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Abstract 
The sintering characteristics of hexagonal Co2-Y-type ferrite, Ba2Co2Fe12O22, with the addition of 
0.6 wt% CuO, were studied in order to allow for preparation in air, as opposed to the convention-
ally recommended O2, for industrial production. The dependence of the resistivity, ρ magnetic loss, 
tanδ, and the permeability, μ, at 1 GHz on the sintering temperature was investigated. A low tanδ 
of 0.05 with a µ of 2.7 at a frequency of 1 GHz, along with a high ρ (up to 7 × 104 μm), were attained 
under sintering at 1170˚C in air, which were the same features as those of samples sintered at 
1200˚C in O2. The dependence of tanδ on grain diameter was also examined, and it was determined 
that a small grain size (less than 2 μm) is preferable for low tanδ. 
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1. Introduction 
Ferrites and other magnetic materials have been widely used as the key elements in microwave devices [1]-[3] 
such as isolators, phase shifters [4] [5], and circulators [6]. Traditional ferrites, known as spinel types, such as 
Ni-Zn ferrites have been known to exhibit high permeability in the frequency range up to a few hundred MHz 
because of restriction by Snoek’s law [7] [8]. Therefore, hexagonal ferrites are expected to be promising candi-
dates for expansion of the device frequency to the GHz range [9]. Z- and Y-type ferrites show soft magnetic cha-
racteristics with moderate relative permeability, µ, up to 1 GHz [10]-[12]. The former is denoted as Ba3Me2Fe24O41, 
while the latter is labeled Ba2Me2Fe12O22, where Me represents a divalent metal ion from the first transition se-
ries or, alternatively, it may represent Zn or Mg. In particular, the Y-type ferrite has a high Curie temperature 
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[11] and higher magnetic resonance than the Z-type, despite a low μ [13] [14]. Therefore, it is more applicable to 
high frequency devices in the GHz range. 

Recently, telecommunication devices applied to mobile phones have broadened their market extensively. For 
these applications, antennas are essential, and miniaturization of these devices is therefore necessary. Ferrites 
possess permeability as well as permittivity, and are considered as a candidate material for chip antennas 
[15]-[19], because the wavelength is reduced proportionally according to 1 µε  where ε is the relative permit-
tivity. The Y-type ferrite, Ba2Co2Fe12O22Y (Co2-Y), with a high Curie temperature of ~330˚C [11], is a promis-
ing material for this application. 

We have demonstrate that Co2-Y modified by the addition of 0.6 wt% CuO exhibited a moderate µ of ~2.7 
and low magnetic loss, tanδ, of 0.05, even at 1 GHz [20]. This material has been prepared by means of a conven-
tional powder metallurgical process, and sintering has been conducted under the conventionally recommended 
oxygen atmosphere. However, sintering of the Co2-Y in air would be preferable for industrial production be-
cause of cost effectiveness. To date, some studies have been conducted on Y-type Ba2Zn2-2x-2yCo2xCu2yFe12O22 
(0 ≦ x ≦ 0.1) sintering in air [14] [21]. In addition, Co2-Y (with no added CuO) sintering in air has also been 
reported [22], which showed a high resistivity of 5 × 104 Ωm but did not show values of tanδ. The industrially 
favorable sintering conditions (in air) of 0.6 wt% CuO added to Co2-Y will be presented in this study in order to 
attain the same characteristics as the samples sintered in O2 in our early study mentioned above. The effective 
factor of tanδ will also be discussed. 

2. Experimental 
Samples of Co2-Y ferrite were prepared as a stoichiometric composition by means of conventional powder me-
tallurgy. Raw material powders of Fe2O3, BaCO3, and Co3O4 were well-mixed using ball-milling and calcinated 
at 1000˚C for 2 h in air. The calcinated powders were ground, with the addition of 0.6 wt% CuO powders and of 
a 1 wt% PVA binder, followed by compacting into predetermined shapes at a pressure of 20 MPa and then sin-
tered at 1200˚C for 3 h under atmospheres with varying oxygen content (balance: nitrogen). 

The resistivity, ρ, was measured for samples whose dimensions were 13 mm in diameter and 3 mm in thick-
ness. An electrode was then printed on both sides of the samples as a silver paste. The permeability and permit-
tivity frequency response were characterized by means of a network analyzer (Agilent E8364A) and a coaxial 
airline fixture (KANTOH E.A.D. Co. Model: CSH2-APC-7) up to 18 GHz, after the Nicolson-Ross method [23]. 
Ring shaped samples (ID: 3.0 mm, OD: 7.0 mm, thickness: 3.5 mm) were used in this characterization. 

The sample densities were determined by means of Archimedes’ method, while their morphologies were in-
vestigated using a scanning electron microscope (SEM) (Hitachi S-800). The grain diameters were defined as 
the average diagonal length of approximately 30 grains, orienting the hexagonal shape towards the top, in the 
SEM images. 

