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Abstract 
 
The discrete nature of financial markets time-series data may prejudice the BDS and Close Returns test for 
nonlinearity. Our estimation results suggest that a tick/volatility ratio threshold exists, beyond which the test 
results are biased. Further, tick/volatility ratios that exceed these thresholds are frequently observed in finan-
cial markets data, which suggests that the results of the BDS and CR test must be interpreted with caution. 
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1. Introduction 
 
A body of literature has evolved which considers the 
implications of discreteness for: 1) trading behaviour [1]; 
2) technical trading strategies [2,3]; 3) model estimation 
[4,5]; and most importantly in the current context, 4) 
tests of the statistical properties of financial market data. 
For example, Gottleib and Kalay [6] find that discrete-
ness biases the second and higher order moment esti-
mates of returns data upwards. Koppl and Tuluca and 
Fang [7,8] consider the impact of the compass rose on 
random walk testing. Crack and Ledoit [9] discuss how 
the presence of the compass rose pattern may distort the 
null distribution for the Brock, Dechert and Scheinkman 
(BDS) test for nonlinearity. Kramer and Runde [10] em-
pirically test this proposition and find that the null dis-
tribution of the BDS test for chaos is distorted in the 
presence of discreteness.  

The purpose of this paper is to provide further evi-
dence of the impact of discreteness on tests of the prop-
erties of financial markets data. Specifically, the BDS 
test of Brock, Dechert and Scheinkman [11] and the Close 
Returns (CR hereafter) tests of nonlinearity are consi-
dered. The results suggest that both the CR and BDS test 
are sensitive to data discreteness, although only in sam-
ple sizes of less than 500 observations for the latter.  
 
2. The BDS and Close Returns Test 
 
One of the most commonly applied tests for nonlinearity 

is the BDS test of Brock, Dechert and Scheinkman [11] 
details of which may be found in Dechert [12]. In es-
sence, the test simply focuses on pairs of points in the 
dataset. If the series is iid, then the probability of the 
distance between these points being less than or equal to 
some arbitrarily chosen distance, ε will be a constant. 
More formally, the BDS test is a statistical test of the 
null hypothesis of IID and is based on the Grassberger 
and Procaccia [13] correlation integral for a given em-
bedding dimension. If the test value is significantly dif-
ferent from a standard normal distribution, it can be con-
cluded that the given signal is deterministic. As such, the 
BDS procedure may be considered as a test for linear and 
nonlinear departures from IID rather than a specific test 
for chaos. It is in this latter context however, that the test 
has most commonly been applied usually in conjunction 
with the estimation of entropy, Lyapunov exponents or 
correlation dimensions. The BDS test belongs to the me-
tric invariant class of tests for chaotic behaviour and an 
extensive literature has emerged which uses the BDS 
metric to test for nonlinear behaviour in a wide range of 
financial data including: 1) stock market returns [14,15], 
2) exchange rates [16,17], 3) futures data [18], 4) com-
modity prices [19,20] and 5) macroeconomic data [21]. 
In general, the BDS test results furnished by this litera-
ture provide substantial empirical evidence of nonlinear 
structure in a wide range of financial asset prices.  

