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Abstract 
In this paper, a single product, multi-period, aggregate production planning problem is formu-
lated as a linear-quadratic Gaussian (LQG) optimal control model with chance constraints on state 
and control variables. Such formulation is based on a classical production planning model devel-
oped in 1960 by Holt, Modigliani, Muth and Simon, and known, since then, as the HMMS model [1]. 
The proposed LQG model extends the HMMS model, taking into account both chance-constraints 
on the decision variables and data generating process, based on ARMA model, to represent the 
fluctuation of demand. Using the certainty-equivalence principle, the constrained LQG model can 
be transformed into an equivalent, but deterministic model, which is called here as Mean Value 
Problem (MVP). This problem preserves the main properties of the original model such as con-
vexity and some statistical moments. Besides, it is easier to be implemented and solved numeri-
cally than its stochastic version. In addition, two very simple suboptimal procedures from sto-
chastic control theory are briefly discussed. Finally, an illustrative example is introduced to show 
how the extended HMMS model can be used to develop plans and to generate production scena-
rios. 
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1. Introduction 
A production planning process requires a set of decisions used to match company’s industrial resources to the 
customer demand fluctuation. Among the first decisions to be made there is the development of aggregate pro-
duction plan. The main objective of this plan is to determine aggregate levels of production, inventory and 
workforce in order to meet the expected demand for products within a planning horizon that usually ranges from 
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six months to one year. Once the plan is generated, constraints are imposed on the detailed production schedul-
ing process allowing specify the proper amount of material resources needed to produce each product. Therefore, 
someone may say that the development of an efficient production plan is the first step to reducing costs with 
material resources of a company.  

Due to uncertainties of the production environment, the aggregate plan must be constantly updated in order to 
provide efficient production targets for the short term planning process, see, e.g., [2]-[5]. As a consequence, 
no-sequential (i.e., static) stochastic optimization models are inappropriate to represent this kind of environment. 
The main reason is that these models do not take into account any new information available over the time-pe- 
riods about the current state of the production system [6]. Thus, sequential constrained stochastic optimization 
models, based on the theory of stochastic dynamic programming and optimal control theory, are the most-ap- 
propriate options for modeling this type of problem, see [2] and [7]-[10].  

The objective of this paper is to develop a production plan from a well-structured sequential stochastic pro-
duction planning model with chance-constraints on the decision variables. In this way, the classical aggregate 
production planning model developed by Holt, Modigliani, Muth and Simon—HMMS model, see [11]—is used 
as a pattern of reference. The HMMS model yields magnitude of production-rate, workforce level and net in-
ventory per period that are optimal in that they are provided by minimizing the overall expected quadratic cost 
of running a production system. The idea is to propose an extension of the HMMS model to allow randomness 
in products’ demand and chance-constraints on decision variables. The sequential stochastic model follows the 
two steps: first step considers an equivalent state-space time-discrete LQG model with constraints on decision 
variables to represent the classical HMMS model. Additionally, the data generating process for demand fore-
casting are incorporated into the model. Such a process is based on state-space Auto-Regressive Moving-Average 
(ARMA) model; see [12]. In the second step, a method, based on both mathematical programming and stochas-
tic control theory, is applied to model in order to provide a sequential optimal production plan. 

Due to particular features of the constrained LQG model—such as dimensionality, constraints on decision va-
riables, and the stochastic nature of the system—this model is very difficult to be solved in an optimal closed- 
loop solution. This drawback means that classical optimal techniques of the stochastic mathematical program-
ming can not be applied directly to the problem [13]. Thus, in order to reduce the complexity of the stochastic 
problem and, as well as, to make it computationally easier to solve, suboptimal approaches provided from sto-
chastic control theory should be considered for practical applications, see, e.g., [9] [13]-[15]. Note that the li-
near-Gaussian nature of the system and the quadratic criterion are also particular features of the model that allow 
the application of the certainty-equivalence principle [16]. From this principle, the stochastic model can be con-
verted into a deterministic equivalent model. In such an equivalent model, all stochastic variables are set equal 
to their expected values (i.e., their first statistic moments). This model is usually known as Mean Value Model. 
The main advantage of this model is that, besides being easier to be solved, some mathematical and statistical 
properties of the original model are preserved, see [14]. 

The paper is organized as follows: Section 2 introduces an aggregate production planning problem based on 
the HMMS. The cost components of the original HMMS model are appropriately arranged to guarantee the con-
sistency with the state-space pattern of the LQG model. Additionally, an input-output ARMA model, which is 
used as data generation process of demand, is transformed into a state-space format and attached to the LQG 
formulation. As a result, an extended state-space stochastic optimization model with constraints on decision va-
riables is formulated. In Section 3, an equivalent deterministic optimization model is developed from the appli-
cation of the certainty-equivalence principle. Two very simple sub-optimal approaches are used to solve the 
model. At last, Section 4 introduces an illustrative example to demonstrate the applicability of the model. 

2. The HMMS Model in the State-Space Format 
In this section, the aggregate production planning problem, described by the classical HMMS model, is placed 
into space-state format in order to represent an equivalent LQG model with constraints on the decisions va-
riables. 

2.1. Basic Notation 
1) Aggregate variables: 

• kD  denotes the demand for a family of products (i.e. the level of aggregate sales during period k ). It is as-
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sumed to be a stationary random variable, being approximated by a normal distribution function with mean
ˆ

kD  and finite variance 2 0D DV σ= ≥ . The assumption of normality is based on the Law of Large Number 
[17]. Such a law can be interpreted here as follows: the sum of different patterns of probability distribution 
functions, which are related to different products of the same family, can be approximated by a normal dis-
tribution to represent this family. It is worth realizing that the probability distribution function of the demand 
usually depends on the type of the production process. For instance, considering a make-to-stock production 
process, where the evolution of demand is usually stationary over the periods, a normal distribution function, 
with mean and variance given, is statistically a good alternative to model the fluctuation of demand; see [18] 
for more details. 

