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Abstract 
 
In the present paper, we show the some properties of the fuzzy R-solution of the control linear fuzzy differ-
ential inclusions and research the time-optimal problems for it. 
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1. Introduction 
 
The first research of the differential equations with set- 
valued right-hand side has been fulfilled by A. Marchaud 
[1,2] and S. C. Zaremba [3]. In the early sixties, T. 
Wazewski [4,5], A. F. Filippov [6] had been obtained 
fundamental results about existence and properties of 
solutions of the differential equations with set-valued 
right-hand side (differential inclusions). Connection de-
riving between differential inclusions and optimum con-
trol problems was one of the most important outcomes of 
these papers. These outcomes became impulse for de-
velopment of the theory of differential inclusions [7-9]. 

Considering of the differential inclusions required to 
study properties of set-valued maps, i.e. an elaboration 
the whole tool of mathematical analysis for set-valued 
maps [7,10,11]. 

In work [12] annotate of an R-solution for differential 
inclusion is introduced as an absolutely continuous set- 
valued maps. Various problems for the R-solution theory 
were considered in [8,13]. The basic idea for a develop-
ment of an equation for R-solutions (integral funnels) is 
contained in [14]. 

In the eighties the last century the control theory in the 
conditions of uncertainty began to be formed. The con-
trol differential equations with set of initial conditions 
[15-17], control set differential equations [18-21] and the 
control differential inclusions [21-32] are used in the 
given theory for exposition of dynamic processes. 

In recent years, the fuzzy set theory introduced by 
Zadeh [33] has emerged as an interesting and fascinating 
branch of pure and applied sciences. The applications of 
fuzzy set theory can be found in many branches of re-

gional, physical, mathematical, differential equations, 
and engineering sciences. Recently there have been new 
advances in the theory of fuzzy differential equations 
[34-47] and inclusions [48-53] as well as in the theory of 
control fuzzy differential equations [54-57] and inclu-
sions [57-59]. 

In this article we consider the some properties of the 
fuzzy R-solution of the control linear fuzzy differential 
inclusions and research the time-optimal problems for it. 
 
2. The Fundamental Definitions and  

Designations 
 
Let     ncomp R conv Rn  be a set of all nonempty 
(convex) compact subsets from the space , nR

      
0

, min ,  r r
r

h A B S A B S B A


    

be Hausdorff distance between sets A  and , B  rS A  
is r -neighborhood of set A . 

Let  be the set of all nE  : 0nu R  ,1  such that u 
satisfies the following conditions: 

1)  is normal, that is, there exists an u 0
nx R  such 

that  0 1u x  ; 
2)  is fuzzy convex, that is,  u

       1 min ,u x y u x u y   
n

 

for any ,x y R  and 0 1  ; 
3)  is upper semicontinuous, u

4)     0
:nu cl x R u x 0 

n

  is compact. 

If , then  is called a fuzzy number, and  
is said to be a fuzzy number space. For 

u E u nE
0 1  , de-

note  
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    :nu x R u x
    . 

Then from (1) - (4), it follows that the  -level set 
 for all 0 1   nu conv R

    . 
Let   be the fuzzy mapping defined by   0x   if 

 and . 0x   0 1 
: n nD E EDefine  by the relation     

 
0,

    
0 1

, sup ,D u v h u v
 

 
 , 

where  is the Hausdorff metric defined in h  ncomp R . 
Then  is a metric in . D nE
Further we know that [60]: 
1)  is a complete metric space,  ,nE D

D u w


2)  for all ,  , ,v w D u v  
 

, , nu v w E
3)  ,D u v D u v   ,  for all  and , nu v E

R  . 
Definition 1. [36] A mapping  : 0, nF T E  is 

measurable if for all  0,1   the set-valued map 
  : 0, n F T conv R   defined by    F t F t


     is 

Lebesgue measurable.  
Definition 2. [36] A mapping  : 0, nF T E  is said 

to be integrably bounded if there is an integrable function 
 such that  h t    x t h t  for every    0x t F t . 

Definition 3. [36] The integral of a fuzzy mapping 
 : 0, nF T E

T T

 is defined levelwise by  

   
0 0

d dF t t F t t 
 
 


 

. The set  
0

d
T

F t t  of all  

 
0

d
T

f t t  such that  : 0, nf T R  is a measurable  

selection for    : 0, nF T conv R   for all  0,1  . 
Definition 4. [36] A measurable and integrably 

bounded mapping  : 0, nF T E  is said to be integra-  

ble over  0,T  if  
0

d n
T

F t t E .  

