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Abstract 
In this paper, the dynamics of rule 106, a Chua’s hyper Bernoulli cellular automata rule, is studied 
and discussed from the viewpoint of symbolic dynamics. It is presented that rule 106 defines a 
chaotic subsystem which is topologically mixing and possesses the positive topologically entropy. 
An effective method of constructing its chaotic subsystems is proposed. Indeed, it is interesting to 
find that this rule is filled with infinitely many disjoint chaotic subsystems. Special attention is 
paid to each subsystem on which rule 106 is topologically mixing and possesses the positive topo-
logically entropy. Therefore, it is natural to argue that the intrinsic complexity of rule 106 is high 
from this viewpoint. 
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1. Introduction 
Cellular Automata (CA), first conceived around 1950 by von Neumann [1], are a class of spatially and 
temporally discrete mathematical structure by local interactions and an inherently parallel form of evolution. 
The whole structure is able to produce complex and interesting dynamical phenomena by means of designing 
simple transition rule. Due to their simple mathematical constructions and distinguishing features, CA have 
drawn a great deal of attention from various scientists. In 1969, the study of topological dynamics of CA was 
developed by Hedlund [2], who viewed one-dimensional CA in the context of symbolic dynamics as endo- 
morphisms of the shift dynamical system, where the main results are the characterizations of surjective and open 
CA. In 1970, Conway proposed game of life [3], which received widespread interests among researchers in 
different fields. In the early 1980s, Wolfram proposed CA as models for physical systems exhibiting complex or 
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even chaos behaviors and elementary CA (ECA) that consist of a one-dimensional array of finite binary cells, 
each interacting only with the two nearest neighbors [4]-[6]. He classified 256 ECA rules informally into four 
classes using dynamical concepts like periodicity, stability and chaos. In 2002, Wolfram introduced his work A 
New Kind of Science [6]. Based on this work, Chua et al. have concluded the dynamics of ECA from a 
nonlinear dynamics perspective [7]-[10]. And he divided 256 ECA rules into four classes: period- k  rules 
( )1,2,3k = , Bernoulli-shift rules, complex Bernoulli-shift rules and hyper Bernoulli-shift rules. 

Gratefully, the research of CA has drawn more and more scientists’ attention in the last 20 years. Many 
concepts of topological dynamics have been used to describe and classify them [11]-[15]. And the dynamical 
properties of some robust Bernoulli-shift rules have been studied in the bi-infinite symbolic sequence space [14], 
[15]. Rule 106 belonging to hyper Bernoulli-shift rules possesses complex and distinctive dynamical behaviors. 
In a paper [16], the authors introduced the notion of permutivity of a map in a certain variable. Then they proved 
that every one-dimensional CA based on the local rule which is permutive either in the leftmost or rightmost 
variable is Devaney chaotic. Rule 106 is in this situation. Presently, this work is devoted to an in-depth study of 
rule 106 from the perspective of nonlinear dynamics under the framework of bi-infinite symbolic sequence 
space, and mainly studies the complex dynamics on its infinite number of subsystems. 

The rest of the paper is organized as follows: Section 2 presents the basic concepts of one-dimensional CA 
and symbolic dynamics. Based on these concepts, it shows a subsystem of rule 106. Section 3 explores the 
complex dynamical behaviors of rule 106. Section 4 describes that there exist infinitely many disjoint chaotic 
subsystems in this chaotic subsystem. Finally, Section 5 concludes this paper. 

2. Preliminaries 
For a finite symbol S , a word over S  is finite sequence ( )0 1 1, , , na a a a −=   of elements of S . The length  

of a is denoted by a n= . Denote the set of all words of length n  by nS . If a  is a finite or infinite word  

and [ ],I i j=  is an interval of integers on which a  is defined, put [ ] ( ), , ,i ji ja a a=   and  

[ ] ( )1, , ,i ji ja a a −=  . b  is a subword of a , denoted by b a , if Ib a= , for some interval I Z⊆ ; otherwise,  

denoted b a . The set of bi-infinite configurations is denoted by ZS  and a metric “ d ” on ZS  is defined as  

( ) ( )
( )