• kI  denotes the amount of net inventory level at the beginning of period k . This variable takes values from 
a dynamic balance system that depends linearly on the demand fluctuation. Based on the property of a nor-
mal stochastic process which says that the resulting linear transformation of a sequence of normal random 
variables is also a normal random variable (see [17]) is possible to consider that the inventory variable fol-
lows a normal process with mean k̂I  and variance 0I

kV ≥ . 
• kP  denotes the rate of aggregate production capacity during the period k , being a decision variable to the 

problem. Note that if, for instance, the inventory balance system is running under a closed-loop control 
scheme, then the production rate depends on the net inventory level for each period k , and, as a conse-
quence, this rate must also be understood as being a random variable. Furthermore, if this dependence is li-
near, then the probability distribution function of the production variable will be similar and proportional to 
the distribution function of the inventory variable; see this feature of the stochastic process in [7]. 

• kW  denotes the amount of the regular workforce used in the period k . This variable is assumed here inde-
pendent of endogenous and exogenous factors that influence the environment of the company. Indeed, there 
is a set point level for regular workforce denoted here as kW . Thus, any excess in the levels of fluctuation of 
demand, involving an increase in the production rate kP , will be dealt with a policy of the use of temporary 
labor or overtime. This variable is assumed to be essentially deterministic. 

• 1k k kW W −∆ = −  denotes workforce changes between the subsequent periods 1k −  and k . It is a determi-
nistic decision variable that provides the number of employees to be included or removed from the work-
force level between two adjacent periods. 

2) Cost’s components 
The total cost function of the HMMS model, denoted here as ( ), , ,k k k k kJ I P W D , is given by the sum of qua-

dratic and linear functions whose components are described below: 
• 1 13kC W C+  denotes the regular payroll cost, where 1C  and 13C  are constants used to adjust costs with la-

bor.  
• ( )2

2 11kC D C−  denotes the hiring and firing cost. Such cost is associated with a change in the size of the 
workforce from period 1k −  to period k . The constant 11C  can be used for asymmetry analysis in costs 
of hiring and layoffs. 

• ( ) 2
7 8 9k kC I C C D − +   denotes the inventory and backorder cost. The component 8 9 kC C D+  represents 

the optimal reference level for the inventory kI . Note that whenever the level of current inventory kI  de-
viates from this target level, the cost associated tends to increase.  

• ( )2
3 4 5 6 12k k k k k kC P C W C P C W C P W− + − +  represents the overtime cost, which depends both on the work-

force and production levels for each period k . Particularly, the term 4 kC W  denotes the maximum amount 
of families of products that can be produced without overtimes.  

Note that the manager must provide the constants iC . These estimates require time-consuming activities, 
such as statistical analysis, account information, and many managerial insights. In this way, a curve-fitting ap-
proach can be used to provide these coefficients; see [1]. 

Based on the above notation, the classical HMMS model can be formulated mathematically as follows: 

{ }
( ) ( )

1

1, ; 0,1, , 1 0
Min , , , ,     . .    

k k

N

N N N k k k k k k k k kP k N k
E J I W J I W P s t I I P D

−

+∆ = − =

 + ∆ = + − 
 

∑


          (1) 

{ } ( ) ( ) ( )
( )

2 2
1 6 2 11 3 4 5 12

2
7 8 9 13

where , , ,

                               .

k k k k k k k k k k k k

k k

J I P W C C W C C C P C W C P C P W

C I C C D C

∆ = − + ∆ − + − + +

+ − − +
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Note that the inventory balance equation given in the problem (1) is a stochastic process. Thus, the inventory 
variable is a random variable and, as a consequence, the model (1) represents a stochastic optimization problem. 
Therandomness explains the use of the mathematical expectation operator {}.E  in the criterion. It is assumed 
that the initial inventory and workforce levels are known and given, respectively, by 0I  and 0W . The level of 

1W−  is set equal to 0.  

2.2. The Constrained HMMS Model 
As can be noted from problem (1), the classical formulation of HMMS model does not explicitly take into ac-
count constraints on the decision variables; see also [1]. Indeed, any significant change in the levels of the deci-
sion variables will be penalized directly in the criterion ( )kJ ⋅ . As a consequence, such criterion must be able to 
cover a sufficiently long span of time to ensure full recognition of the changes of these variables. 

In this section, the HMMS model is modified in order to consider constraints on the inventory, production and 
workforce variables explicitly in the formulation. It is a consensus that the use of physical constraints explicitly 
in the model makes it more realistic for practical applications; see e.g. [16] and [19]. Based on this, the original 
formulation of problem (1) will be reformulated to include constraints on decision variables. Thus, assuming 
that it is possible to set lower and upper bounds for each decision variable of the model, and also to include a 
workforce balance constraint, the reformulated model is described as follows: finding a non-negative optimal  
policy, which includes both production rates ( ){ }; 0,1, , 1

kk P kP I k Nµ= = −  and workforce changes  

{ }; 0,1, , 1k k N∆ = − , to optimize the following production planning problem: 

( ) ( )

( )
( )

1

, ; 0,1, , 1 0

1 0

1 0

Min , , , ,

. .      ,   given
          ,   given

          Prob.

          Prob.