Note that if  : 0, nF T E  is measurable and inte-
grably bounded, then F  is integrable. Further if  

 : 0, nF T  E  is continuous, then it is integrable. 
Now we consider following control differential equa-

tions with the fuzzy parameter  

    0, , , ,  0 ,x f t x w v x x            (1) 

where x  means 
d

d

x

t
; t R  is the time; nx R

k

 is  

the state;  is the control;  is the 
fuzzy parameter; 

mw R v V E 
k n: n mf R R R   

 monv R
R R .  

Let  be the measurable set-va- 
lued map. 

: W R c

Definition 5. The set  of all measurable single- 
valued branches of the set-valued map  is the set 
of the admissible controls.  

LW
 W 

Further we consider following control fuzzy differen-

tial inclusions 

    0, , ,  0 ,x F t x w x x 
n

            (2) 

where : n mF R R R E     is the fuzzy map such 
that    , , , , ,F t x w f t x w V . 

Obviously, the control fuzzy differential inclusion (2) 
turns into the ordinary fuzzy differential inclusion 

    0, ,  0 ,x t x x x              (3) 

if the control  w LW   is fixed and  
    , ,t x w t,t x F  . 
If right-hand side of the fuzzy differential inclusion (3) 

satisfies some conditions (for example look [12]) then 
the fuzzy differential inclusions (3) has the fuzzy R-so- 
lution. 

Let  X t  denotes the fuzzy R-solution of the differ-
ential inclusion (3), then  , X t w  denotes the fuzzy 
R-solution of the control differential inclusion (2) for the 
fixed  w L  W . 

Definition 6. The set       , :T w w LW  Y T X  
be called the attainable set of the fuzzy system (2). 
 
3. The Some Properties of the Fuzzy  

R-Solution 
 
Further in the given paper, we consider following control 
linear fuzzy differential inclusions 

      0, ,  0 ,x A t x G t w x x          (4) 

where  A t  is  n n  dimensional matrix-valued 
function;  is the fuzzy map. :G R mR E  n



In this section, we consider the some properties of the 
fuzzy R-solution of the control fuzzy differential inclu-
sion (4). 

Let the following condition is true. 
Condition A: 
A1.  A   is measurable on  0,T ; 
A2. The norm  A t  of the matrix  A t  is inte-

grable on  0,T ; 
A3. The set-valued map    0: , mW t T R conv  is 

measurable on  0,T ; 
A4. The fuzzy map  : 0, m nG T R E   satisfies the 

conditions  
1) measurable in ; t
2) continuous in ; w
A5. There exist    2 0,v L T   and    2 0,l L T   

such that 

         ,0 ,  , ,h W t v t D G t w l t   

almost everywhere on  0,T  and all  w W t . 
A6. The set       LW, ( ) :Q t w t w


G t   is com-

pact and convex for almost every 0,t T , i.e.  
   nQ t conv E . 
Theorem 1. Let the condition A is true. 

Copyright © 2011 SciRes.                                                                                  ICA 
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Then for every  there exists the fuzzy 
R-solution 

 w LW 
 ,X w  such that 

1) the fuzzy map  ,X w  has form 

          1
0

0

, ,
t

dX t w t x t s G s w s s    , 

where  0,t T ;  is Cauchy matrix of the differ-
ential equation 

 t
 x A t

n
x

EwtX ),(
; 

1)  for every ;  Tt ,0
2) the fuzzy map  ,X w  is the absolutely continuous 

fuzzy map on  0,T . 
Proof. 1. Show that  , X t w  is the fuzzy R-solution 

of the fuzzy system (4). We have  

          

        

       

1
0

0

1
0

0

1
0

0

,

, d

( , d

t

t

t

, dX t w t x t s G s w s s

t x t s G s w s s

t x t s G s w s s















 
      



       



      














 

for all  0,1 
w

,  and . Since  0t   w LW 
 ,X t


    is the R-solution of the control differential 
inclusion  

     0 0( , ,  x A t x G t w t x t x


      

(see [30]), we obtain that  ,X t w  is fuzzy R-solution 
of the control fuzzy differential inclusion (4). 

2. By [36] and Condition A we have that 
 , nX t w E  for all  and . 0t   w LW 

 ,X t w3. From [30] we have that 


    is the abso-
lutely continuous set-valued map on  0,T  for all 

 0,1  , i.e.  , X t w  is the absolutely continuous 
fuzzy map on  0,T . The theorem is proved. 

Theorem 2. Let the condition A is true. 
Then the attainable set  is compact and convex.  Y T
Proof. It is easy to check that  

         1
0

0

d
T

Y T T x T s Q s s     

and  

         1
0

0

d
T

Y T T x T s Q s s
            , 

where       : 0, nQ t T conv conv R


    for all  

 0,1 
T

. From [20,21,30,57] we obtain that  

       1

0

d nT s Q s s conv conv R
       for all  

 0,1  , i.e. . This ends the proof.    Y T conv E n

We obtained the basic properties of the fuzzy R-solu- 

tion of systems (4). Now, we consider the some fuzzy 
control problems. 
 
