Normality of Meromorphic Functions Family and Shared Set by One-way

Yi Li
School of Science, Southwest University of Science and Technology, Mianyang, China, E-mail: liyi@swust.edu.cn

Received March 16, 2011; revised April 5, 2011; accepted April 10, 2011

Abstract

We studied the normality criterion for families of meromorphic functions which related to One-way sharing set, and obtain two normal criterions, which improve the previous results.

Keywords: Meromorphic Function, Normality Criterion, Shared Values, Shared Set by One-way

1. Introduction

For Shared values, Schwick proved the following result [1]:

Theorem A Let F be a family of meromorphic functions in the domain D, a_{1}, a_{2} and a_{3} be three finite complex numbers. If for every

$$
f \in F, \bar{E}_{f^{\prime}}\left(a_{i}\right)=\bar{E}_{f}\left(a_{i}\right)(i=1,2,3)
$$

then F is normal in D.
In 2000, Pang Xue-cheng and Zalcman generalized the Schwick's result [2]:

Theorem B Let F be meromorphic functions family in the domain D, and a_{1}, a_{2} be two complex number. If for every

$$
f \in F, \bar{E}_{f^{\prime}}\left(a_{i}\right)=\bar{E}_{f}\left(a_{i}\right)(i=1,2)
$$

then F is normal in D.
Definition For a, b are two distinct complex values, we have set $S=\{a, b\}$ and

$$
\begin{aligned}
\bar{E}_{f}(S) & =\bar{E}_{f}(a, b) \\
& =\{z:(f(z)-a)(f(z)-b)=0, z \in D\}
\end{aligned}
$$

If $\bar{E}_{f}(S)=\bar{E}_{g}(S)$, we call that f and g share S in D; If $\bar{E}_{f}(S) \subseteq \bar{E}_{g}(S)$, we call that f and g share S by One-way in D.

For shared set, W. H. Zhang obtained important results [3]:

Theorem C Let F be a family of meromorphic functions in the unit disc Δ, a and b be two distinct nonzero complex value, $S=\{a, b\}$, If for every $f \in F$, all of whose zeros is multiple, $\bar{E}_{f^{\prime}}(S)=\bar{E}_{f}(S)$, then F is
normal on Δ.
W. H. Zhang continued considering the relation between normality and the shared set, and proved the next result [4]:

Theorem D Let F be meromorphic functions family in the unit disk Δ, a and b be two distinct nonzero complex values. If for every $f \in F$, all of whose zeros is multiplicity $k+1$ at least (k is a positive integer), $\bar{E}_{f^{(k)}}(S)=\bar{E}_{f}(S)$, then F is normal in Δ.

For shared set by One-way, Lv Feng-jiao got following theorem in [5]:

Theorem E Let F be a family of meromorphic function in the unit disk Δ, a and b is two distinct nonzero complex values, k is positive integer, $S=\{a, b\}$. If for every $f \in F$, all of whose zeros have multiplicity $k+1$ at least, $\bar{E}_{f^{(k)}}(S) \subseteq \bar{E}_{f}(S)$, then F is normal in Δ.

In 2007, Pang Xue-cheng proved the following important results in [6]:

Theorem \mathbf{F} Let F be meromorphic functions family in $D, S=\left\{a_{1}, a_{2}, a_{3}\right\}$. If for every $f \in F \quad \bar{E}_{f^{\prime}}(S)=\bar{E}_{f}(S)$, then F is normal on D.

To promote the results of Pang Xue-cheng, we continue to discuss about normality theorem of meromorphic functions families concerning shared set and shared set by one-way, and obtain our main results as follow.

Theorem 1 Let F be meromorphic functions families in $D, S=\left\{a_{1}, a_{2}, a_{3}\right\}, a_{4} \neq a_{i} \quad(i=1,2,3)$.

If for every $f \in F, \quad \bar{E}_{f^{\prime}}(S) \subset \bar{E}_{f}(S)$, and $f^{\prime}=a_{4}$ whenever $f=a_{4}$, then F is normal on D.

Theorem 2 Let F be meromorphic functions families in $D, S=\left\{a_{1}, a_{2}\right\}, a_{3} \in C$. If for every $f \in F$, $\bar{E}_{f^{\prime}}\left(S^{\prime}\right)=\bar{E}_{f}(S)$, and $f^{\prime}=a_{3}$, whenever $f=a_{3}$, then
F is normal on D.