An alternative nonlinear testing procedure is the Close 
Returns (CR hereafter) test details of which may be 
found in Gilmore [22]. The close returns test is a topo-
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logical based testing procedure which was specifically 
designed to detect low dimensional chaotic behaviour. It 
is a two-part test consisting of a qualitative component 
which is a graphical test for the presence of chaotic be-
haviour. The second quantitative element is a test of the 
null hypothesis that the data is IID against both linear 
and nonlinear alternatives. The topological approach 
attempts to determine how the unstable periodic orbits of 
the strange attractor are intertwined. The processes of 
stretching and compression are responsible for organis-
ing the strange attractor in a unique way and if one can 
determine how the unstable periodic orbits are organised, 
we can identify the stretching and compressing mechan-
isms responsible for the creation of the strange attractor. 
This information is robust against noise and is indepen-
dently verifiable. Once these mechanisms have been 
identified, a geometric model can be constructed which 
describes how to model the stretching and squeezing 
mechanisms responsible for generating the original time 
series. That is to say, topological tests may not only 
detect the presence of chaos (the only information pro-
vided by the metric class of tests), but can also provide 
information about the underlying system responsible for 
the chaotic behaviour. As the topological method pre-
serves the time ordering of the data, where evidence of 
chaos is found, the researcher may proceed to characte-
rise the underlying process in a quantitative way. Thus, 
one is able to reconstruct the stretching and compressing 
mechanisms responsible for generating the strange at-
tractor. While not enabling the researcher to identify the 
underlying equation system, it does allow the rejection of 
models which produce behaviour that is incompatible 
with the characteristics of the strange attractor identified 
by this technique. Applications of the CR test to financial 
markets data may be found in Gilmore and McKenzie 
[17,22-26].  
 
3. Random Data and the BDS and Close  

Returns Test 
 
To assess the impact of discreteness of the BDS and CR 
test, we must firstly benchmark the performance of these 
tests against simulated data. As such, a 1,000 observation 
series of random numbers is created using the Knuth [27] 
psuedo-random number generator, which is assumed to 
be normally distributed with a zero mean and constant 
variance equal to one.1The BDS test and CR test are then 
applied to these data, which are recorded to 18 decimal 

places.  
When estimating the BDS test, the neighbourhood size 

and the embedding dimension must be specified. As a 
general guide, Brock, Hsieh and LeBaron [28] suggest an 
embedding dimension of between 2 and 5 and a range for 
the threshold term of 0.5 to 2. In an effort to make our 
results as generalisable as possible, we extent the range 
of values suggested by Brock et al. [28] and estimate the 
BDS test assuming an embedding dimension of 2 - 6 and 
a threshold term which ranges from 0.01 to 5.2Thus, the 
BDS test is applied to each 1,000 observation simulated 
data series assuming each combination of embedding 
dimension and threshold term. This process is repeated 
1,000 times and Panel A of Table 1 presents a summary 
of the proportion of rejections of the null. The nominal 
size of the test is assumed to be 0.05 in all cases and the 
figures in bold indicate the instances in which the pro-
portion of rejections of the null is not significantly dif-
ferent from the nominal size of the level of significance.  

The performance of the CR test when applied to a 
random number series may also be considered. The CR 
test requires the neighbourhood and histogram size to be 
specified. Both of these values are subjective and a his-
togram length of between 400 and 600 observations is 
assumed. Further, the neighbourhood size is assumed to 
vary over the same range as set in the BDS test results. 
The estimation results are presented in Panel B of Table 
1 and the figures in bold indicate the instances in which 
the proportion of rejections of the null is not significantly 
different from the nominal size of the level of signific-
ance.  

In general, the results suggest that both the BDS and 
CR test are sensitive to the specification of the neigh- 
urhood size. The BDS test performs best for a threshold 
value of 1.00 or 1.50 whereas the CR test performs best 
for a neighbourhood size of 0.01 to 0.05. Neither test 
performs well for values outside of this range as the BDS 
test fails to reject the null sufficiently often, whereas the 
CR test almost never fails to reject the null. The choice 
of embedded dimension for the BDS test, or histogram 
size for the CR test, do not appear to impact on the gen-
eral tenor of the results. 
 
4. Discrete Data and the BDS and Close  

Returns Test 
 
The extent to which discreteness imposes itself on the 
movements in prices is a function of the volatility of the 
data. As such, the performance of the BDS and CR test 
will be considered for simulated data that exhibits dif-    

 

2A neighbourhood size of 7.5 and 10 was also specified, however the 
BDS typically failed to furnish a result and so presenting information 
as to the proportion of rejections of the null is not informative. 