4. Time-Optimal Problems 
 
Consider the following time-optimal problem: it is nec-
essary to find the minimal time T  and the control 

 *w L  W  such that the fuzzy R-solution of system (4) 
satisfies one of the conditions: 

 *, kX T w S   ,               (5) 

 *, kX T w S ,                (6) 

 *, kX T w S ,                (7) 

where  is the fuzzy terminal set.  n
k ES 

It is obvious that optimum time and optimum controls 
for these problems will be different.  

Theorem 3. (necessary optimal condition for the 
time-optimal problem (4), (5)). Let the condition A is 
true and the pair   *,T w   is optimality of the control 
problem (4), (5). 

Then there exists the vector-function , which is 
the solution of the system 

  

    1,  0TA t T S       

such that  

1)     
 

    1 1*, , max , ,
w W t

C G t w t C G t w t 


          
almost everywhere on  T,0 ; 

2) ,         1 1*, , ,kC X T w T C S T         
where    1 1, max ,  ,n

n n
p P

C P p p R   


      

 nP conv R . 
Proof. Let  *w   is the optimal control and  *,X w  

is the optimal fuzzy R-solution of the problem (4), (5), 
i.e.  

1)    *, ;X T w Y T  

2)  *, .kX T w S    

From 1) and 2) we have 

 
   1

1
max , ,k

X Y T

C X C S  
  

           (8) 

for all  1 0S  . 
Consequently 

   
    1

1

1

0
max min , , 0.k

SX Y T

p C X C S


 
  

  

1



0

 

From  we have     1*, kX T w S     
1

*       1
, , , ,kq T C X T w C S       

 

Copyright © 2011 SciRes.                                                                                  ICA 
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for all 

From  1 we have that the function 
 1 0S  . 

 Theorem
an

 ,q T   

ve  
is conti Rnuous on  1 0S  . 

If  , 0q T    for all  1 0S   then we ha

 
 

0

0
min 0

S
q T q T


  . Hence there exists 

1

,   T    

su  equently 

0

for all i.e.  

It contradicts that  is optimal time. 



ch that 0 . Cons we have   q  0

    1 1*, , ,C X w C S       
 k 

 1 0S  ,    
1 1*, kX w S      . 

T
If, 0p   

   

    
1

1 0

1

,

, ,

X Y T

k

C X

C X C S


    1

max min , k
S

C S 

 

  

    
 

1

 

and  *,X T w X   


ce there exists  
, than we have a contradiction. 

Hen  such that   1 0S

 *, ,w
 

 
1

1
max , ,

X Y T

C X T C X 
  

   
   


 

    1 1*, , ,kC X T w C S .         
   

Consequently 

 
0

C T     

 
      

1
1 *

11

0

, d ,

max , d ,

T

T

w LW

s G s w s s

C T s G s w s s









 

  
 

 
     







 





Then we have  

 





      

 
      

1
1 *

11

, ,

max , ,
w W t

C T s G s w s

C T s G s w











     

     




  

for almost every  0,s T . If  

 
    
    

1

1

T

T

T t
t

T t






 


 




, 

than the theorem 3 is proved. 
Theorem 4. (necessary optimal condition for the 

tim . Let the condition A is 
tr

system 



e-optimal problem (4), (6))
  *ue and the pair ,T w   is optimality of the control 

problem (4), (6). 
Then there exist the vector-function    , which is 

the solution of the 

      1,  0TA t T S      

d  0,1   such that  
1)  

        *

( )
, , max , ,

w W t
C G t w t C G t w t

 
 



         
 

almo here on st everyw  0,T ; 
 all 2) for  0,1   

        *, , ,kC X T w T C S T
        

 

and  

        *, , ,kC X T w T C S T
        

. 

This
changes

 theorem is proved analogous theorem 5 with little 
 of condition (8):  

for all  0,1   

 
    max , , 0k

X Y T

C X C S
  

   
 

for all  1 0S   and there e  0,1 xist  and  
nR   such that 

 
    max , , 0k

X Y T

C X C S


 
  

  . 

Theorem 5. (necessary optimal condition for the 
time-optimal problem (4), (7)). Let the condition A is 
true and the pair   *,T w   is optimality of the control 
problem (4), (7). 

Then there exist the vector-function    , which is 
the solution of the system 

  ,  TA t    1 0T S      

and  0,1   such that  
1)  

       *

( )
, , max , ,

w W t
C G t w t C G t w t

 
 



          
 

almo here on st everyw  0,T ; 
 all 2) for  0,1   

        *, , ,kC X T w T C S T
        

 

and  

        *, , ,kC X T w T C S T
        

. 

