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Abstract 
In this paper, we propose a new soft multi-phase segmentation model where it is assumed that the 
pixel intensities are distributed as a Gaussian mixture. The model is formulated as a minimization 
problem through the use of the maximum likelihood estimator and phase-transition theory. The 
mixture coefficients, which are estimated using a spatially varying mean and variance procedure, 
are used for image segmentation. The experimental results indicate the effectiveness of the me-
thod. 
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1. Introduction 
Image segmentation is one of the most extensively studied problems in image processing and computer vision. 
Many different approaches have been proposed for the partitioning of images based on a variety of criteria 
including brightness (intensity), color, or texture. In general the partitioning of an image or detection of edges is 
under the assumption that an image consists of several patterns, and each point on the image domain belongs 
exclusively to only one pattern. Finding boundaries separating the different patterns in this sense is called a hard 
segmentation. Different to hard segmentation, soft segmentation assumes that each point may belong to more 
than one pattern. The goal of soft segmentation is to find all the probabilities that each pixel can belong to each 
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pattern. This probability is also called membership (or ownership) in the literature. 
One of the most extensively studied approaches for hard segmentation is the variational method. Many 

effective variational models have been developed, for instance, the Mumford-Shah model [1], geodesic active 
contour [2], geodesic active region [3], and region competition [4]. Level set technique [5] has been proven to be 
powerful in the implementation of variational models. In two-phase segmentation the composition of the 
Heaviside function with the level set function is used to represent the regions of the object and background. In [6] 
[7], the authors extended the level set method to multiphase segmentation by using multiple level set functions, 
while in [8] [9], the authors proposed another means to extend the level set method by using multiple layers for 
each level set function. Through the act of carefully choosing the initial values, these methods can work very 
well. However, the non-convexity of the energy functional in the level set formulation is an inherent drawback 
of the level set method. As a result, many level set based variational segmentation models are sensitive to initial 
values and may converge to an undesirable local minimum. This problem is more difficult to deal with for 
multiphase segmentation. 

To overcome the non-convexity problem mentioned above, one approach is to replace the composition of the 
heaviside function with the level set function in level set formulation by use of a weight/membership function. 
Through the implementation of this modification the energy is convex with respect to the membership function. 
For example, Chan et al. [10] and Bresson et al. [11] stated certain non-convex minimization problems for 
image segmentation and denosing as equivalent convex minimization problems by using membership functions 
to replace characteristic functions. These new models allow for the finding of global minimizers via standard 
convex minimization schemes. In particular in [11] efficient and fast numerical schemes to globally minimize 
the variational segmentation models were proposed. These algorithms are based on a dual formulation of the TV 
norm proposed and developed in [12]-[16]. 

Soft segmentation is also motivated by its applications to real world problems. In medical imaging, due to 
limited spacial resolution of the equipment, not all the voxels in a segmented region contain the same tissue type, 
especially near the boundary of two subregions. A typical example is the partial volume effect in MRI brain 
image segmentation. Instead of labeling each image voxel with a unique tissue type [17], partial volume 
segmentation aims at estimating the percentage of each voxel belonging to each tissue, which can be viewed as 
the probability of the voxel belonging to the tissue. Since soft segmentation allows each pixel to belong to 
several patterns with certain probabilities, it provides a more flexible mechanism, and thereby keeps more 
options available for post-processing steps. 

There have been many soft segmentation methods. Mory and Ardon extended the original region competition 
model [4] to a fuzzy region competition method [18] [19]. The technique generalizes some existing supervised 
and unsupervised region-based model. The proposed functional is convex, which guarantees the global solution 
in the supervised case. Unfortunately, this method only applies to two-phase segmentation and is difficult to 
extend to multiphase segmentation. The fuzzy C-mean (FCM) [17] [20] [21] is a method developed for pattern 
classification and recognition. Hence it is also applicable to image segmentation. The standard FCM model  
partitions a data set { } 1

N d
k k

x R
=
⊂  into M  clusters by the following objective function [22] [23]  

2
FCM 2

1 1

N M

ik i k
i k

J u x v
= =

= −∑∑                                  (1) 

where iku  is the membership value of datum ix  for class k  with 1 1M
ikk u

=
=∑ , and kv  stands for the  

cluster centers. The original FCM method is very sensitive to noise. An adaptive fuzzy c-means (AFCM) was 
proposed by Pham et al. [21], where the constant cluster centers used in the FCM model are substituted by 
spatially varying functions. The energy functional can be written as  

