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Abstract 
Discovering patterns that are fuzzy in nature from temporal datasets is an interesting data mining 
problems. One of such patterns is monthly fuzzy pattern where the patterns exist in a certain fuzzy 
time interval of every month. It involves finding frequent sets and then association rules that holds 
in certain fuzzy time intervals, viz. beginning of every months or middle of every months, etc. In 
most of the earlier works, the fuzziness was user-specified. However, in some applications, users 
may not have enough prior knowledge about the datasets under consideration and may miss some 
fuzziness associated with the problem. It may be the case that the user is unable to specify the 
same due to limitation of natural language. In this article, we propose a method of finding patterns 
that holds in certain fuzzy time intervals of every month where fuzziness is generated by the me-
thod itself. The efficacy of the method is demonstrated with experimental results.  
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1. Introduction 
Analysis of transactional data has been considered as an important data mining problem. Market basket data is 
an example of such transactional data. In a market-basket data set, each transaction is a collection of items 
bought by a customer at one time. The concept proposed in [1] is to find the co-occurrence of items in transac-
tions, given minimum support and minimum confidence thresholds. Temporal Association rule mining is an 
important extension of above-mentioned problem. When an item from super-market is bought by a customer, 
this is called transaction and its time is automatically recorded. Ale et al. [2] have proposed a method of ex-
tracting association rules that hold within the life-span of the corresponding item set. 
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Mahanta et al. [3] have introduced concept of locally frequent item sets as item sets that are frequent in cer-
tain time intervals and may or may not be frequent throughout the life-span of the item set. An efficient algo-
rithm is developed by them which is used find such item sets along with a list of sequences of time intervals. 
Considering the time-stamp as calendar dates, a method is discussed in [4] which can extract yearly, monthly 
and daily periodic or partially periodic patterns. If the periods are kept in a compact manner using the method 
discussed in [4], it turns out to be a fuzzy time interval. In this paper, we discuss such patterns and device algo-
rithms for extracting such patterns. Although our algorithm works for extracting monthly fuzzy patterns, it can 
be modified for daily fuzzy periodic patterns. The paper is organized as follows. In Section 2, we discuss related 
works. In Section 3, we discuss terms, definitions and notations used in the algorithm. In Section 4, the proposed 
algorithm is discussed. In Section 5, we discuss about results and analysis. Finally a summary and lines for fu-
ture works are discussed in Section 6. 

2. Related Works 
Agrawal et al. [1] first formulated association rules mining problems. One important extension of this problem is 
Temporal Data Mining [5] by taking into account the time aspect, more interesting patterns that are time depen-
dent can be extracted. The problems associated are to find valid time periods during which association rules hold 
and the discovery of possible periodicities that association rules have. In [2], an algorithm for finding temporal 
rules is described. There each rule has associated with it a time frame. In [3], the works done in [2] has been ex-
tended by considering time gap between two consecutive transactions containing an item set into account.  

Considering the periodic nature of patterns, Ozden et al. [6] proposed a method, which is able to find patterns 
having periodic nature where the period has to be specified by the user. In [7], Li et al. discuss about a method 
of extracting temporal association rules with respect to fuzzy match, i.e. association rule holding during “enough” 
number of intervals given by the corresponding calendar pattern. Similar works were done in [8] incorporating 
multiple granularities of time intervals (e.g. first working day of every month) from which both cyclic and user 
defined calendar patterns can be achieved.  

Mining fuzzy patterns from datasets have been studied by different authors. In [9], the authors present an al-
gorithm for mining fuzzy temporal patterns from a given process instance. Similar work is done in [10]. In [11] 
method of extracting fuzzy periodic association rules is discussed. 

3. Terms, Definitions and Notations Used 
Let us review some definitions and notations used in this paper. 

A fuzzy number is a convex normalized fuzzy set A  defined on the real line R  such that  
1) there exists an 0x R∈  such that ( )0 1A x = , and  
2) ( )A x  is piecewise continuous. 
Thus a fuzzy number can be thought of as containing the real numbers within some interval to varying degrees.  
Fuzzy intervals are special fuzzy numbers satisfying the followings:  
1) There exists an interval [ ],a b R⊂  such that ( )0 1A x =  for all [ ]0 ,x a b∈ , and  
2) ( )A x  is piecewise continuous. 
A fuzzy interval can be thought of as a fuzzy number with a flat region. A fuzzy interval A  is denoted by 
[ ], , ,A a b c d=  with a b c d< < <  where ( ) ( ) 0A a A d= =  and ( ) 1A x =  for all [ ],x b c∈ . ( )A x  for all  

[ ],x a b∈  is known as left reference function and ( )A x  for [ ],x c d∈  is known as the right reference func-
tion. The left reference function is non-decreasing and the right reference function is non-increasing [12].  