3. Results and Discussion 
The Co2-Y samples with the added 0.6 wt% CuO were prepared in various O2 volume configurations at a sinter-
ing temperature of 1200˚C. The O2 volume fraction varied from 15% - 100%. The dependence of µ, tanδ at 1 
GHz, the density, and ρ, on the O2 volume fraction are shown in Figure 1(a) and Figure 1(b), respectively. Both 
µ and tanδ decrease with increasing O2 volume fraction. The lowest tanδ (at 0.05) with a µ of 2.7 was achieved 
at a full O2 atmosphere (100%), while the atmospheric case, i.e., sintering in air (20% O2), exhibited a high tanδ 
of 0.15 along with a high μ of ~4. It can be seen that the density increases while ρ decreases with decreasing O2 
volume fraction. A high density of 5.24 × 103 kg/m3 and a low ρ of 1.2 × 104 Ωm were achieved in air. Low tanδ 
is required for energy-conversion devices such as inductors and antennas. High ρ is also required, because wind- 
ing coils or printed electrodes make contact with ferrites directly. These characteristics were not attained when 
sintering at 1200˚C conducted in air, as shown in Figure 1. Therefore, the sintering temperature in air must be 
considered. 

The dependence of ρ on the sintering temperature in O2 and in air is shown in Figure 2, where open and black 
circles denote sintering in O2 and in air, respectively. ρ decreases with sintering temperature for both atmos-
pheres, although the change in air is steeper than that in O2. A resistivity greater than 7 × 104 Ωm in the case of 
sintering in O2 is reached below 1180˚C in air. 

The change in μ and tanδ at 1 GHz due to sintering temperature in O2 and in air are shown in Figure 3(a) and  
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Figure 1. Dependence of (a) µ and tanδ, and (b) density and ρ, on O2 volume fraction at sintering. 

 

 
Figure 2. Dependence of ρ on sintering temperature in O2 and in air. 

 

    
Figure 3. Change in (a) μ and (b) tanδ at 1 GHz due to sintering temperature in O2 and in air. 

 
Figure 3(b), respectively. μ and tanδ increase with sintering temperature for both atmospheres, and the behavior 
in the air case are shifted to a lower temperature than that of the O2 case. The target characteristics, namely, μ of 
2.8 with a low tanδ (less than 0.05 at 1 GHz), are attained at 1170˚C in the case of sintering in air, which is al-
most identical to the sample sintered at 1200˚C in O2. It was proven that the crystal structure of this sample was 
that of a Co2-Y ferrite using X-ray diffraction as shown in Figure 4, where no spinel phase was detected as in 
[21]. 

The fractured surfaces of the samples with identical characteristics and sintered in different atmospheres are 
shown in Figure 5. Here, Figure 5(a) is an image of a sample sintered at 1200˚C in O2, while Figure 5(b) 
shows a sample sintered at 1170˚C in air. The density of the former is 4.82 × 103 kg/m3 and that of the latter is 
4.90 × 103 kg/m3, respectively. Both samples have the same morphological aspect with small grains isolated by 
fine pores. In addition, the majority of the grains have a pseudo-hexagonal platelet shape with thin thickness. 
The grain sizes, defined as the diagonal length of the hexagonal faces, are estimated as being 2.0 μm in the O2 
case and 1.8 μm for the air case from these images. It is assumed that the same magnetic characteristics are at-
tributed to the same morphological nature in both samples. 
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The relationship between grain diameter and tanδ is shown in Figure 6. All samples fabricated in this study 
are plotted on this figure regardless of sintering conditions. The value of tanδ increases with grain diameter, and 
rises abruptly from 0.05 to 0.15 around a grain diameter of ~2 μm. It has been reported previously that energy 
dissipation in inductors composed of NiZn ferrites is affected by grain size, and that the dissipation was mini-
mized at a single domain size of 2 - 3 μm [24]. The magnetization process is classified into a spin rotational 
mode or a magnetic domain wall motion depending on magnetic domain sizes. The rotational mode dominates 
in the case of small grain diameters equal to magnetic single domain sizes, while larger grain sizes lead to two- 
or multi-domain structures. 

The abrupt increase in tanδ by more than 0.1 beyond a diameter of 2 μm could be attributed to the switching 
of the magnetization mode from the spin rotational mode to the magnetic domain wall motion. The critical size 
of a magnetic single domain could be estimated as being approximately 2 μm in the Co2-Y ferrite. Therefore, 
controlling the grain size has an effect on reducing tanδ. 

 

 
Figure 4. X-ray diffraction profiles of (a) the sample sintering at 1700˚C in air, and (b) calculated 
standard Y-type (CuKμ, λ = 0.15405 nm). 

 

    
Figure 5. Fractured surface of the samples sintered at (a) 1200˚C in O2 and (b) 1700˚C in air. 
Grain sizes were estimated as being ~2.0 μm and ~1.8 μm, respectively. 

 

 
Figure 6. The relationship between grain diameter and tanδ. 
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It is apparent that the Co2-Y ferrite with low tanδ even at 1 GHz fabricated in air is favorable for industrial 
production, and is a promising magnetic material for application to high frequency devices. 

4. Conclusion 
The sintering characteristics of the hexagonal Co2-Y-type ferrite, Ba2Co2Fe12O22, with the addition of 0.6 wt% 
CuO in air were examined in order to apply the ferrite to industrial production. It was found that sintering at 
1170˚C in air resulted in a low tanδ of 0.05, with a high µ of 2.7 at 1 GHz and a high ρ of 7 × 104 μm, identical 
to a sample sintered at 1200˚C in the conventionally recommended oxygen atmosphere. The relationship be-
tween grain size and tanδ was also examined. It was found that tanδ was dependent on grain size, and that a size 
of less than 2 μm is preferable for reducing tanδ, which suggests the ferrite can be applied to microwave devises 
with low energy dissipation. 
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