1To ensure that the results are driven by the tick effect and not the
psuedo-randomness of the number generator, Knuth’s [27] lagged 
Fibonacci generator, L’Ecuyer’s [29] combined multiple recursive
generator and Matsumoto and Nishimura’s [30] Mersenne Twister are 
all considered. All three generators produced qualitatively consistent 
results and so, to conserve space, the discussion shall focus solely on
the Knuth results. 
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Table 1. Performance of BDS and CR test. 

Neighbour-hood Size Panel A: Knuth Generator Embedding Dimension Panel B: Knuth Generator Histogram Size 

 2 3 4 5 6 400 450 500 550 600 

0.01 0.862 1.000 1.000 1.000 1.000 0.041 0.044 0.033 0.036 0.044 

0.05 0.642 0.858 1.000 1.000 1.000 0.039 0.042 0.037 0.041 0.025 

0.10 0.385 0.670 0.851 1.000 1.000 0.026 0.031 0.028 0.024 0.021 

0.25 0.140 0.226 0.395 0.622 0.798 0.010 0.014 0.009 0.012 0.017 

0.50 0.076 0.094 0.093 0.131 0.191 0.005 0.006 0.002 0.002 0.006 

0.70 0.062 0.065 0.060 0.062 0.079 0.001 0.003 0.002 0.005 0.003 

1.00 0.052 0.060 0.063 0.064 0.063 0.000 0.000 0.000 0.001 0.001 

1.50 0.051 0.055 0.052 0.055 0.055 0.000 0.000 0.000 0.002 0.007 

2.00 0.056 0.069 0.062 0.065 0.073 0.000 0.000 0.000 0.001 0.007 

2.50 0.072 0.075 0.069 0.066 0.061 0.000 0.000 0.002 0.002 0.004 

3.00 0.092 0.087 0.106 0.095 0.103 0.000 0.000 0.000 0.005 0.005 

4.00 0.131 0.182 0.210 0.234 0.258 0.004 0.001 0.002 0.005 0.007 

5.00 0.177 0.250 0.308 0.361 0.411 0.018 0.020 0.016 0.015 0.017 

Figures in bold indicate the proportion of rejections of the null is not significantly different from the nominal size ( = 0.05) testing at a level of significance 
of 0.05. 

 
ferent tick to volatility ratios.3The Knuth generator is 
used to generate a simulated series of 1,000 random 
observations drawn from a normal distribution with a 
zero mean and constant unit variance. The data was then 
‘discretised’ to produce a given tick/volatility ratio by 
allocating each observation to a bin (as is done for a 
histogram), where the size of the bins is determined by 
the tick size. To make our results as generalisable as 
possible, the lower bound for the tick/volatility ratio is 
set at 0.01 which is well below the smallest tick/volatility 
ratios typically observed in financial markets (Gleason, 
Lee and Mathur, 2000, report tick/volatility ratios as low 
as 0.167 for exchange rate data). The upper bound is set 
at 5.0 which is the maximum distance we expect to find 
between any two data points in a standard normal 
distribution.  

The filtered data is tested for the presence of non- 
linearities using the BDS and CR test. As a control, the 
raw data is also included in the analysis. The BDS test is 
applied assuming a dimension range of between 2 and 6 
and the test neighbourhood size is set at between 0.70 
and 1.5. This corresponds to the range of values for 
which the test worked well as discussed in Section 3. The 

results are presented in Table 2 and the raw data pro- 
vides a benchmark against which the results may be asse- 
ssed. Across the four neighbour sizes and five dimen- 
sions considered, the proportion of rejections of the null 
for BDS test ranged from 0.049 to 0.081. Modifying the 
data to exhibit a tick/volatility ratio of 0.01 does not 
serve to initiate any substantial changes in the perfor- 
mance of the BDS test. The null hypothesis is rejected in 
almost the same proportion as where the raw data is 
specified. As the tick/volatility ratio is increased, the 
proportion of times the null is rejected does not deviate 
substantially from the benchmark. Thus, the BDS test 
appears to work well for 1,000 observations data sets 
which exhibits reasonably high tick/volatility ratios. 

