − − − + −

− − − − − − −

 − − − + − − − 
 
 − − − + − − − + 
 

 + − − − − − 
 

( ) ( ) ( )( )( )

( )( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 32 3
1 2

1
22 2

1 2 1 2

2 32 3
2

2 32 3 2

2      1 2 1 20 1 48 1
3

       1 4 2 2 1 2 1

13 25 99 2431 1 1 1
4 104 416 104

35 9 177 405       1 1 1
52 208 208 52

116       
39 2

A A

A A A A

b

e

µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ

− − − + − − − +

+ − − − − − − − 

= − − − − + −
 − + − + − − − 
 

−
− + ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 32 3

2 32 3
1 2

22
1 2

2 32 3
1 2

19 271 1
6 52 13

18 19 27       1 1
39 52 104 26

1 8 4 9 243       1 1
26 3 3 104 416
4 3 77 163       1 1 1

13 26 52 26
1       

A A

µ µ µ µ α

µ µ
µ µ µ µ χ χ

µ µ µ µ µ χ χ

µ µ µ µ µ µ

 
+ − − − 

 
− 

− + + − − − + 
 
  + − − − − − −  

  
 − + − + − − − + 
 

− ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

22
1 2

2 2 32
1

22 2 3
2

9 2431 1 4 2
26 104 416

3 1 27 6 27       1 1 1
26 104 13 26

3 27 6 27       1 1 1
26 104 13 26

A A

A

A

µ µ µ µ µ

µ
µ µ µ µ µ µ

µ µ µ µ µ µ µ

  − − − − − −  
  

− 
− + − − − − − 
 

 − + − − − − −    

                (14) 

6. Numerical Analysis 
Following Singh and Umar [24], [in which the stability of triangular points for the problem under consideration 
was examined for the binary systems, Achird (eta Cassiopeia, Luyten 726-8, Alpha Centaurus AB, Kruger 60 1 
and Xi Bootis] we compute the frequencies of the long and short periodic orbits, their eccentricities, semi-major 
and semi-minor axes using Equations (6), (12), (13) & (14) and present them in Table 1 for some assumed val-
ues of oblateness, radiation pressures, semi-major axis and eccentricities of the primaries for binary systems 
with mass ratio in the range 0 0.03µ< ≤ . Tables 2-5 show respectively effects of eccentricity, semi-major axis 
and radiation factor of the bigger primary on the frequencies of the long and short periodic orbits, their eccen-
tricities, semi-major and semi-minor axes for 0.02µ =  and for the binary system Algol. These effects are  
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Table 1. Frequencies of the long and short periods, their eccentricities, semi-major and semi-minor axes for 1 0.9q = ; 

2 0.8q = ; 0.9a = ; 0.2e =  and 0 0.03µ< ≤ .                                                                

Mass 
Ratio (μ) 

Oblateness Frequencies Eccentricities Semi-major Axes Semi-Minor Axes 

A1 A2 S1 S2 e1 e2 a1 a2 b1 b2 

0.01 0 0 0.280544 0.9306418 0.983702 0.880847 7.72103 1.65024 0.743672 0.7861 

 0.001 0.002 0.281020 0.9289990 0.983676 0.881309 7.70196 1.65134 0.742681 0.785095 

 0.010 0.020 0.285268 0.9141610 0.983443 0.885464 7.53036 1.66120 0.733698 0.776051 

 0.100 0.200 0.324708 0.7657820 0.981114 0.927014 5.81436 1.75984 0.636948 0.685612 

0.02 0 0 0.394740 0.8920900 0.968893 0.887374 4.42934 1.67072 0.750408 0.782824 

 0.001 0.002 0.395410 0.8902950 0.968849 0.892307 4.42139 1.67192 0.749439 0.781820 

 0.010 0.020 0.401388 0.8741440 0.968455 0.892307 4.34988 1.68312 0.740661 0.772779 

 0.100 0.200 0.456881 0.7126300 0.964513 0.936709 3.63474 1.79468 0.646364 0.682375 

0.03 0 0 0.480983 0.8543270 0.955502 0.894235 3.32419 1.69392 0.757301 0.779489 

 0.001 0.002 0.481799 0.8523900 0.955447 0.894763 3.31991 1.69532 0.756351 0.778485 

 0.010 0.020 0.489083 0.8349490 0.954960 0.95496 3.28141 1.70792 0.747743 0.769448 

 0.100 0.200 0.556700 0.6605420 0.950082 0.947021 2.89637 1.83394 0.655473 0.679074 

 
Table 2. Effect of the eccentricity of the primaries on the frequencies of the long and short periods, their eccentricities, semi- 
major and semi-minor axes and the roots of (10), for 0.02µ = ; 1 0.9q = ; 2 0.8q = ; 1 0.01A = ; 2 0.02A =  and 0.9a = .   