2. Lemmas

Lemma 1 [7] Let F be meromorphic functions families in the unit disk Δ, all of whose zeros have multiplicity k at least, and $A>0$. If for every $f \in F,\left|f^{\prime}(z)\right| \leq A$ whenever $f(z)=0$. If F is not normal in Δ, then for every $0 \leq \alpha \leq 1$, there exists

1) a positive number $r, 0<r<1$,
2) complex sequence $z_{n},\left|z_{n}\right|<r$,
3) Functions sequence $f_{n} \in F$,
4) and positive sequence $\rho_{n} \rightarrow 0^{+}$,
such that $g_{n}(\zeta)=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)$ converges locally and uniformly to a noncontant meromorphic function $g(\zeta)$, and $g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$. Where

$$
g^{\#}(\zeta)=\frac{\left|g^{\prime}(\zeta)\right|}{1+|g(\zeta)|^{2}}
$$

Lemma 2 [8] Let f be meromorphic function with finite order on the open plane C, and a_{1}, a_{2}, a_{3} be three finite complex values. If $f(z)$ have only finite zero, and

$$
f(z)=0 \Leftrightarrow f^{\prime}(z) \in S=\left\{a_{1}, a_{2}, a_{3}\right\}
$$

then f is a rational function.

3. Proof of Theorem 1

Suppose that F be not normal in Δ, then by Lemma 1 we have that there exists

$$
f_{n} \in F, z_{n} \in \Delta \quad \text { and } \quad \rho_{n} \rightarrow 0^{+},
$$

such that $g_{n}(\xi)=\rho_{n}^{-1}\left\{f_{n}\left(z_{n}+\rho_{n} \xi\right)-a_{4}\right\} \rightarrow g(\xi)$ converges locally and uniformly to a noncontant meromorphic function $g(\zeta)$. We claim that the following conclusions hold.

$$
\begin{aligned}
& 1^{0} \quad g(\xi)=0 \Rightarrow g^{\prime}(\xi)=a_{4} ; \\
& 2^{0} g^{\#}(\xi) \leq g^{\#}(0)=\left|a_{4}\right|+1 ; \\
& 3^{0} g^{\prime}(\xi) \notin S
\end{aligned}
$$

It is not difficult to prove claims $1^{0}, 2^{0}$, in what follow, we complete the proof of the claim 3^{0}. Suppose that there exists $\xi_{0} \in C$ such that $g^{\prime}\left(\xi_{0}\right)=a_{i}$. Obviously, $g^{\prime}(\xi) \not \equiv a_{i}$, in fact, if $g(\xi)=a_{i} \xi+c_{0}$, it is a contradictions for 1^{0}. Thus from Hurwitz Theorem, we know that there exists a point sequence $\xi_{n} \rightarrow \xi_{0}$, such that $g_{n}^{\prime}\left(\xi_{n}\right)-a_{i}=0$, for sufficiently large n, that is

$$
f_{n}^{\prime}\left(z_{n}+\rho_{n} \xi_{n}\right)=a_{i} .
$$

Obviously, $g_{n}\left(\xi_{n}\right)=\rho_{n}^{-1}\left(a_{i}-a_{4}\right) \rightarrow \infty$, as $n \rightarrow \infty$. Thus $g\left(\xi_{0}\right)=\infty$, this is a contradiction. Hence, claim 3^{0} holds.

From claim 3^{0} we have that

$$
g^{\prime}(\xi) \neq a_{i}(i=1,2,3)
$$

So $g^{\prime}(\xi)$ is identical in nonconstant. Again because claim 1^{0}, we know $g(\xi)=a_{4}\left(\xi-\xi_{0}\right)$ and

$$
g^{\#}(0)=\frac{\left|a_{4}\right|}{1+\left|a_{4} \xi_{0}\right|^{2}}=\left\{\begin{array}{ll}
\left|a_{4}\right| & \left|\xi_{0}\right|<1 \\
\frac{1}{2} & \left|\xi_{0}\right| \geq 1
\end{array} .\right.
$$

Clearly, this is a contradictions for claim 2^{0}. Therefore, F is normal in D. The proof of Theorem 1 is completed.