The literature suggests the use of relatively small data 
sets may lead to spurious BDS test results [33-35]. The- 
refore, it is interesting to consider random number data-
sets of different lengths to test the robustness of the 
above results. We find that where a 500 observation se-
ries is considered, the results are broadly consistent with 
those previously reported. Where a 50, 100 and 250 ob-
servation random number data set is tested however, the 
BDS test applied to the raw data series consistently re-
jected the null a greater proportion of the time than is 
expected given the power of the test. 

The impact of the tick/volatility ratio on the perfor-
mance of the CR test is presented in Table 3 for 1,000 
observation random number series. Guided by the results of  

3Lee, Gleason and Mathur [31] find that the tick/volatility ratio is an
important determinant of the visibility of the compass rose pattern as 
it determines the potential number of rays on which the data may fall 
and so, the obscurity of the pattern. Time is also important as a suffi-
ciently long sample period is required to allow the phase portrait to
fully evolve [32]. 
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Table 2. Effect of tick size on BDS test – Series length = 1000. 

Tick Volatility Ratio 

 None 0.01 0.03 0.05 0.10 0.25 0.50 0.70 1.0 1.5 2.0 2.5 3.0 5.0 

Dim Test Neighbourhood Size = 0.70 

2 0.060 0.061 0.062 0.058 0.061 0.064 0.056 0.061 0.070 0.050 0.056 0.051 0.051 0.086

3 0.064 0.065 0.065 0.057 0.056 0.064 0.059 0.052 0.064 0.052 0.056 0.054 0.052 0.065

4 0.063 0.063 0.068 0.065 0.069 0.072 0.066 0.054 0.082 0.055 0.047 0.058 0.052 0.051

5 0.064 0.067 0.065 0.068 0.073 0.082 0.072 0.060 0.126 0.051 0.047 0.053 0.049 0.044

6 0.081 0.083 0.081 0.084 0.084 0.105 0.066 0.060 0.195 0.058 0.046 0.049 0.050 0.047

Dim Test Neighbourhood Size = 1.0 

2 0.057 0.049 0.053 0.053 0.055 0.058 0.053 0.061 0.057 0.050 0.056 0.051 0.051 0.086

3 0.061 0.060 0.060 0.051 0.046 0.053 0.056 0.052 0.052 0.052 0.056 0.054 0.052 0.065

4 0.052 0.051 0.050 0.053 0.052 0.054 0.054 0.054 0.049 0.055 0.047 0.058 0.052 0.051

5 0.055 0.054 0.056 0.054 0.059 0.059 0.053 0.060 0.056 0.051 0.047 0.053 0.049 0.044

6 0.062 0.059 0.059 0.055 0.057 0.051 0.050 0.060 0.056 0.058 0.046 0.049 0.050 0.047

Dim Test Neighbourhood Size = 1.25 

2 0.056 0.058 0.060 0.049 0.060 0.052 0.053 0.061 0.057 0.050 0.056 0.051 0.051 0.086

3 0.057 0.054 0.056 0.048 0.053 0.056 0.056 0.052 0.052 0.052 0.056 0.054 0.052 0.065

4 0.054 0.052 0.053 0.049 0.055 0.060 0.054 0.054 0.049 0.055 0.047 0.058 0.052 0.051

5 0.061 0.058 0.057 0.053 0.057 0.059 0.053 0.060 0.056 0.051 0.047 0.053 0.049 0.044

6 0.051 0.052 0.053 0.048 0.053 0.052 0.050 0.060 0.056 0.058 0.046 0.049 0.050 0.047

Dim Test Neighbourhood Size = 1.5 

2 0.049 0.046 0.045 0.046 0.049 0.048 0.049 0.051 0.057 0.056 0.056 0.051 0.051 0.086