           0
          

k k

N

N N N k k k k kP k N k

k k k k

k k k

k k k

k k k

k k

k

E J I W J I P W

s t I I P D I
W W W

I I I

P P P

W W

α

β

ω

−

∆ = − =

+

+

 + ∆ 
 

= + −

= + ∆

≤ ≤ ≥

≤ ≤ ≥

≤ ≤

− ≤

∑


.k kω∆ ≤

                     (2) 

where kI  and kI  denote lower and upper bounds on the inventory variable; kP  and kP  denote lower and 
upper bounds of the production variable; and kW  is the upper boundary related to the size of regular workforce 
plus overtime. Note that the parameter kω  denotes the maximum amount of workforce change, which is esti-
mated for each period k. 

The optimal production policy ( ){ }; 0,1, , 1
kk P kP I k Nµ= = −  is assumed to depend on the inventory  

variable kI  for each period k  of the planning horizon. Since kI  is a random variable, the variable kP  will 
also have a random behavior. Such dependence follows a mathematical structure that is given by the function 

( )
kPµ ⋅ . If ( )

kPµ ⋅  has a linear structure, the probability distribution of the production variable kP  will be 
similar to the probability distribution of the inventory variable kI . Thus, since the inventory variable is assumed 
here to be a normal distribution with known first and second statistics moments, it follows then that the produc-
tion variable will also be normally distributed with known expectation k̂P  and standard deviation  

2 0kV ≥ . 
It is interesting to observe that the randomness of the inventory and production variables makes them prob-

abilistic variables, and so to ensure that their physical boundaries are no violated, they must be taken as chance- 
constraints. Then, probabilistic indexes of inventory and production constraints, which are given respectively by 
α  and β , are used to express the user’s expectation for the nonviolation of these constraints. These indexes 
vary within the interval [ )0,1 , and each one of them has its specific practical interpretation. For example, the 
index α  is usually interpreted as the level of the customer satisfaction. Indeed, if the manager chooses α  
close to 1 means that he wants to meet the demand for complete, whenever it occurs. For instance, for 0.95α ≥  
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means that the manager expects to deliver the products on time at least 95% of the time. In order to guarantee a 
high level of customer satisfaction, the manager must adopt a safety stock policy that allows ready delivery. In 
short, varying α  in the range [ )0,1 , it is possible to analyze different production scenarios based on safety 
stock policies, which imply in greater or smaller level of customer's satisfaction. Finally, note that the index β  
is used here to represent the productivity degree of the production process. This index is related to the produc-
tion capacity required at each period of the planning horizon. The idea is to guarantee that unexpected orders, 
which may occur during a given period k , can be promptly attended; avoiding, thus, the occurrence of backor-
der; see [20]. 

2.3. The Constrained HMMS Model in State-Space Format 
The constrained HMMS model (2) is placed into an equivalent state-space linear-quadratic Gaussian model. For 
such, the variables of the HMMS model are considered as state and control variables, that is, 1

k kx I=  and 
2
k kx W=  denote the state variables, and 1

k ku P=  and 2
k ku = ∆  denote the control (or input) variables. Based 

on this variables, the transformation process can be performed as follows. 
The time-discrete stochastic state-space system that represents the linear balance of inventory and workforce 

is given by:  
1 1 1

1
2 2 2

1

1 0 1 0 1
0 1 0 1 0

k k k
k

k k k

x x u
D

x x u
+

+

          
= ⋅ + ⋅ − ⋅                         

                       (3) 

where the first and the second row of (3) describe the inventory and workforce linear balance equations, respec-
tively. Note that kD  is a random variable that represents the uncertainty related to sales fluctuation over the 
periods of the planning horizon. As mentioned previously, sales fluctuation brings randomness to the inventory 
balance Equation (3). Thus, the inventory 1

kx  must also be seen as a random variable whose probabilistic dis-
tribution function is similar to the distribution of demand kD . Since kD  is stationary and normally distributed,  
the distribution function of the random variable 1

kx  will be also normal and exactly known from its mean 1ˆkx  

and variance 
1x

kV  [10]. 
The dimension of the state-space system (3) will be augmented by the introduction of a model that represents 

the fluctuation of demand kD . For this, it is assumed that all information about customer demand is recorded in 
the sales history set. Based on such information, an Auto-Regressive, Moving Average (ARMA) model is iden-
tified and can be used both to demand forecasting and to data generating process; see [12]. 

Once a model has been identified, it is placed into space-state format and coupled to the system (3). The 
transformation process is carried out as follows: Firstly, the demand variable kD  is decomposed, for each pe-
riod k , in two variables, that is ˆ

k k kD D Dδ= + . The first variable ˆ
kD  denotes the mean value of demand, 

and the second variable kDδ  is the residual demand, i.e., stationary random variable with normal distribution 
( )0, DN V  and finite variance 0DV ≥ . As a result, the variable kDδ  can be mathematically described by an 

( )ARMA ,p q  model given by Equation (4): 
1

0 1
1

11

q
q

k kp
p

z z
D

z z
η η η

δ ε
π π

− −

− −

 + ⋅ + + ⋅
= ⋅ 

+ ⋅ + + ⋅ ⋅  





                           (4) 

where kε  denotes the white noise and 1z−  represents the delay operator (for instance, 1
1k kz ε ε−
−= ). Note that 

the parameters of the sequences { }1 2 pπ π π  and { }0 1 qη η η  are respectively Auto-regressive and Moving- 
average parameters of an ARMA model.  