4. Proof of Theorem 2

Suppose that F is not normal in Δ, by Lemma 1 there exists $f_{n} \in F, z_{n} \in \Delta$ and $\rho_{n} \rightarrow 0^{+}$, such that $g_{n}(\xi)$ $=f_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow g(\xi)$ converges locally and uniformly to a noncontant meromorphic function $g(\xi)$ with finite orders, there $g^{\#}(\xi) \leq g^{\#}(0)$.

We asserts that $g(\xi) \in S \Rightarrow g^{\prime}(\xi)=0$.
In fact, suppose that there exists $\xi_{0} \in C$, such that $g\left(\xi_{0}\right) \in S$, thus there exists $a_{i}(i=1,2)$ such that $g\left(\xi_{0}\right)=a_{i}$.

From Hurwitz Theorem and $g(\xi) \not \equiv a_{i}$, we have there exists $\xi_{n} \rightarrow \xi_{0}$ such that $g_{n}\left(\xi_{n}\right)=a_{i}$, that is $g_{n}\left(\xi_{n}\right)$ $=f_{n}\left(z_{n}+\rho_{n} \xi\right)=a_{i}$ for sufficiently large n. Thus in contrast with conditions of Theorem, we get $f_{n}^{\prime}\left(z_{n}+\rho_{n} \xi\right) \in S$. Obviously, $\left|f_{n}{ }^{\prime}\left(z_{n}+\rho_{n} \xi_{n}\right)\right| \leq A$. So we get $g^{\prime}\left(\xi_{0}\right)=0$.

Since $g(\xi)$ is a nonconstant entire function, without loss of generality, we assume that $g(\xi)-a_{1}$ have zero on C for a_{1}, and consider function sequence $G_{n}(\xi)$:

$$
G_{n}(\xi)=\frac{g_{n}(\xi)-a_{1}}{\rho_{n}}=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)-a_{1}}{\rho_{n}}
$$

Obviously, $\left\{G_{n}\right\}$ is not normal in zero of $g(\xi)-a_{1}$. In fact, if ξ_{0} is zero of $g(\xi)-a_{1}$, then $G_{n}\left(\xi_{0}\right)$ $=0 \Rightarrow f_{n}\left(z_{n}+\rho_{n} \xi_{0}\right)=0$. With conditions of Theorem, we get $\mid f_{n}^{\prime}\left(z_{n}+\rho_{n} \xi_{0}\right) \leq A$ and $\left|G_{n}^{\prime}\left(\xi_{0}\right)\right| \leq A$. Therefore, $\left\{G_{n}\right\}$ is not normal in zero of $g(\xi)-a_{1}$. So there exists $G_{n}, \xi_{n} \in \Delta$ and $\eta_{n} \rightarrow 0^{+}$, such that

$$
\begin{aligned}
F_{n}(\zeta) & =\eta_{n}^{-1} G_{n}\left(\xi_{n}+\eta_{n} \zeta\right) \\
& =\eta_{n}^{-1}\left[g_{n}\left(\xi_{n}+\eta_{n} \zeta\right)-a_{1}\right] \rightarrow F(\zeta)
\end{aligned}
$$

converges locally and uniformly to a noncontant and meromorphic function $F(\zeta)$ with finite order, and
1^{0} the number of zeros of $F(\zeta)$ is finite,

$$
\begin{aligned}
& 2^{0} \quad F(\zeta)=0 \Rightarrow F^{\prime}(\zeta) \in S \bigcup\left\{a_{3}\right\} \\
& 3^{0} \quad F^{\prime}(\zeta) \in S \Rightarrow F(\zeta)=0 \\
& 4^{0} \quad F\left(\zeta_{0}\right)=\left.\infty \Rightarrow(1 / F(\zeta))\right|_{\zeta=\zeta_{0}}=0
\end{aligned}
$$

In fact, suppose that ξ_{0} is the zero of $g(\xi)-a_{1}$ with order k. If there exists $k+1$ distinct $\zeta_{1}, \zeta_{2} \ldots \zeta_{k+1}$ at least, such that $F\left(\zeta_{j}\right)=0, j=1,2, \cdots, k+1$.