3 0.057 0.056 0.056 0.050 0.046 0.054 0.052 0.055 0.052 0.053 0.056 0.054 0.052 0.065

4 0.051 0.053 0.051 0.051 0.048 0.056 0.049 0.053 0.049 0.044 0.047 0.058 0.052 0.051

5 0.058 0.057 0.051 0.053 0.046 0.056 0.052 0.052 0.056 0.060 0.047 0.053 0.049 0.044

6 0.049 0.049 0.050 0.045 0.047 0.052 0.049 0.052 0.056 0.058 0.046 0.049 0.050 0.047

 
Section 3, the results are estimated across neighbourhood 
sizes which range from 0.01 to 0.05 and histogram 
lengths which range from 400 to 600. Unlike the BDS 
test results, the performance of the CR test when applied 
to the raw data is not significantly different to the as-
sumed power of the test (α = 5%) for neighbourhood 
sizes of 0.01 and 0.02. Test neighbourhood sizes of 0.03 
and 0.05 furnished results whereby the CR test frequent-
ly rejected the null significantly less than is expected. 
The imposition of low tick/volatility ratios does not 
cause the proportion of rejections of the null to alter sub-
stantially from the benchmark. Where the tick/vola- tility 
ratio exceeds 0.10 however, the proportion of rejections 
of the null declines in all cases. Thus, the CR test is less 

likely to detect nonlinearity for higher tick/volatility ra-
tios. This test procedure is repeated for sample lengths of 
50, 100, 250 and 500 observation data sets and a similar 
pattern is observed.   

In general, these results suggest that both the BDS and 
CR test are sensitive to the discreteness of the data, albeit 
in slightly different forms. For sample sizes of 500 ob-
servations or more, the BDS test is not effected by 
rounding effects. For sample sizes of less than 500 ob-
servations however, a tick/volatility ratio equal to the test 
neighbourhood size marks a threshold beyond which the 
proportion of rejections of the null hypothesis for the 
BDS test declines. The results of Section 3 suggest that 
the BDS test works best where a neighbourhood size of   
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Table 3. Effect of tick size on close returns test – Series length = 1000. 

Tick Volatility Ratio 

 None 0.01 0.03 0.05 0.10 0.25 0.50 0.70 1.0 1.5 2.0 2.5 3.0 5.0 

Cells Test Neighbourhood Size = 0.01 

400 0.046 0.046 0.054 0.045 0.041 0.032 0.014 0.007 0.004 0.000 0.000 0.000 0.001 0.004

450 0.044 0.042 0.049 0.033 0.031 0.034 0.014 0.015 0.004 0.000 0.000 0.000 0.002 0.006

500 0.053 0.047 0.051 0.042 0.032 0.032 0.017 0.011 0.005 0.002 0.001 0.004 0.002 0.008

550 0.046 0.046 0.042 0.056 0.043 0.033 0.014 0.008 0.005 0.004 0.004 0.007 0.007 0.012

600 0.047 0.054 0.055 0.046 0.045 0.026 0.015 0.008 0.003 0.007 0.007 0.008 0.013 0.019

Cells Test Neighbourhood Size = 0.02 

400 0.044 0.049 0.054 0.045 0.041 0.032 0.014 0.007 0.004 0.000 0.000 0.000 0.001 0.004

450 0.041 0.046 0.049 0.033 0.031 0.034 0.014 0.015 0.004 0.000 0.000 0.000 0.002 0.006

500 0.045 0.043 0.051 0.042 0.032 0.032 0.017 0.011 0.005 0.002 0.001 0.004 0.002 0.008

550 0.042 0.048 0.042 0.056 0.043 0.033 0.014 0.008 0.005 0.004 0.004 0.007 0.007 0.012

600 0.042 0.041 0.055 0.046 0.045 0.026 0.015 0.008 0.003 0.007 0.007 0.008 0.013 0.019