Eccentricity e 
Frequencies Eccentricities Semi-Major Axes Semi-Minor Axes Roots 

S1 S2 e1 e2 a1 a2 b1 b2 λ1 λ2 

0 0.390246 0.908554 0.969008 0.882729 4.74520 1.67227 0.766838 0.797088 2.9905 0.0050079 

0.1 0.393061 0.899951 0.96887 0.885123 4.64637 1.67498 0.760378 0.791011 3.0204 0.0053074 

0.2 0.401388 0.874144 0.968455 0.892307 4.34988 1.68312 0.740661 0.772779 3.1102 0.0053074 

0.3 0.414894 0.831131 0.967763 0.904281 3.85573 1.69667 0.706578 0.742394 3.2598 0.0056816 

0.4 0.433096 0.770914 0.966704 0.921044 1.71564 1.71564 0.655893 0.699854 3.4693 0.0062056 

0.5 0.455431 0.693491 0.965549 0.942596 2.27445 1.74004 0.584301 0.64516 3.7387 0.0068792 

0.6 0.481323 0.598864 0.964027 0.968938 1.18733 1.76985 0.482586 0.578312 4.0678 0.0077026 

 
Table 3. Effect of semi-major axis of the primaries on the frequencies of the long and short periods, their eccentricities, 
semi-major and semi-minor axes for 0.02µ = ; 1 0.9q = ; 2 0.8q = ; 1 0.01A = ; 2 0.02A =  and 0.25e = .                

Semi-Major  
Axis a 

Frequencies Eccentricities Semi-Major Axes Semi-Minor Axes 

S1 S2 e1 e2 a1 a2 b1 b2 

0.8 0.414672 0.851848 0.966990 0.901721 3.37718 1.61406 0.678415 0.722047 

1.0 0.400241 0.857728 0.969296 0.893670 4.87783 1.76437 0.761752 0.796165 

1.2 0.385270 0.863608 0.971692 0.885618 6.37846 1.91469 0.851345 0.870284 

1.4 0.369693 0.869488 0.973908 0.877567 7.87913 2.06501 0.925775 0.944402 

1.6 0.353431 0.875368 0.976214 0.869516 9.37978 2.21533 0.994651 1.018520 

1.8 0.336383 0.875368 0.97852 0.861464 10.8804 2.36565 1.025906 1.09264 

2.0 0.318423 0.887128 0.980826 0.853413 12.3811 2.51597 1.11976 1.16676 
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Table 4. Effect of radiation pressure of the bigger primary on the frequencies of the long and short periods, their eccentrici-
ties, semi-major and semi-minor axes for 0.02µ = ; 1 0.9q = ; 2 0.8q = ; 1 0.01A = ; 2 0.02A =  and 0.9a = .             

Radiation  
Factor q1 

Frequencies Eccentricities Semi-Major Axes Semi-Minor Axes 

S1 S2 e1 e2 a1 a2 b1 b2 

0.999 0.48548 0.7748 0.9592 0.90233 4.5397 2.0088 0.8435 0.8532 

0.900 0.48992 0.7728 0.95844 0.90259 4.2773 1.9628 0.8224 0.8306 

0.850 0.49214 0.7716 0.95801 0.90274 4.1449 1.9396 0.81156 0.8719 

0.800 0.49435 0.7705 0.95761 0.90289 4.0124 1.9164 0.8006 0.8077 

0.750 0.49656 0.7694 0.95721 0.90303 3.8799 1.8932 0.7894 0.7963 

0.700 0.49875 0.7683 0.95681 0.90318 3.7474 1.8700 0.7781 0.7847 

0.650 0.50093 0.7672 0.95041 0.90333 3.6145 1.8469 0.7666 0.7733 

 
Table 5. Frequencies of the long and short periods, their eccentricities, semi-major and semi-minor axes of the binary Sys-
tem Algol, for assumed oblateness and a = 0.999; e = 0.2.                                                        

Oblateness Frequencies Eccentricities Semi-Major Axes Semi-Minor Axes Roots 

A1 A2 S1 S2 e1 e2 a1 a2 b1 b2 λ1 λ2 

0 0 1.00213 0.497863 0.876433 0.962865 1.54499 2.30177 0.96389 0.84098 2.3331 0.334757 

0 0 1.03476 0.434633 0.883600 0.983990 1.52343 2.37897 0.94898 0.81668 2.43099 0.35691 

0.001 0.002 1.03669 0.430870 0.88402 0.985244 1.53553 2.38407 0.94818 0.81571 2.43118 0.35824 

0.010 0.020 1.05384 0.397007 0.88781 0.996534 1.54535 2.43000 0.9410 0.80698 2.4329 0.370196 