By Hurwitz Theorem, it is certainly that there exist a positive integer N , such that $F_{n}\left(\zeta_{n_{j}}\right)=0, j=1,2, \cdots, k+1$ as $n>N$. Thus,

$$
g_{n}\left(\xi_{n}+\eta_{n} \zeta_{n_{j}}\right)-a_{1}=0
$$

Since $\xi_{n}+\eta_{n} \zeta_{n_{j}} \rightarrow \xi_{0}(n \rightarrow \infty), j=1,2, \ldots, k+1$, we deduce that ξ_{0} is a zero of $g(\xi)-a_{1}$ with $k+1$ orders, this is a contradictions for suppose. Therefore zeros numbers of $F(\zeta)$ is finite.

Suppose that ζ_{0} is a zero of $F\left(\zeta_{0}\right)=0$. For $F(\zeta) \not \equiv 0$ and Hurwitz theorem, we know that there exists sequence $\zeta_{n} \rightarrow \zeta_{0}$, such that

$$
\begin{aligned}
& F_{n}\left(\zeta_{n}\right)=\frac{f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]-a_{1}}{\rho_{n} \eta_{n}}=0 \\
& f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]=a_{1}
\end{aligned}
$$

Thus, we get $f_{n}^{\prime}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right] \in S \cup\left\{a_{3}\right\}$ and subsequence $f_{n} \in F$ such that

$$
f_{n}^{\prime}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right] \rightarrow a_{i}
$$

thus $F^{\prime}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} f_{n}^{\prime}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right] \in S \bigcup\left\{a_{3}\right\}$, for $a_{i} \in S \bigcup\left\{a_{3}\right\}$.

If there exists ζ_{0} such that $F^{\prime}\left(\zeta_{0}\right) \in S$, that is, there exists $a_{i} \in S$ such that $F^{\prime}\left(\zeta_{0}\right)=a_{i}$. Since $F^{\prime}(\zeta) \not \equiv a_{i}$, by Hurwitz theorem, there exists $\zeta_{n} \rightarrow \zeta_{0}$ such that

$$
F_{n}^{\prime}\left(\zeta_{n}\right)=f_{n}^{\prime}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]=a_{i}
$$

Hence, $f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right] \in S, \quad F^{\prime}\left(\zeta_{0}\right) \in S$.
If there exists N such that

$$
f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right] \neq a_{1} \text { for } n>N
$$

we get

$$
F\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} \frac{f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]-a_{1}}{\rho_{n} \eta_{n}}=\infty
$$

This contradicts $F^{\prime}\left(\zeta_{0}\right)=a_{i}$. Thus exists subsequence f_{n}, such that $f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]=a_{1}$ for every n. Therefore,

$$
F\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} \frac{f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]-a_{1}}{\rho_{n} \eta_{n}}=0
$$

Now we prove that $F\left(\zeta_{0}\right)=\left.\infty \Rightarrow\left(\frac{1}{F(\zeta)}\right)^{\prime}\right|_{\zeta=\zeta_{0}}=0$.
Since

$$
\begin{aligned}
\frac{1}{F_{n}(\zeta)}-\frac{\eta_{n}}{a_{3}-a_{1}} & =\frac{\eta_{n}}{G_{n}\left(\xi_{n}+\eta_{n} \zeta\right)}-\frac{\eta_{n}}{a_{3}-a_{1}} \\
& =\frac{\eta_{n}}{g_{n}\left(\xi_{n}+\eta_{n} \zeta\right)-a_{1}}-\frac{\eta_{n}}{a_{3}-a_{1}} \rightarrow 0
\end{aligned}
$$

there exists $\zeta_{n} \rightarrow \zeta_{0}$, such that $\frac{1}{F_{n}\left(\zeta_{n}\right)}-\frac{\eta_{n}}{a_{3}-a_{1}}=0$, we get

$$
f_{n}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]=a_{3},
$$

thus

$$
f_{n}^{\prime}\left[z_{n}+\rho_{n}\left(\xi_{n}+\eta_{n} \zeta_{n}\right)\right]=a_{3}
$$

that is, $F_{n}^{\prime}\left(\zeta_{n}\right)=a_{3}$. Therefore,

$$
\left.\left(\frac{1}{F(\zeta)}\right)\right|_{\zeta=\zeta_{0}} ^{\prime}=-\left.\frac{F^{\prime}(\zeta)}{F^{2}(\zeta)}\right|_{\zeta=\zeta_{0}}=\lim _{\zeta \rightarrow \zeta_{0}}\left[-\frac{F_{n}^{\prime}\left(\zeta_{n}\right)}{F_{n}^{2}\left(\zeta_{n}\right)}\right]=0
$$

So far, we give complete proofs of all assertion. Next we will complete the proof of theorem 2 using assertion $1^{0} \sim 4^{0}$.