,1,
1 ,2

i i
i i

i i

d x x
d x x

d x x
∞

=−∞
= ⋅

+∑ , where ,  Zx x S∈ , and ( ),d ⋅ ⋅  is the metric on S  defined as 

( )
1,   if  

,
0,   if  

i i
i i

i i

x x
d x x

x x
=

=  ≠
. It is well known that ZS  is a compact, perfect and totally disconnected metric  

space. 
By a theorem of Hedlund, a map : Z ZT S S→  is a cellular automata iff it is continuous and commutes with  

shift map σ , i.e., T Tσ σ=  , where : Z ZS Sσ →  is defined by ( ) 1ii
x xσ +=   . For any CA there exists  

radius 0r ≥  and a loca rule 2 1: rN S S+ →  such that ( ) [ ]( ),i r i ri
T x N x − +=   . Moreover, ( ),ZS T  is a com- 

pact dynamical system. To enhance readability, it is desirable to write a CA as NT  for local rule N . 

A set ZX S⊆  is T -invariant if ( )T X X⊆ , and strongly T -invariant if ( )T X X= . If X  is closed  

and T -invariant, then ( ),X T  or simply X  is called a subsystem of T . For instance, let A  denote a set  
of some finite words over S , and ΛA  is the set which consists of the bi-infinite configurations made up of all 
the words in A . Then ΛA  is subsystem of σ , where A  is said to be the determinative block system of  
ΛA . 

For bi-infinite ECA, 1r =  and S  is denoted by { }0,1 . Each local rule can be expressed by a Boolean  
function. For example, the Boolean function of rule 106 is [ ]( ) 1 1 1 1 11, 1 i i i i i i i ii iN x x x x x x x x x− + + − +− + = ⋅ ⋅ ⊕ ⋅ ⊕ ⋅ ⋅ ,  

i Z∀ ∈ , where “.”, “⊕ ” and “–” stand for “AND”, “XOR” and “NOT” logical operations, respectively [11].  
Thus the global map of rule 106 is induced as follows: for any Zx S∈ ,  
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( )106 1 1 1 1 1i i i i i i i ii
T x x x x x x x x x− + + − += ⋅ ⋅ ⊕ ⋅ ⊕ ⋅ ⋅   , i Z∀ ∈ , where ( )106 i

T x    denotes the i th symbol of  

( )106T x . For clarity, the truth table of rule 106 is depicted in Table 1.  
Based exclusively on this truth table, a subsystem of rule 106 in ZS  is shown as follows.  
Proposition 1. For rule 106, there exists a subset ZSΛ ⊂  such that 106T σ

ΛΛ
=  iff x∀ ∈Λ ,  

[ ]1, 1i ix − + ∈A , i Z∀ ∈ , where ( ) ( ) ( ) ( ) ( ){ }0,0,0 , 0,0,1 , 0,1,0 , 1,0,0 , 1,0,1=A .  

Proof: (Necessity) Suppose that there exists a subset ZSΛ ⊂  such that 106T σ
ΛΛ

= , then,  

( )1 0 1 , , , ,x x x x−∀ = ∈Λ  , one has ( ) ( )106 1,   ii i
T x x x i Zσ += = ∀ ∈        According to the Boolean function  

of rule 106, one has 1 1 1 1 1 1i i i i i i i i ix x x x x x x x x− + + − + +⋅ ⋅ ⊕ ⋅ ⊕ ⋅ ⋅ =  this implies 1 0i ix x− ⋅ =  so 1ix −  and ix  can  

not be 1 simultaneously,  i Z∀ ∈ . Additionally, if there exists 0i  such that ( ) ( )
0 0 01 1, , 0,1,1i i ix x x− + =  then it  

must satisfy that ( ) ( )
0 0 01 2, , 1,1,0i i ix x x+ + =  or ( )1,1,1 , this is contradictory with 

0 0 1 0i ix x +⋅ =  Hence, the  

determinative block system of Λ  is ( ) ( ) ( ) ( ) ( ){ }0,0,0 , 0,0,1 , 0,1,0 , 1,0,0 , 1,0,1=A . 

(Sufficiency) The proof of sufficiency can be verified directly, the details are omitted here. The proof of the 
proposition is completed. 

For illustration, simulations of the spatial and temporal evolution of rule 106 with a random initial 
configuration and an initial configuration of Λ  are shown in Figure 1, where the black pixel stands for 1 and 
white for 0.  