The support of a fuzzy set A  within a universal set E  is the crisp set that contains all the elements of E  that 
have non-zero membership grades in A  and is denoted by ( )S A . Thus 

( ) ( ){ }; 0S A x E A x= ∈ >  

The core of a fuzzy set A  within a universal set E  is the crisp set that contains all the elements of E  having 
membership grades 1 in A . 

Set Superimposition 
When we overwrite, the overwritten portion looks darker for obvious reason. The set operation union does not 

explain this phenomenon. After all 
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( ) ( ) ( )A B A B A B B A∪ = − ∪ ∩ ∪ −  

and in ( )A B∩  the elements are represented once only. 
In [13] an operation called superimposition denoted by ( )S  was proposed. If A  is superimposed over B  

or B  is superimposed over A , we have 

( ) ( )( )( )( ) ( )( )2A S B A B A B B A= − + ∩ + −                              (1) 

where ( )( )2A B∩  are the elements of ( )A B∩  represented twice, and ( )+  represents union of disjoint sets. 
To explain this, an example has been taken. 
If [ ]1 1,A a b=  and [ ]2 2,B a b=  are two real intervals such that A B∩ ≠ ∅ , we would get a superimposed 

portion. It can be seen from (1)  

[ ]( )[ ] ( ) ( ) ) ( ) ( ) ( )
( )
( ) ( ) ( )(2

1 1 2 2 1 2 2 1 1 2, , , , ,a b S a b a a a b b b   = + +                           (2) 

where                   ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 1 21 2

1 2 1 21 2

min ,     max ,

min ,     and    max ,

a a a a a a

b b b b b b

= =

= =
. 

(2) explains why if two line segments are superimposed, the common portion looks doubly dark [5]. The 
identity (2) is called fundamental identity of superimposition of intervals. 

Let now, [ ]( )1 2
1 1,a b  and [ ]( )1 2

2 2,a b  be two fuzzy sets with constant membership value 1
2

 everywhere (i.e. 

equi-fuzzy intervals with membership value 1
2

). If [ ] [ ]1 1 2 2, ,a b a b∩ ≠ ∅  then applying (2) on the two equi- 

fuzzy intervals we can write   

[ ]( ) ( )[ ]( )
( ) ( ) )

( )
( ) ( ) ( )

( )
( ) ( ) ( )( ( )1 2 1 211 2 1 2

1 1 2 2 1 2 2 1 1 2, , , , ,a b S a b a a a b b b   = + +                      (3) 

To explain this we take the fuzzy intervals [ ]( )1 21,5  and [ ]( )1 23,7  with constant membership value ( )1 2  
given in Figure 1 and Figure 2. Here [ ] [ ] [ ]1,5 3,7 3,5∩ = ≠ ∅ . 

If we apply superimposition on the intervals then the superimposed interval will be consisting of [ )( )1 21,3 , 

[ ]( )13,5  and ( ]( )1 25,7 . Here the membership of [ ]3,5  is (1) due to double representation and it is shown in 
Figure 3. 

 

 
Figure 1. Equi-fuzzy Interval [1, 5](1/2). 

 

 
Figure 2. Equi-fuzzy interval [3, 7](1/2). 

 

 
Figure 3. Superimposed interval.                    
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Let [ ]i i,x y , 1, 2, ,i n= � , be n  real intervals such that [ ]
1

,
n

i i
i

x y
=

≠ ∅∩ . Generalizing (3) we get  

[ ]( ) ( )[ ]( ) ( ) ( )[ ]( )

( ) ( ) )
( )

( ) ( ) ( ) )
( )

( ) ( ) ( ) ( ) )
( )

( )

( ) ( ) ( )
( )
( ) ( ) ( )( ( )( )

( ) ( ) ( ) ( )( ( )
( ) ( ) ( ) ( )( ( )

( ) ( ) ( )( ( )

11 1
1 1 2 2

1 2

1 2 2 3 1

11

1 1 2

2 1

1 2 1 1

, , ,

   , , ,

,

         , , , .

nn n
n n

n n r n

r r

n n

n

r n n n

n r n r n n n n

x y S x y S S x y

x x x x x x

x y y y

y y y y y y

+

−

− − + − − −

  = + + + +  

  + +  

  + + + + +  

�

� �

� �

         (4) 

In (4), the sequence ( ){ }ix  is formed by sorting the sequence { }ix  in ascending order of magnitude for 

1, 2, ,i n= �  and similarly ( ){ }iy  is formed by sorting the sequence { }iy  in ascending order. 