After some algebraic handling, the model (4) is converted into an equivalent state-space format that is given 
by: 

1
T

0

k k k

k k k

v G v

D f v

λ ε

δ η ε
+ = ⋅ + ⋅


= ⋅ + ⋅

                                 (5) 

where 
T3 4 2p

k k k kv x x x + =    represents the equivalent state vector related to residual demand kDδ . The 
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matrices of the system (5) are defined as follows: 

[ ]T

1 2 1

0 1 0 0
0 0 1 0

;    0 0 0 1
0 0 0 1

pxp p

p p p

G λ

π π π π− −

 
 
 
 = ∈ℜ = ∈ℜ
 
 
 − − − − 





    






 and  

T
1 2 1

p
p p pf f f f f− − = ∈ℜ   

where ( ) ( ) ( )0 1 1 0 1 1 1 0 1,  ,  ,  p p p p p pf f fη η π η η π η η π− − −= − ⋅ = − ⋅ = − ⋅ . 
It is worth adding that to convert the input-output model (4) in the state-space model (5), the reliability condi-

tion should be guaranteed, i.e. p q≥ . Note that if p q> , then 1 1 0p p qη η η− += = = = ; see [21]. 
Finally, handling Equations (3), (4), and (5), it is possible to obtain a general state-space system similar to (1) 

that represents the production process as whole, that is: 

( ) ( ) ( ) ( )1x k Ax k Bu k d k+ = + −                              (6) 

where ( )T 1 2 3 2p
k k k kx k x x x x + =   ; ( )T 1 2

k ku k u u =   ; and ( ) ˆ
k kd k Dϑ ϕ ε= ⋅ + ⋅  denotes a vector of 

random variables with the mean ( )ˆ ˆ
kd k Dϑ= ⋅  and covariance matrix T

DV V ϕ ϕ = ⋅ ⋅ d . The matrices and 
vectors of the system (6) are given, respectively, by: 

( ) ( ) ( )

1 2 1

2 2 2 2

1 2 1

1 0
0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 ;     ;0 0

0 0 0 0 0 1 0 0
0 0

p p p

p x p p x

p p p

f f f f

A B

π π π π

− −

+ + +

− −

 
 

  
  
  
 = ∈ℜ = ∈ℜ 
  
  
    

 − − − − 









      

 





 

[ ] ( )2T 1 0 0 0 0 pϑ += ∈ℜ ; and [ ] ( )21 0 0 0 1 pϕ += ∈ℜ  

It is assumed that the inventory 1
kx , production 1

ku , workforce 2
kx  and workforce change 2

ku  variables 
must take values from their specific solution spaces. Since the first row of the Equation (3) is a stochastic proc-
ess, it is impossible to guarantee a priori that both inventory variable and production variables will not be vio-
lating their respective physical boundaries. Consequently, chance-constraints on inventory and production vari-
ables must be considered in order to overcome such difficulty, see Section 2.2. Finally, the constraints of the 
model in the state-space format are given by: 

( )
( )

1 1 1

1 1 1

2 2

2

Prob.                 ( )

Prob.                 ( )

0                                      ( )

                             ( )

k k k

k k k

k k

k k k

x x x a

u u u b

x x c

u d

α

β

ω ω

≤ ≤ ≥

≤ ≤ ≥

≤ ≤

− ≤ ≤ +

                           (7) 

where 1
kx  represents the safety stock level; 1

kx  denotes the maximum storage capacity allowed in the period 
k ; 1

ku  and 1
ku  are the minimum and maximum production capacity, respectively; and 2

kx  denotes the 
maximal level of workforce during a period k . 

The original cost components of the HMMS model, given by the criterion ( )kJ ⋅  in (1), is placed now in a 
state-space format. Without any loss of generality, it is assumed that the constants 11C  and 13C  are both set 
equal to zero, see [22]. The main reason of this assumption is that these constants do not have any effect on the 
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choice of production variables, and so they can be ignored. Furthermore, to preserve proportionality, during the 
transformation of costs into the state-space format, the constant 12C  is set equal to the product between 3C  
and 4C  (i.e., 12 3 4C C C= ⋅ ). Note that such artifice does not take away the originality of the costs of HMMS 
model. Indeed, for many practical applications, 3 4C C⋅  is relatively close to 12C ; see [1]. Based on the ex-
posed above, the original costs of HMMS model (1) can be placed in a matrix format, as follows: 

( )

T1 1
1 13 11 1

2 2
22 2

3 3
13 3 33 3

2 2
1 3 22 2
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    
 



T1 1
1 1 1 11 3

2 2
3 22 22 2

.
0

k i k

ik k

u u ur r
r re uu u

γ γ γ
γγ γ



   + + +     ⋅           ++ +        

           (8) 

where  
• { } ( )2

1 7 2 2 2 1 3 2 2 3 4 3 3 42 ;  2 ;  0, 3, 4, , 2 ; 2 ;  2 ;  2 ;  ih C h C h i p e C r C r C C C r C C= = = = + = − = = + = −  

• ( )1 7 9 3 0 3     3, 4, ,j p i p iC C j pρ η η π+ − + −= − ⋅ ⋅ + ⋅ ∀ =   

• ( ) ( )2
7 9 3 0 3 3 0 3     , 3, 4, , 2 with ij p i p i p j p jC C i j p i jρ η η π η η π+ − + − + − + −= − ⋅ ⋅ + ⋅ ⋅ + ⋅ ∀ = + <  

• ( )11 6 1 12
1 8 2

11 12 11 22

and
r C C r

C
e r r r r

θ θ
⋅ − +

= =
⋅ − + ⋅

 

Note that the coefficients { },  3, 4 , 2i i pθ = +  of the criterion (8) are calculated by the solution of the fol-
lowing p p×  system of equations: 

( )
( ) ( )
( ) ( )

( ) ( )

13 3 14 4 1 2 1 1 7 8 9

3 3 34 4 3 2 0 7 8 9 13 1

34 3 4 4 4 2 1 0 1 7 8 9 14 1

3 3 4 4 2 2 1 0 1 7 8 9 1 1

        

p P D

p P p p D

p P p p D

p p p P D p

h C C C m

h C C C m

h C C C m

h C C C m

ρ θ ρ θ ρ θ θ

θ ρ θ ρ θ η η π ρ θ

ρ θ θ ρ θ η η π ρ θ

ρ θ ρ θ θ η η π ρ θ

+

+

+ − −

+ +

 + + + = − − ⋅ + ⋅


+ + + = + ⋅ ⋅ + −
 + + + = + ⋅ ⋅ + −


 + + + = + ⋅ ⋅ + −












 

with 9 8 DC C m= , see [1]. Note that Dm  denotes the absolute mean of the expected demand over the planning 

horizon, that is, 
1

1 ˆ
N

D k
k

m D
N =

= ⋅∑ ; see [17]. 