Also
little ch

 this theorem is proved analogous theorem 5 with 
anges of condition (8):  

for all  0,1   

 
   k

X Y T

C X C S
  

  ,  max , , 0
 

for all  1 0S   and there exist  0,1   and  
n R  such that 
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 
    max , , 0k

X Y T

C X C S


 
  

  . 

Exam sider the followin l linear fple. Con g contro uzzy 
differential inclusions 

 ,  0 0,x x w F x              (9) 

where 

  

x  is the state;  1,1w W    is the control; 
1F E  is the fuzzy set, where 



 

0, 0,5

2 1, 0,5

3, 1 1

1,5

f

f

f

f




  

  


1f 
2 ,5

0,

f
f




. 

Consider the following time-optimal problem: it is 
necessary to find the minimal time an the control 

W such that the fuzzy R-s ion f system (9) 
satisfies of the condition (5), where t e fuzzy terminal 

 such, that 

 T  
olut

h

d 
 o *w L   

set 1
kS E

 

0, 1,75

4 7, 1,75 2

1, 2 3

4

x

x x

x x

x x13, 3 3, 25

0, 3, 25 x




     


. 

  


The control  and time  will be 
optimum pair fo e given pr  set 

 * 1w t 
r th

  ln 2T 
oblem. Fuzzy

 *,X T w
Figure 1. 

 inal set are shown in 

Obviously, this optimal pair satisfies to conditions of 
th

and fuzzy term KS  

e theorem 3: 

1)        * , ,w t t C W t   for almost every  

 0, ln 2t   ; 

2)    
for almost every 


e consider the time-optimal problem (9), (6 hen  

    1 1*, , ,kC X T w T C S T         
, 

where  0, ln 2t   ,    1t   

  1
* , 2X T w  .,   1

2,3KS   

If w ) t

the control  and time  * 1w t 
13

ln
6

T
   
 

 will op- 

timum pair. Fuzzy set 

be 

 *,X T w  and fuzzy terminal set 

KS  
co

are shown in Figure 2. This optimal pair satisfies to 
nditions of the theorem 4: 

1)      *w t C W t st every   for almo, ,t   

13
0, ln

6
t

       
; 

2)   
0

*, ,C X T w T         0
,kC S T     

, 

 

  ln 2 ,1X  (−), KSFigure 1. (+). 

 

 

  
  

  

13
ln ,1

6
X  (−), KSFigure 2.  (+). 

 

where for almost every 
13

0, ln
6

t
       

  1t   ,  

  0
* 7 35

, , ,



4
 0 7 13

12
X T w

        
 ,

4  
. 

4KS
 

If we consider a problem (9), (7) it is obvious that the 
olution does not exist. 

5. Conclusions 
 
In the last decades, a nu ber of works de ted to prob-
le

works fall into a subdivision of 
theory, namely, the theory of process 
tainty and fuzzy conditions. This is 

s
 

m vo
ms of optimal control of set-valued trajectories (fuzzy 

trajectories, trajectory bundles or an ensemble of trajec-
ories) appeared; these t

the optimal control 
ontrol under uncerc

conditioned by the fact that, in actual problems arising in 
economy and engineering in the course of construction 
of a mathematical model, it is practically impossible to 
exactly describe the behavior of an object. This is ex-
plained by the following fact. First, for some parameters 
of the object, it impossible to specify exact values and 
laws of their change, but it is possible to determine the 
domain of these changes. Second, for the sake of sim-
plicity of the mathematical model being constructed, the 
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to describe behavior of objects. The rea-
so

 the necessary conditions of opti-
m

. Marchaud, “Sur les Champs de Demicones et Equa-

erentilles du Premier Ordre,” Bulletin de 
tique de France, Vol. 63, 1934, pp

, No. 4, 1967, pp.

equations that describe the behavior of the object are 
simplified and one should estimate the consequences of 
such a simplification. Therefore, if is possible to divide 
the articles devoted to this direction into two types char-
acterized by the following distinctive features: 

1) there exists an incomplete or fuzzy information on 
the initial data; 

2) the equations describing the behavior of the object 
to be controlled are assumed to be inexact, for example, 
they can contain some parameters whose exact values 
and laws of variation are unknown but the domain of 
their values is fuzzy.  

In the second case, fuzzy differential inclusions are 
frequently used 

n is that, first this approach is most obvious and, sec-
ond, theory of fuzzy and ordinary differential inclusions 
is well found and is rapidly developed at the present 
time. 

In the present paper,
al of control for a system of the latter form of equations 

with the fuzzy R-solutions are formulated and proved. 
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