Although the set superimposition is operated on the closed intervals, it can be extended to operate on the open 
and the half-open intervals in the trivial way.   

Lemma 1. The Glivenko-Cantelli Lemma of Order Statistics 
Let ( )1 2, , , nX X X X= �  and ( )1 2, , , nY Y Y Y= �  be two random vectors, and ( )1 2, , , nx x x�  and  

( )1 2, , , ny y y�  be two particular realizations of X  and Y  respectively. Assume that the sub-σ  fields in-
duced by kX , 1, 2, ,k n= �  are identical and independent. Similarly assume that the sub-σ fields induced by  

kY , 1, 2, ,k n= �  are also identical and independent. Let ( ) ( ) ( )1 2, , , nx x x�  be the values of 1 2, , , nx x x� , and 

( ) ( ) ( )1 2, , , ny y y�  be the values of 1 2, , , ny y y�  arranged in ascending order. 

For X  and Y  if the empirical probability distribution functions ( )1 xφ  and ( )2 xφ  are defined as in (5) 
and (6) respectively. Then, the Glivenko-Cantelli Lemma of order statistics states that the mathematical expecta-
tion of the empirical probability distributions would be given by the respective theoretical probability distribu-
tions. 

( )
( )

( ) ( ) ( )

( )

1

1 1

0

1

1
r r

n

x x

x r n x x x

x x

φ −

 <
= − ≤ ≤


≥

                               (5) 

( )
( )

( ) ( ) ( )

( )

1

2 1

0

1

1
r r

n

y y

x r n y y y

y y

φ −

 <
= − ≤ ≤


≥

                               (6) 

Now, let kX  is random in the interval [ ],a b  and kY  is random in the interval [ ],b c  so that ( )1 ,P a x  
and ( )2 ,P b y  are the probability distribution functions followed by kX  and kY  respectively. Then in this 
case Glivenko-Cantelli Lemma gives 

( ) ( )

( ) ( )

1 1

2 1

, ,     

and

, ,     

E x P a x a x b

E y P b y b y c

φ

φ

= ≤ ≤   

= ≤ ≤    

                               (7) 

It can be observed that in Equation (4) the membership values of ( ) ( )
( )

1,
r n

r rx x +
 
  , 1, 2, , 1r n= −�  look like 

empirical probability distribution function ( )1 xφ  and the membership values of ( ) ( )
( )

1,
r n

n r n ry y− − +
 
  , 

1, 2, , 1r n= −�  look like the values of empirical complementary probability distribution function or empirical 
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survival function ( )21 yφ−   . 

Therefore, if ( )A x  is the membership function of an L-R fuzzy number [ ], ,A a b c= . We get from (ix) 

( )
( )

( )
1

2

, ,           

1 , ,      

P a x a x b
A x

P b x b x c

≤ ≤= 
− ≤ ≤

                                (8) 

Thus it can be seen that ( )1P x  can indeed be the Dubois-Prade left reference function and ( )( )21 P x−  can  
be the Dubois-Prade right reference function [13]. Baruah [14] has shown that if a possibility distribution is 
viewed in this way, two probability laws can, indeed, give rise to a possibility law. 

4. Algorithm Proposed 
If the time-stamps stored in the transactions of temporal data are the time hierarchy of the type hour_day_ 
month_year, then we do not consider month_year in time hierarchy and only consider day. We extract frequent 
item sets using method discussed in [3]. Each frequent item set will have a sequence of time intervals of the type 
(day 1, day 2) associated with it where it is frequent. Using the sequence of time intervals we can find the set of 
superimposed intervals (Definition of superimposed intervals is given in Section 3) and each superimposed in-
tervals will be a fuzzy intervals. The method is as follows: for a frequent item set the set of superimposed intervals 
is initially empty, algorithm visits each intervals associated with the frequent item set sequentially, if an interval is 
intersecting with the core of any existing superimposed intervals (Definition of core is given in Section 3) in the 
set it will be superimposed on it and membership values will be adjusted else a new superimposed intervals will be 
started with the this interval. This process will be continued till the end of the sequence of time intervals. The 
process will be repeated for all the frequent item sets. Finally each frequent item sets will have one or more su-
perimposed time intervals. As the superimposed time intervals are used to generate fuzzy intervals, each frequent 
item set will be associated with one or more fuzzy time intervals where it is frequent. Each superimposed intervals 
is represented in a compact manner discussed in Section 3. 