At last, with the objective of finding production and workforce optimal sequence plan, described by

( ){ }1 1 2 and ; 0,1, , 1k k ku x u k Nµ= = − , a multi-period, single-product, stochastic production planning problem, 

which includes an ARMA model and constraints on the variables, is formulated as follows: 
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )
( )

1T T T T

0

0

1

1

2 2

2

1Min 2
2

. .    1 ;      given.

        Prob.

        Prob.

        0

        .

N

u k k

k k k

k k k

k k

k k k

E x N Hx N x k Hx k x k Eu k u k Ru k

s t x k Ax k Bu k d k x

x x x

u u u

x x

u

α

β

ω ω

−

=

  + + +   
+ = + −

≤ ≤ ≥

≤ ≤ ≥

≤ ≤

− ≤ ≤ +

∑

           (9) 

The problem (9) is an extended version of the HMMS model, and it also belongs to the class of the linear, 
quadratic Gaussian model with constraints on state and control variables, see [13] and [16]. The main advantage 
is that it can be employed to model and optimize a wide variety of management problems in a unified format, 
see for instance [7] [9] [15] [19] [22] and [23]. The next section discusses the solution of the problem (9) by 
mean of two suboptimal approaches of the control theory, which are of simple implementation. 

3. The Mean Value Problem 
Certain characteristics, such as the stochastic nature, constraints on decision variables and high dimensionality, 
make impossible to provide a true optimal solution (i.e. a close-loop solution) for the problem (9). The classical 
approach known as stochastic dynamic programming cannot be applied because the curse of dimensionality [13], 
which means that this approach requires an enormous computational effort to solve large-scale problems. Be-
cause of these difficulties, suboptimal approaches become interesting alternatives, particularly in reason of the 
smallest computational effort that such techniques usually offer for practical applications; see [13] [14] and [15]. 

There is a wide variety of suboptimal approaches to deal with stochastic problems as described by problem 
(9). Many of them depend on the certainty-equivalence principle. Such principle establishes that all random 
variables of a stochastic problem can be replaced by their respective first statistical moments; see [14]. Base on 
this principle, the problem (9) can be transformed in an equivalent deterministic problem, denoted here as Mean 
Value Problem (MVP). This transformation process is facilitated by some features of the original problem, i.e.: 
1) the linearity of the system (6); 2) the normal stochastic nature of the inventory balance equation, given in (3); 
and 3) the convexity of the functional criterion (8) that is explained by the quadratic nature of the cost of HMMS 
model, given in (1). As will be seen bellow, these features allow the immediate use of the certainty-equivalence 
principle.  

3.1. The Transformation Process 
Having been assumed previously that the demand ( )d k  is normally distributed, then it is possible to conclude 
that the statistical behaviour of the linear inventory system given in (6) follows a normal process. This charac-  
teristic means that the probability distribution function of inventory, given by 1,x k

Φ , can be precisely computed  

from (6) by mean of the determination of its respective mean and variance equations; see [20]. These two statis-
tical moments allow transforming the stochastic problem (9) into a Mean Value Problem (MVP).  

The first step for converting the stochastic problem (9) to an equivalent MVP is to determine the mean and 
variance of the state variables of the system (6). However, it is important to bear in mind that the inventory  
variable 1

kx  is the only random variable of the vector ( )x k , with mean { }1 1ˆk kE x x=  and standard deviation 

( )1 Dx
k kσ σ= ⋅ . As a result, the mean vector ( )x̂ k  and the covariance matrix ( )x kΩ  of the system (6) are 

given as follows: 

( ) ( ){ } { }

( ) ( ){ } ( )
( )

( ) ( )
1

T T 1 2 3 2 1 2 3 2 2

2

T 2 2

ˆ ˆ ˆ ˆ ˆ ,

0 0

.
0 0 0

p p p
k k k k k k k k

x
p p

x

x k E x k E x x x x x x x x

k

E x k x k k

σ

+ + +

+ × +

   = = = ∈ℜ  

 
 

= Ω = ∈ℜ 
 
  

 



   



       (10) 
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Note that the other state variables (i.e., 1 2 3 2, , , , px x x x + ) of the system (6) are essentially deterministic, then 
only to guarantee the uniformity of the notation it will be considered here that  

{ }ˆ 0; 2,3,..., 2i
i i
k k x

x x and i pσ= = ∀ = + . 