0.150 0.010 1.05069 0.396878 0.88899 0.996905 1.54593 2.43450 0.94157 0.80855 2.43196 0.36798 

0.018 0.01 1.05258 0.391195 0.88998 0.998897 1.54774 2.44350 0.9405 0.80757 2.43196 0.36931 

 
shown in Figures 1-9. Figures 1-8 show the effects of the semi-major axis of the elliptic orbits (Table 3), ec-
centricity (Table 2), oblateness and radiation pressures (Table 4) of the primaries on the long and short periods 
respectively, while the effect of mass ratio µ  (Table 1) is shown in Figure 9. The semi-major axis is in-
creased from 0.8 to 1.4 step 0.2; the eccentricity from 0 to 0.6 step 0.2; oblateness from 0 to 0.1 and the radia-
tion pressure of the bigger primary from 0.65 to 0.999 step 0.1. All these parameters except oblateness cause an 
increase in the size of the respective orbits. Algol is an eclipsing binary star in the constellation Perseus, with 
masses and luminosities (Beta Persei A & B) 3.59, 079 and 98, 3.4 respectively. Their radiation pressures are 
computed based on Singh and AbdulKareem [20] to be 0.969 and 0.995. The frequencies of the long and short 
periods, their eccentricities, semi-major and minor axes and the roots of the characteristic Equation (10) are 
given in Table 5, first, in the circular case without oblateness and then with a small assumed eccentricity and 
later together with increasing oblateness to highlight their effects on the system. 

7. Discussion 
Table 2 shows clearly the effect of oblateness of the primaries on the long and short periods. The frequency of 
the long period increases with increase in oblateness while that of the short period decreases. This agrees with [2] 
in the absence of small perturbations in the Coriolis and centrifugal forces in their case and with 0e =  in ours. 
In the circular case ( )0e = , our results also validate [22] and [56] when the smaller primary is non-luminous 
and the bigger one is spherical in shape. 

Equation (12) gives the eccentricities of the long and short periods, the eccentricity of the long period in-
creases with oblateness, while that of the short period decreases (Table 2). The eccentricity of the orbits and the 
effect of oblateness are shown graphically in Figures 1-9 for mass ratio 0 0.03µ< ≤  and for the binary system 
Algol. We see that the sizes of the long and short periodic orbits increase with an increase in the semi-major  
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Figure 1. Effect of semi-major axis on the long periodic orbits for μ = 0.02; q1 = 0.9; q2 = 
0.8; A1 = 0.01; A2 = 0.02 and e = 0.25.                                                 

 

 
Figure 2. Effect of semi-major axis on the short periodic orbits for μ = 0.02; q1 = 
0.9; q2 = 0.8; A1 = 0.01; A2 = 0.02 and e = 0.25.                               

 

 
Figure 3. Effect of eccentricity on the long periodic orbits for μ = 0.02; q1 = 0.9; q2 = 0.8; A1 = 0.01; A2 = 0.02 and a = 0.9.    
 

 
Figure 4. Effect of eccentricity on the short periodic orbits for μ = 0.02; q1 = 0.9; q2 = 
0.8; A1 = 0.01; A2 = 0.02 and a = 0.9.                                             

 
axis, eccentricity and radiation pressure while their sizes reduce with increase in oblateness parameters of both 
primaries. 
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Figure 5. Effect of radiation of the bigger primary on the long periodic orbits for μ = 0.03; q2 
= 0.8; A1 = 0.01; A2 = 0.02; e = 0.35 and a = 1.2.                                          

 

 
Figure 6. Effect of radiation of the bigger primary on the short periodic orbits for μ = 0.03; q2 
= 0.8; A1 = 0.01; A2 = 0.02; e = 0.35 and a = 1.2.                                        

 

 
Figure 7. Effect of oblateness on the long periodic orbits for μ = 0.01; q1 = 0.9; q2 = 0.8; e = 
0.2 and a = 0.9.                                                                 

 

 
Figure 8. Effect of oblateness on the short periodic orbits for μ = 0.01; q1 = 0.9; q2 = 0.8; e = 
0.2 and a = 0.9.                                                                    

8. Conclusion 
The expressions for the frequencies of the long and short periods around the triangular points with their orienta-
tions, eccentricities, semi-major and semi-minor axes has been obtained. They have been found to be influ- 
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Figure 9. Effect of mass ratio μ in the absence of oblateness on the long periodic orbits for q1 
= 0.9; q2 = 0.8; e = 0.2 and a = 0.9.                                                   

 
enced by the eccentricities of the orbits of the primaries, radiation pressures, semi-major axis and oblateness. In 
the absence of these perturbations, the results are in accordance with [5]. 
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