For representing each superimposed interval of the form  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 31 2 2 3 3 4 1, , , ,
n n n r nr rt t t t t t t t +       

       � �  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 11 1 2 2 1 1, , , ,
n n n nn n n n nt t t t t t t t
− − − −       ′ ′ ′ ′ ′ ′ ′       �  

we keep two arrays of real numbers, one for storing the values ( ) ( ) ( ) ( )1 2 3, , , , nt t t t�  and the other for storing the 

values ( ) ( ) ( ) ( )1 2 3, , , , nt t t t′ ′ ′ ′�  each of which is a sorted array. Now if a new interval [ ],t t′  is to be superimposed  
on this interval we add t  to the first array by finding its position (using binary search) in the first array so that it 
remains sorted. Similarly t′  is added to the second array.  

Data structure used for representing a superimposed interval is 
 struct superinterval 
     { int arsize, count; 
      short *l, *r; 
    } 
Here arsize represents the maximum size of the array used, count represents the number of intervals supe-

rimposed, and l  and r  are two pointer pointing to the two associated arrays.  
Algorithm 4.1 
 for each locally frequent item sets do 
  {L ← sequence of time intervals associated with s 
    Ls ← set of superimposed intervals initially set to null 
    lt = L. get (); 
    // lt is now pointing to the first interval in L 
   Ls. append (lt); 
   while ((lt = L.get ()) != null)  
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 {flag = 0; 
                while ((lst = Ls.get ()) ! = null) 
      if (compsuperimp (lt, lst)) 
    flag = 1; 
       if (flag == 0) Ls. append (lt); 
             } 
  } 
 
Compsuperimp (lt, lst) 
{ if ( intersect (lst, lt) != null) 
 { superimp(lt, lst); 
    return 1; 
 } 
    return 0; 
} 
The function compsuperimp (lt, lst) first computes the intersection of lt with the core of lst. If the intersection 

non-empty it superimposes lt by calling the function superimp (lt, lst) which actually carries on the superimposi-
tion process by updating the two lists associated as described earlier. The function returns 1 if lt has been supe-
rimposed on the lst otherwise returns 0. get and append are functions operating on lists to get a pointer to the 
next element in a list and to append an element into a list. 

5. Results Obtained 
For experimentation purpose we have used retail market basket dataset from an anonymous Belgian retail store. 
The dataset contains 88,162 transactions and 17,000 items. This dataset does not have attribute, so time was in-
corporated on it. The domain of the time attribute was set to the calendar dates from 1-1-2001 to 30-2-2003. For 
the said purpose, a program was written using C++ which takes as input a starting date and two values for the 
minimum and maximum number of transactions per day. A number between these two limits are selected at 
random and that many consecutive transactions are marked with the same date so that many transactions have 
taken place on that day. This process starts from the first transaction to the end by marking the transactions with 
consecutive dates (assuming that the market remains open on all week days). This means that the transactions in 
the dataset are happened in between the specified dates. A partial view of the generated monthly fuzzy frequent 
item sets from retail dataset is shown in Table 1. 

6. Conclusions and Lines for Future Work 
An algorithm for finding monthly fuzzy patterns is discussed in this paper. The method takes input as a list of 
time intervals associated with a frequent item set. The frequent item set is generated using a method similar to 
the method discussed [4]. However, in our work we do not consider the month_year in the time hierarchy and 
only consider day. So each frequent item set will be associated with a sequence of time intervals of the form 
(day 1, day 2) where it is frequent. The algorithm visits each interval in the sequence one by one and stores the 
intervals in the superimposed form. This way each frequent item set is associated with one or more superim-
posed time intervals. Each superimposed interval will generate a fuzzy time interval. In this way each frequent 
item set is associated with one or more fuzzy time intervals. The nicety about the method is that the algorithm is 
less user-dependent, i.e. fuzzy time intervals are extracted by algorithm automatically.  

Future work may be possible in the following ways. 
 Daily patterns can be extracted. 
 

Table 1. Monthly fuzzy frequent item sets for different set of transactions.                 

Data Size  
(No. of Transactions) 10000 20000 30000 40000 50000 60000 70000 Whole Dataset 

No. fuzzy  
time intervals 1 2 2 3 3 4 4 4 



M. Shenify, F. A. Mazarbhuiya 
 

 
43 

 Clustering of patterns can be done based on their fuzzy time interval associated with yearly patterns using 
some statistical measure. 
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