By Lemma 2 and assertion 2^{0}, we get that $F(\zeta)$ is a rational function. Again by assertion 4^{0}, it is clear that the pole of F be multiple. If G_{n} is not normal at ξ_{0}, thus ξ_{0} be zero of $g(\xi)-a_{1}$. By the isolation of zero, we have that G_{n} are holomorphic functions at ξ_{0} for sufficiently large n. We get that $F_{n}(\zeta)=\eta_{n}^{-1} G_{n}\left(\xi_{n}+\eta_{n} \zeta\right)$ are holomorphic functions in $|\zeta|<R$ for sufficiently large R, thus $F(\zeta)$ be nonconstant holomorphic functions in C. Therefore $F(\zeta)$ be a polynomial. Let it, s order is $p(p>0)$. Thus,

$$
\begin{gathered}
T\left(r, F^{\prime}\right)=(p-1)(\ln r), \\
N(r, F)=p(\ln r) \text { and } S\left(r, F^{\prime}\right)=O(1)
\end{gathered}
$$

Therefore, $2(p-1)(\ln r) \leq p(\ln r)+O(1), r \rightarrow \infty$. We get $0<p \leq 2$ easily.
If $p=1$, thus $F(\zeta)=c_{0} \zeta+c_{1}\left(c_{0} \neq 0\right)$, by 2^{0} and 3^{0}, we find that there exists a_{i} for every ζ, such that $F^{\prime}(\zeta)=a_{i}$. Therefore ζ be an zero of $F(\zeta)$. But $F(\zeta)$ have only a zero, this is a contradiction.

If $p=2$, thus

$$
F(\zeta)=c_{0}\left(\zeta-\zeta_{0}\right)\left(\zeta-\zeta_{1}\right)\left(c_{0} \neq 0, \zeta_{0} \neq \zeta_{1}\right)
$$

As a result, $F^{\prime}(\zeta)=c_{0}\left(2 \zeta-\zeta_{0}-\zeta_{1}\right)$. Obviously zeros of $F^{\prime}(\zeta)-a_{i}$ are $\left(a_{i}+c_{0} \zeta_{0}+c_{0} \zeta_{1}\right) /\left(2 c_{0}\right)$. Hence we get that $F(\zeta)$ have three zeros, this still is a contradiction from

$$
F(\zeta)=c_{0}\left(\zeta-\zeta_{0}\right)\left(\zeta-\zeta_{1}\right)\left(c_{0} \neq 0, \zeta_{0} \neq \zeta_{1}\right)
$$

and the proof of theorem 2 is completed.

5. References

[1] W. Schwick. "Sharing Values and Normality," Archiv der Mathematik, Vol. 59, No. 1, 1992, pp. 50-54. doi:10.1007/BF01199014
[2] X. C. Pang and L. Zalcman, "Sharing Values and Normality," Arkiv för Matematik, Vol. 38, No. 1, 2000, pp. 171-182. doi:10.1007/BF02384496
[3] W. H. Zhang. "The Normality of Meromorphic Functions," Journal of Nanhua University, Vol. 18, 2004, pp. 6-38.
[4] W. H. Zhang, "The Normality of Meromorphic Functions," Journal of Nanhua University, Vol. 12, No. 6, 2004, pp. 709-711.
[5] F. J. Lv and J. T. Li, "Normal Families Related to Shared sets," Journal of Chongqing University, Vol. 7, No. 2, 2008, pp. 155-157.
[6] X. J. Liu and X. C. Pang, "Shared Values and Normal Families," Acta Mathematica Sinica, Vol. 50, No. 2, 2007, pp. 409-412.
[7] X. C. Pang and L. Zalcman. "Normal Families and Shared Values," Bulletin of the London Mathematical Society, Vol. 32, No. 3, 2000, pp. 325-331. doi:10.1112/S002460939900644X
[8] X. J. Liu and X. C. Pang, "Shared Values and Normal