3. Complex Dynamics of T106  
In this section, the dynamical behaviors of 106T  on Λ  are exploited. As the topological dynamics of a subshift 
of finite type is largely determined by the properties of its transition matrix, it is helpful to briefly review some  
definitions from [17]. A matrix A is positive if all of its entries are nonnegative; irreducible if ,  ,  i j n∀ ∃  such  

that , 0n
i jA > ; aperiodic if N∃ , such that , 0,  ,  ,  n

i jA n N i j> > ∀ . If AΛ  is a 2-order subshift of finite type,  
 
Table 1. Logical table of rule 106.                                                                          

( )1 1, ,i i ix x x− +  ( )106 i
T x    ),,( 11 +− iii xxx  ( )106 i

T x    

000 0 100 0 

001 1 101 1 

010 0 110 1 

011 1 111 0 

 

 
(a)                                  (b) 

Figure 1. (a) The evolution of rule 106 from random initial configuration, (b) 
The evolution of rule 106 from an initial configuration of Λ .               
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then the associated transition matrix A  is the N N×  matrix with , 1i jA = , if ( ), Ai j ∈Λ ; otherwise , 0i jA = .  
Denote a 2-order subshift of finite type by :A A Aσ Λ → Λ  It is known that a 2-order subshift of finite type is 
topologically mixing if and only if its transition matrix is irreducible and aperiodic [17] [18]. 

The nonlinear dynamical behavior of 106T  on Λ  is discussed by establishing the topologically conjugate  

relationship between ( ),σΛ  and a 2-order subshift of finite type. Let { }0 1 2 3 4
ˆ , , , ,S r r r r r=  be a new symbolic  

set, where ir , 0,1, 2,3, 4i = , represent the elements in A , respectively. Then one can construct a new  

symbolic space ˆZS  on Ŝ . Denote by ( ) ( ) ( ){ }0 1 2 0 1 2 1 0 2 1
ˆ, , ,  , , ,  and ,rr r b b b r b b b S b b b b′ ′ ′ ′ ′ ′ ′= = = ∈ = =D .  

Then, the 2-order subshift ΛD  of σ  is defined by  

( )1 0 1 1
ˆ ˆ, , , , , , ,Z

i i ir r r r S r S r r i Z
∗

− +
  Λ = = ∈ ∈ ∀ ∈  

  
  D D . Moreover, it is clear to see that the transition  

matrix A of the subshift ΛD  is:  

1 0 0 1 0
0 0 0 1 0

.0 1 0 0 1
0 0 1 0 0
0 0 1 0 0

A

 
 
 
 =
 
 
 
 

 

Theorem 1. 1) ( ),σΛ  and ( ),σΛD  are topologically conjugate; 

2) 106T
Λ

 is topologically mixing; 

3) the topological entropy of 106T
Λ

 satisfies ( ) ( )( )106ent log 0T Aρ
Λ

= > , where ( )Aρ  is the spectral  

radius of the transition matrix A .  
Proof: 1) Define a map from Λ  to ΛD  as follows: 

:π Λ → ΛD  

1 0 1 1 0 1, , , , , , , ,x x x x r r r
∗ ∗

− −
   =    
   
      

where [ ]1, 1= ,  i i ir x i Z− + ∀ ∈ . Then, it follows from the definition of ΛD  that for any x∈ΛA , one has  

( )xπ ∈ΛD ; namely, ( )π Λ ⊆ ΛD . Then, it is easily to check that π  is a homeomorphism and π σ σ π=  .  

Hence, ( ),σΛ  and ( ),σΛD  are topologically conjugate. 

2) A  satisfies 0,  4nA n> ∀ ≥ ; namely, A  is irreducible and aperiodic, which implies that σ  is  
topologically mixing on ΛD . Then, one can deduce 106T

Λ
 is topologically mixing according to Theorem 1 1)  

and Proposition 1. 
3) As ( ) ( )( ) ( )0ent log logAσ ρ λ= = , where ( )Aρ  is the spectral radius of the transition matrix A  and  

0λ  is the positive real root of 2 1 0λ λ− − = . And ( ),σΛ  and ( ),σΛD  are topologically conjugate, so  

( ) ( ) ( )( )106ent ent log 0T Aσ ρ
Λ

= = > . 