Since the control variable ( )u k  depends on the state variable ( )x k , it can be completely defined by its 

mean ( ) ( ){ }û k E u k=  and covariance ( ) ( ){ } ( ) ( )T 2 2
uE u k u k k ×= Ω ∈ℜ . Note also that the mean and cova-

riance of the demand variable are given respectively by ( ) ( ){ }ˆ ˆ
kd k E d k Dϕ= = ⋅  and ( ) 2 T

d Dk σ ϕ ϕ Ω = ⋅ ⋅  , 

with ϕ∈ p 2ϕ +∈ℜ , as discussed previously in Section 2.3.2. 
Based on these statistics, the criterion (8) and the linear system (6) can be promptly converted to a determinis-

tic equivalent pattern [20]. Another important transformation is to convert the probabilistic constraints (7.a) and 
(7.b) in equivalent deterministic inequalities. Thus, from (7.a) follows that:  

( ) ( ) ( )1 1
1 1 1 1 1 1

, ,
ˆProb. k k k k k x x k

x x x x x kαα σ α−≥ ≥ ⇔ ≥ = + ⋅Φ                    (11) 

and, 

( ) ( ) ( )1 1
1 1 1 1 1 1

, ,
ˆProb. k k k k k x x k

x x x x x kαα σ α−< ≥ ⇔ ≤ = − ⋅Φ                    (12) 

where ( )1
1
,

.
x k
−Φ  denotes the inverse probability distribution function of the inventory variable, which depends 

on the service level α . 
Proceeding in a similar way, follows that the probabilistic constraint (7.b) becomes: 

( )1 1 1 1 1 1
, ,ˆProb. 2 1k k k k k ku u u u u uβ ββ≤ ≤ ≥ ⋅ − ⇔ ≤ ≤                       (13) 

where ( ) ( )1 1
1 1 1

, ,k k u u k
u u kβ σ β−= + ⋅Φ ; ( ) ( )1 1

1 1 1
, ,k k u u k

u u kβ σ β−= − ⋅Φ ; and ( )1
1
,

.
u k
−Φ  denotes the inverse probabil-  

ity distribution function of the production variable, which depends on the production capacity reliability level, 
i.e., the probabilistic index β . 

At last, it is important to observe that the state variables related to the ARMA model (i.e, 3 4 2ˆ ˆ ˆ, , , p
k k kx x x +   )  

are totally unconstrained. This feature means that such variables can evolve freely along the planning horizon 
without any control. 

After all these transformations, the Mean Value Problem can be formulated as follows: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1T T T T

ˆ 0

1 2
0 0

1 1 1
, ,

1 1 1
, ,

2 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆMin 2
2

ˆˆ ˆ ˆ ˆ ˆ ˆ. .    1 ;     0 0 0  is given

ˆ        

ˆ        

ˆ        0
ˆ        

N

u k k

k k k

k k k

k k

k

x N Hx N x k Hx k x k Eu k u k Ru k

s t x k x k u k d k x x x

x x x

u u u

x x

α α

β β

ω

−

=

  + + ⋅ +   
 + = + ⋅ + =  

≤ ≤

≤ ≤

≤ ≤

− ≤

∑



2 .k ku ω≤ +

           (14) 

It is worth mentioning that the problem (14) allows not only to provide an optimal aggregate production plan, 
but also to help the manager to get important insights about the use of the aggregate resources. Indeed, from 
varying some parameters of the problem (14), it is possible to analyse different scenarios related to an inven-
tory-production process. For example, comparing optimal inventory, production and workforce trajectories, de-
veloped from different scenarios analysis, the manager can realise how the future will be like in terms of the re-
order cycle for a given product. The prior knowledge of all possible reorder points allows that some actions can 
be in advance taken to replenish the inventory levels, and, thus, to prevent against the possibility of stock out. 
These actions can be understood as an attempt to meet future demand for aggregate products, and also to prevent 
against unexpected events, such as, for instance, delays and machines breakdowns. 
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3.2. Two Simple Suboptimal Approaches 
Two simple suboptimal approaches, known in the literature as Open-loop No-updating and Open-Loop Updat-
ing [13], can be combined with quadratic programming algorithms for solving (14), and so generating a sequen-
tial optimal plan. These approaches are briefly described below. 
• The Open-Loop No-updating (OLN) approach applied to (14) provides an optimal production policy 

( ){ }ˆ ,  0,1, , 1u k k N= −  that is entirely conditioned on initial information. Even if further information be-
comes available, these initially computed policies are enacted up to the end of the time horizons,” see [15]. 
This characteristic means that OLN procedure provides an optimal sequence ( ) ( ) ( ){ }ˆ ˆ ˆ0 , 1 , , 1u u u N −  that 
depends only on the initial state of the system (6), i.e., ( )ˆ 0x . Thus, any available information on the state of 
the system is completely ignored for period 0k > . Consequently, the OLN approach does not take into ac-
count any feedback scheme in its strategy of providing a feasible solution for the problem (14). 

• The Open-Loop Updating (OLU) approach is very similar to the OLN, except that optimal policies are al-
ways recomputed as soon as new information about the state of the system becomes available [15]. In fact, 
for each new period [ ]0, 1k N∈ − , whenever the current state of the system ( )x k  is measured, it is as-
sumed to be a new-initial state to solve the problem (14) from the current period k  to the end-period N . 
As a result, the optimal sequence ( ) ( ) ( ){ }ˆ ˆ ˆ, 1 , , 1u k u k u N− −  is provided. From this sequence, only the 
first vector, i.e. ( ) ( )ˆ ˆu k u k∗ = , is applied to the system (6), while the others are completely ignored. Note 
that this approach must be repeated N times in order to provide optimal control policy for the problem (14). 

Both OLN and OLU approaches can be used to develop production scenarios. These scenarios are useful for 
managers getting insights on the use of the resources of the company. Also note that such scenarios are gener-
ated from the variation of some particular parameters of the problem (14), see Section 2.2, for more details.  

In the next section, the OLU approach is used to generate a suboptimal production plan to the problem (14). 
The reasons for the choice of the OLU approach are the easiness of the computational implementation, and the 
possibility of updating information on the state of the system, during the optimization process. Therefore, the 
OLU approach can provide a production plan that is more accurate than those that no updating any information 
about the state of the system.  