Cells Test Neighbourhood Size = 0.03 

400 0.031 0.033 0.034 0.045 0.041 0.032 0.014 0.007 0.004 0.000 0.000 0.000 0.001 0.004

450 0.024 0.032 0.046 0.033 0.031 0.034 0.014 0.015 0.004 0.000 0.000 0.000 0.002 0.006

500 0.034 0.038 0.034 0.042 0.032 0.032 0.017 0.011 0.005 0.002 0.001 0.004 0.002 0.008

550 0.038 0.043 0.043 0.056 0.043 0.033 0.014 0.008 0.005 0.004 0.004 0.007 0.007 0.012

600 0.043 0.043 0.040 0.046 0.045 0.026 0.015 0.008 0.003 0.007 0.007 0.008 0.013 0.019

Cells Test Neighbourhood Size = 0.05 

400 0.031 0.034 0.037 0.033 0.041 0.032 0.014 0.007 0.004 0.000 0.000 0.000 0.001 0.004

450 0.039 0.028 0.035 0.031 0.031 0.034 0.014 0.015 0.004 0.000 0.000 0.000 0.002 0.006

500 0.041 0.043 0.042 0.033 0.032 0.032 0.017 0.011 0.005 0.002 0.001 0.004 0.002 0.008

550 0.032 0.039 0.031 0.028 0.043 0.033 0.014 0.008 0.005 0.004 0.004 0.007 0.007 0.012

600 0.030 0.035 0.031 0.021 0.045 0.026 0.015 0.008 0.003 0.007 0.007 0.008 0.013 0.019

 
between 0.70 and 1.5 is specified. Thus, the BDS test 
results may be biased when applied to data which exhi-
bits a tick/volatility ratio of at least 0.70. The CR test 
exhibits the same behaviour however, it is not sensitive 
to sample length. As the tick/volatility ratio increases 
beyond a threshold, the proportion of rejections of the 
null hypothesis declines. This threshold is sensitive to the 
sample length and for 1,000 observation data series is 
0.10 and increases to 1.0 for 50 observation series. 
 
5. Conclusions 
 
The discrete nature of financial markets time-series data 
may prejudice tests which attempt to detect the presence 

of nonlinearities. In particular, where the tick/volatility 
ratio is high, price movements are frequently bounded by 
the minimum tick size which may obfuscate any subtle 
nonlinear patterns which would be otherwise present. 
This paper considers the performance of the BDS and 
CR tests when applied to discrete data. In general, the 
estimation results suggest that both the BDS and CR test 
are sensitive to data discreteness, albeit in slightly dif-
ferent forms. For sample sizes of 500 observations or 
more, the BDS test is not biased by rounding effects. For 
sample sizes of less than 500 observations however, a 
tick/volatility ratio equal to the test neighbourhood size 
marks a threshold beyond which the proportion of rejec-
tions of the null hypothesis for the BDS test declines. 



H. MITCHELL  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 JMF 

6 

The CR test provides the same result however, it is not 
sensitive to sample length. As the tick/volatility ratio 
increases beyond a threshold, the proportion of rejections 
of the null hypothesis declines. This threshold is sensi-
tive to the sample length and for 1,000 observation data 
series is 0.10 and increases to 1.0 for 50 observation series.  

Tick/volatility ratios which exceed these thresholds 
are frequently observed in financial markets data, which 
suggests that the results of the BDS and CR test must be 
interpreted with caution. Estimates of tick/volatility ra-
tios for exchange rate data range from 0.167 to 0.5 [36] 
and for stock market range from 0.5 to 4.5 where prices 
are quoted using decimals and 2.5 to 35 for those using 
1/8ths [37]. Thus, financial markets data frequently exhi-
bit tick/volatility ratios which exceed the threshold 
beyond which the BDS and pCR test are biased by the 
discrete nature of prices. 
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