It is noted that a positive topological entropy is an important signature of the complexity of the system. It 
follows from [18] that the positive topological entropy implies chaos in the sense of Li-Yorke. And the 
topologically mixing is a very complex property of dynamical systems. A system with topologically mixing 
property has many chaotic properties in different senses. Therefore, the above mathematical analysis provides 
the following result.  

Theorem 2. 1) 106T  is chaotic in the sense of Li-Yorke; 
2) 106T  is chaotic in the sense of both Li-Yorke and Devaney on Λ .  
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4. Infinitely Many Chaotic Subsystems of T106  in Λ  
It is helpful to review some definitions and basic properties of releasing transformation before we discuss the  
dynamics of 106T  on infinite number of subsystems. Let { },S a b= 

  be a symbolic set, where  

( )0 1 1, , , na a a a −=   and ( )0 1 1, , , nb b b b −=   represent new symbols, respectively, and  

{ },  0,1 ,  = 0,1,2, , 1i ia b i n∈ − . Denote by ZS  the space of bi-infinite configurations over S  and induce a  
matric “ d ” onto ZS  as defined in the preceding section. Then, the releasing transformation R is defined as 
follows:  

: Z ZR S S→  
y z

 

where 

( )

( )

( )

( )

0

1 1

1

0

1 1

, if   mod 0,  and  ;

, if  1  mod 0,  and  ;

          
, if  1  mod 0,  and  ;

, if   mod 0,  and  ;

, if  1  mod 0,  and  ;

          

i
n

i
n

n i n
n

i i
i
n

i
n

a i n y a

a i n y a

a i n n y a

z R y
b i n y b

b i n y b

+

+ −

+

= =

+ = =

+ − = =

= =   = =

+ = =





 









( ) 1, if  1  mod 0,  and  .n i n
n

b i n n y b+ −

















 + − = =






 

Proposition 2. [19] Releasing transformation R  is a continuous and injective map.  
Let ( )

2

0,1,0,1, ,0,1,0,1i
i

α =


 , ( )
2

0,0,0,0, ,0,0,0,0i
i

β =


 , 1, 2,3,i =  , and { },i i iS α β=  be a new sym- 

bolic set. Denote by iΛ  the subshift in ZS  determined by the transition matrix as 
1 1
1 0

A  
=  
 

 . Then induce 

: i iσ Λ → Λ 

 , where σ  is the classical left-shift map. And let iΛ  be ( )i iRΛ = Λ , then induce : i iσ Λ → Λ , 

where 1,2,3,i =  . Then considering iΛ ⊆ Λ  and Proposition 1, one can easily obtain the following propo- 
sition.  

Proposition 3. For each i Z +∈ , iΛ  is closed and 106T -invariant. 

Proposition 4. For each i Z +∈ , ( ),i σΛ   and ( )2, i
i σΛ  are topologically conjugate.  

Proof: It is clear that the following diagram is commutative. The rest of proof can be completed by applying 
Proposition 2. 

 

2i

i i

i i

σ

σ

Λ → Λ

Λ → Λ



 

R R 

 
Theorem 3. For each i Z +∈ , 1) 2

106
iT  is topologically mixing on each iΛ ; 

2) the topologically entropy of 2
106

iT  on iΛ  equals to 1 5log
2
+ ; therefore, the topologically entropy of  
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106T  on iΛ  equals to 1 1 5log
2 2i

+ .  

Proof: 1) It is clear to check that A  is irreducible and aperiodic, thus σ  is topologically mixing on iΛ ,  
1, 2,3,i =  . For each i Z∈ , ( ),i σΛ   and ( )2, i

i σΛ  are topologically conjugate, so 2iσ  is topologically  

mixing on each iΛ  and thus 2
106

iT  is topologically mixing on each iΛ  based on Proposition 1 and Proposition  
3. 

2) Since ( ) ( )( ) 1 5ent log log
2i

Aσ ρ
Λ

+
= =





 , where ( )Aρ   is the the spectral radius of the transition  

matrix A , 1, 2,3,i =  . Therefore, ( ) ( )2
106

1 5ent ent log
2ii

iT σ
ΛΛ

+
= =



  according to Proposition 3. Then the  

topologically entropy of 2
106

iT  on each iΛ  equals to 1 5log
2
+ ; therefore, the topologically entropy of 106T   

on each iΛ  equals to 1 1 5log
2 2i

+ .  