4. An Example 
In this example is considered a company that manufactures different types of products. These kind of products 
are made-to-stock, having their demand independent and stationary. Production oriented to stock means that 
each product can have an individualized annual plan. Based on this, the company’s manager intends to develop 
an optimal aggregate production plan for each one product, through the use of the OLU approach in the solution 
of the problem (15). For what follows, it is considered the case of only one of these products. 

4.1. Problem’s Data 
Table 1 summarizes some of the data associated with the parameters and variables of the problem. 

Additional information: 1) the standard deviation of the demand is given by 4.0Dσ ≈  and the level of ser-
vice is set equal to 95% ( )0.95α = . This level of service means that managers intend to develop a production 
plan that can satisfy customers for at least 95% of times about delivery term; 2) the index β  is assumed to be 
equal to 50%, which means that the production capacity constraint (13) is given by 1 1 1ˆk k ku u u≤ ≤ ; 3) an 
ARMA(1,1) model is identified to represent the history of the sales collected monthly for this family of products. 
From the notation given in (4), the optimal estimated Auto-Regressive and Moving-Average parameters of this 
model are given by 1 0.65π = −  and 1 0.90η = , respectively; and 4) the HMMS coefficients are given by: C1 = 
69.7; C2 = 64.3; C3 = 0.2; C4 = 5.67; C5 = 51.2; C6 = 13.7; C7 = 0.0825; C8 = 320; and C12 = 1.134. 
 
Table 1. Main data.                                                                                       

The average demand ( )ˆ
kD : 

Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov. Dec 
430 450 440 310 390 375 390 500 490 450 390 425 

General data: 12N = ; 0 250I = ; 0 15W = ; NI  and NW  are free 

Physical limits: 100;     350;     200;     450;     19;     3.k k k k kI I P P W ω= = = = = =  
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4.2. The Mean Value Problem 
Based on the Mean Value Problem (14), the production-planning problem for this example is formulated bellow: 

T T1 1 1 1 T
11 1 1 11

2 2 2 2
2 2 2 2 2

03 3 3 3
3 3 3

ˆ ˆ ˆ ˆ ˆ0 0
ˆ ˆ ˆ ˆ ˆMin 0 0 1 2 0 0 2
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   −                 = ⋅ + ⋅ − ⋅ =                                     
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1 1 1 2ˆ ˆ  and  ;     0,1, , 1.k k k ku u u k Nω ω≤ ≤ − ≤ ≤ + = −

    (15) 

Considering results given at Section 2.3.4; all components and parameters of the problem (15) can be calcu-
lated using the data provided previously. 

4.3. Solving the Problem (15) 
Now, the objective is to find a solution to the problem (15). As discussed in Section 3.2, there are many subop-
timal approaches available in the literature. In this paper, the OLU approach is used to solve the problem under 
study. Besides the computational simplicity, another advantage of this approach is that it allows to incorporate 
new measures on the inventory and workforce levels over the planning horizon. This last feature is usually 
known as a rolling horizon scheme, see [13] and [19], and it is used to update the optimal solution (i.e. the pro-
duction plan), during the optimization process. Figure 1 illustrates how the OLU approach works to solve the 
problem (15). Note that for each new period k , as soon as new measures are taken from the inventory balance 
system, the problem (15) is rerun from initial period k  to end-period N . It is worth mentioning that only the 
optimal policy generated in the period k  (i.e. 1ˆku  and 2ˆku ) is effectively applied to the input of the system 
(see Figure 1). Consequently, the problem (15) must be solved N  times. 

The Figures 2-5 illustrate respectively the optimal trajectories of the inventory, production, workforce and 
labor-change variables, which are obtained as a result of the use of the OLU approach in the problem (15). Note 
that they represent the annual production plan, which is desired by the company’s manager. Note also that these 
optimal trajectories exhibit a particular scenario of the production process, which can be useful for management 
decision-making. 

With respect to trajectories exhibited above, some comments are:  
• The trajectory of inventory levels decreased continuously throughout the periods of time, see Figure 2. Note 

that this characteristic occurs in reason of the use of available information on the production system, during 
the optimization process. It means that OLU approach allows that the optimization process can be updating 
with respect to the states of the system, see Figure 1. Note that if for each period k  the information about 
the current level of inventory was not incorporated into the process of solution of (15), the tendency of the 
trajectory of inventory would be to increase continually over the periods of time. The reason of this is that 
the safety stock, given by function 1

,kx α , depends on the variance of the inventory (i.e., 1
2 2

k
Dx

kσ σ= ⋅ ), and 
so whenever the system operates in an open-loop scheme, the variance of inventory tends to grow with the 
time. The major implication of this is that the safety stock level (given by 1

,kx α ) also tends to rise propor-
tionally with time (i.e. periods of the planning horizon). Thus, if the information about the current level of 
inventory is very weak, then the strategy is to maintain high levels of safety-stock to avoid the risk of stock-  
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Figure 1. Block diagram of the OLU approach.                     

 

 
Figure 2. Inventory levels (Ik) with α = 0.95.                        

 

 

Figure 3. Production rate kP  (solid line) versus demand fluctuation ˆ
kD  

(dotted line).                                                    
 

out, see [20]. As a result, it will always be possible to satisfy customers with deliveries on time and still pre-
vent against unexpected events such as broken machines and delays of raw material. 

• As illustrated in Figure 3, the optimal production trajectory (solid line) remains relatively stable over the pe-
riods, with production levels close to the maximum capacity (i.e., 1 400ku = ). Thus, this production policy 
can answer promptly to the demand fluctuation (dotted line) throughout the periods of planning horizon. 
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Figure 4. Workforce levels (Wk) versus regular workforce (RWF).        

 

 

Figure 5. Workforce changes ( )k∆ .                                

 
• As a consequence, of the stable behaviour of the production policy, the workforce policy also remains stable 

for most periods of the planning horizon (see Figure 4). In fact, note that the workforce level fluctuates 
slightly around the regular workforce level (i.e. 17W =  workers). Note also that whenever the workforce 
level overcomes W , it is required to adopt one of the two following strategies, that is: subcontracting tem-
porary labor or adopting an overtime policy. Both strategies are responsible for increasing the total produc-
tion cost but, on the other hand, they allow to keep the production levels close to the maximum capacity of 
the production process. In short, these strategies improve the competitive performance of the company. 
Figure 5 ratifies what was said previously, i.e., it shows the fluctuation in the levels of the regular workforce 
for each period k, where the black bars indicate the level of subcontracting (or overtime), and the white bars 
indicate the level of the regular workforce. 

The results illustrated by Figures 2-5 show one of the possible production scenarios that can be adopted as a 
target for the short-term planning of the company. It is important to emphasize that the choice of a production 
scenario that is unique for strategic purposes of the company is not a trivial task. In fact, the main difficulty is 
related to the need of satisfying tradeoffs such as, for instance: how to minimize inventory levels and, simulta-
neously, maximize production rates, without introducing temporary workforce or overtime. Another difficulty is 
due to the lower and upper bounds of inventory and production variables. These constraints reduce the space of 
feasible solutions to the problem (15) and, consequently, the number of possible scenarios for analysis.  

4.4. Scenarios Analysis  
In this section is analyzed the influence of the probabilistic index α  in the development of scenarios of pro-
duction. The idea here follows the discussion addressed in Section 2.2, where the index α  is considered a 
measure of the customer’s satisfaction. In Section 4.3., the problem (15) was solved with 95%α = . Using α  
close to 100%, the manager shows a strong commitment of satisfying the customer demand over all periods of 
the planning horizon. Now, let’s consider that the manager choose α  equal to 50%. In this case, the manager is 
assuming the risk of not meeting the demand on time, i.e., he allows backorder. In practice, this type of situation 
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is observed in companies where the demand for innovative products is very high, and the stock in hands be-
comes obsolete quickly. For this companies, the safety-stock level must be kept as lower as possible, i.e.,  

1
, 0,  k kx I kα = = ∀ . 
In short, using 95%α =  the manager is assuming a more conservative position regarding the administration 

of inventories, while using 50%α = , he demonstrates an attitude of always negotiating with customers possi-
ble delivery delays. Note that with 95%α = , it will always be necessary to increase the safety stock levels, par-
ticularly in the future periods, to guarantee that the products will be delivered on time to the customers. Raising 
inventory levels allows the manager to reduce the number of management interventions that are required to ad-
just the production process, whenever endogenous and exogenous events occur. Examples of such events are 
unexpected fluctuation of the demand, raw-material delays, machines breakdown, etc. However, it is worth 
warning that such a managerial approach implies increasing the total production cost.  

Figure 6 and Figure 7 shows the inventory and production trajectories for both 50%α =  (dashed line) and 
95% (solid lines). From Figure 6, note that the inventory levels related to 95%α =  are slightly superior to the 
ones related to 50%α = . This feature shows that the use of probabilistic indexes near to 100% increase the in-
ventory levels as previously discussed. Indeed, the safety stock level ( )1

,kx α  increases over the periods of the 
planning horizon to guarantee that future demands will be met. Therefore, the total production cost for the policy 
with 95%α =  is more expensive (around 3%) than the one provided by 50%α = . In fact, looking carefully 
over these production trajectories, it is possible to verify that the production policy with 50%α = , remains 
70% of times operating exactly in its maximum capacity ( )400,  ku k= ∀ , while the production policy, with 

95%α = , operates only 25% of the time in a maximum capacity. In the case of 50%α = , this characteristic 
means that the whole production capacity is geared to meet the demand.  

Finally, it is interesting to mention that the development of production scenarios, based on safety stock levels 
to satisfy customer demand, has strong interest for those companies that operate in markets of commodities, i.e., 
companies whose products are made to stocks. 
 

 
Figure 6. Inventory levels, from OLU solution with α = 50% (dashed 
line) and 95% (solid line).                                       

 

 
Figure 7. Production rates, from OLU solution with α = 50% (dashed 
line) and 95% (solid line).                                       
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5. Conclusion 
This paper introduced a sequential stochastic linear, quadratic production planning problem with constraints on 
decision variables. Such a problem can be used by users interested in developing aggregate production plan for a 
single family of products. The problem was formulated in a state-space format, taking into account the original 
structure of the classical HMMS model and an input/output ARMA model that simulates the fluctuations of de-
mand. In the reason of difficulties to obtain an exact optimal solution (i.e. closed-loop solution), suboptimal ap-
proaches were pointed out as alternative strategies. It was also emphasized that many suboptimal plans are a di-
rect consequence of the application of the certainty-equivalence principle. From this principle, the original sto-
chastic problem was transformed into an equivalent deterministic problem, denoted here as the Mean Value 
Problem (MVP). From optimal control theory, two very simple sequential procedures, known by acronyms OLN 
and OLU, were discussed as a way to solve MVP and so to provide a sequential production plan (i.e. an updat-
ing plan). From an illustrative example, the OLU approach was applied to MVP. As a result, a feasible produc-
tion plan that takes into account information about the production system was provided. At last, it was shown 
that it is possible to develop production planning scenarios, only by varying some appropriated parameters of 
MVP. These scenarios help managers to define the best plan to be used as a production target in the hierarchy of 
decision-making. 
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