Theorem 4. For each i Z +∈ , 1) 106T  is topologically mixing on iΛ ; 
2) 106T  is chaotic in the sense of both Li-Yorke and Devaney on iΛ .  
Proof: 1) One can use the definition of the topologically mixing to prove that 106T  is topologically mixing  

on each iΛ . i.e. for any two nonempty open subsets ,  iU V ⊆ Λ , > 0,  N n N∃ ∀ ≥ , such that  

( )106
nT U V∩ ≠ ∅ . For each i Z +∈ , the following are two conditions to illustrate: 

Case 1. 2n ik= . According to theorem 3 (1), 2
106

iT  is topologically mixing, namely, for any two nonempty  

open sets ,  iU V ⊆ Λ , > 0,  N k N∃ ∀ ≥ , such that ( ) ( )2
106

kiT U V∩ ≠ ∅ , so 2n k N∀ = > , ( )106
nT U V∩ ≠ ∅ .  

Case 2. 2n ik j= + , 1, 2, , 2 2 1j ik i= + − . Firstly one need to prove that 106 : i iT Λ → Λ  is a  
homeomorphism. Since iΛ ⊆ Λ  and iΛ  is 106T -invariant, then 106T  is surjective. Suppose that there exist  

1 2,  ix x ∈Λ , such that ( ) ( )106 1 106 2T x T x= , so ( ) ( )2 2
106 1 106 2

i iT x T x= , which implies ( ) ( )2 2
1 2

i ix xσ σ= , thus  

1 2x x= . So 106T  is injective. Since iΛ  is a compact Hausdorff space, 106 i
T

Λ
 is one to one, onto and  

continuous map. 1
106 : i iT − Λ → Λ  exists and continuous. Therefore, 106 : i iT Λ → Λ  is a homeomorphism. This  

implies that ( )106
jT U  is also an open set, thus, one has  

( ) ( ) ( ) ( )( )2 2
106 106 106 106

kn ik j i jT U V T U V T T U V+∩ = ∩ = ∩ ≠ ∅ , where 1,2, , 2 2 1j ik i= + − . 

2) It is easily deduced by Theorem 3 (2) and Theorem 4 (1). 

Note that { }0 01
,ii

α β+∞

=
Λ =



, where 0 ,0,1,0,1,0,1,α
∗ =  

 
  , 0 = ,0,1,0,1,0,1,β

∗ 
 
 
  . Let  

{ }0 0\ ,i i α β′Λ = Λ , then 
1 ii

∞

=
Λ = ∅



. Observe that ( ) ( )0 0 0 0,  σ α β σ β α= = , then for each i Z +∈ , i′Λ  is  

closed and σ -invariant. Thus Theorem 3 and 4 also hold for i′Λ , where i Z +∈ .  
Remark 1. It is important to point out that the topologically entropy of 106T  on i′Λ  approaches 0 as i  

approaches +∞ . Meanwhile, it has been proved that there exists a “big” subsystem of rule 106, including  
infinite disjoint chaotic subsystems 1 2, ,′ ′Λ Λ  . This analytical assertion provides an enlightening fact that the  
hyper Bernoulli-shift rule 106 is full of infinite “small” chaotic subsystems in a “big” subsystem, demonstrating 
its very rich and complex dynamics.  

5. Conclusion 
One of the main challenges is to explore the quantitative dynamics in cellular automata evolution. Hyper 
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Bernoulli-shift rules possess very interesting and complicated dynamical behaviors [19] [20], for example, rule 
180 possesses infinitely many generalized sub-shifts [20] [21]. This paper is devoted to an in-depth study of 
cellular automaton rule 106 in the framework of symbolic dynamics. Indeed, rule 106 actually is topologically 
mixing and possesses positive topological entropy on a subsystem. Furthermore, in this chaotic subsystem, rule 
106 defines infinitely number of chaotic subsystems with rich and complex dynamical behaviors, such as 
topologically mixing, positive topological entropies and chaos in the sense of Li-Yorke and Devaney. Although 
in this work, one obtains some interesting results, to rule 106, it still needs much deeper research in the future. 
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