( )2
AFCM 2

1 1

N M

ik i i k
i k

J u x m v G m
= =

= − +∑∑                           (2) 

where m  is the bias field and ( )G m  is the regularization term for the bias field m . AFCM is more robust to 
noise than the standard FCM. The soft segmentation model developed in [17] used a different similarity measure 
to that in [21]. Their objective functional reads as  

( )( ) ( )( )AFCM
1 1 1 1

1 1
k

N M N M

ik i k ik r k
i k i k r Nk

J u K x v u K x v
Nσ σ
α

= = = = ∈

= − − + − −∑∑ ∑∑ ∑                 (3) 
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where  

( ) 2, exp ,
x y

K x yσ σ
 − − 

=  
 

                                  (4) 

kN  stands for the set of neighbors falling into a window around kx , and kN  is its cardinality. The parame- 
ter α  in the second term controls the effect of the penalty. 

Another class of soft segmentation is based on stochastic approaches. It considers that pixel intensities are 
independent samples from one or several distributions. The likelihood functions have been widely used in soft 
segmentation. In [24] the maximum-likelihood (ML) is used to find the optimal parameters in the joint pdf such 
that the likelihood function is maximized. An expectation-maximization (EM) algorithm is used to solve the 
problem when we are dealing with incomplete data. However, simply using likelihood to model an image is not 
enough since it ignored the prior knowledge of an image. In [25] the authors proposed an adaptive segmentation 
method that uses the knowledge of tissue properties and intensity inhomogeneities to correct and segment MR 
images. The EM algorithm was used to iteratively estimate the posterior tissue class probabilities when the bias 
field is known, and having a maximum a posteriori principle (MAP) estimator of the bias field, when tissue class 
probabilities are known. 

In [20], a segmentation framework based on the MAP principle was proposed for partial volume (PV) 
segmentation of magnetic resonance brain images. A mixture of the probability density functions is considered 
to address the PV effect. A Markov Random Field (MRF) model is used to define the prior distribution of the 
mixture coefficient field imposing a smoothness on the mixture coefficients (ownerships). The fuzzy c-means 
model is extended to define the likelihood function of the observed image. 

The phase transition theory in material sciences and fluid mechanics have inspired people to borrow ideas 
from contemporary material sciences, e.g., the diffuse interface model of Cahn-Hilliard [26], and its rigorous 
mathematical analysis in the framework of Γ -convergence approximation by Modica and Mortola [27] [28] 
into image segmentation. The phase field relaxation consists of approximating the perimeter of the interface 
using a Cahn-Hilliard type penalization functional [26], with the form  

( ) ( )2 1d d ,
2

E x W xυ υ υ
Ω Ω

= ∇ +∫ ∫



                            (5) 

where :W → +∞   is a scalar function with exactly two minimizers at 0 and 1 satisfying  
( ) ( )0 1 0W W= = . The second term of the penalty functional ensures that the values of the material density υ   

converges to 0 or 1 as 0→ , while the first term controls the perimeter. The parameter   can be interpreted 
as the width of the diffused edge representation in υ . The phase field approach has been used in topological 
optimization problems [29]-[31]. In [32], the authors used the phase field to approximate sharp edges and a 
variational phase field model is derived to compute a shape average of a given number of shapes. In [30], the 
authors used the phase transition theory in a Cahn-Hilliard impainting model. The authors in [33] and [34] 
presented a models for image segmentation based upon the phase transition theory of Modica and Mortola and 
discussed theirs connections to the Mumford-Shah segmentation model and some related works. 

In paper [35], J. Shen proposed a general multiphase stochastic variational fuzzy segmentation model 
combining the stochastic principle and the Modica-Mortola’s phase-transition theory. The image ( )I x  is 
defined on an open bounded domain Ω  and is assumed that it can be composed of N  unknown patterns. Let  
w  be the pattern label variable, 1, ,w N=  . At each voxel x∈Ω , both ( ) { }1, ,w x N∈   and ( )I x  are  
viewed as independent random variables indexed by x . The probability that x  belongs to the i-th pattern, i.e.  

( )( )Prob w x i= , 1, ,i N=   is represented by the ownership functions ( )ip x , 1 i N≤ ≤ . 

Denote by ( ) ( )( )Prob I x w x i=  the probability density function (pdf) of the random variable ( )I x   

belonging to the i-th pattern. Then the pdf of the image ( )I x  at each x∈Ω  is a mixed distribution given by  

( ) ( )( ) ( )
1

.
N

i
i

Prob I x w x i p x
=

=∑                               (6) 

Under the assumption that all random variables are independent, we have the following joint pdf  
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( ){ }( ) ( ) ( )( ) ( )
1

.
N

i
ix

Prob I x x Prob I x w x i p x
=∈Ω

∈Ω = =∑∏                      (7) 

The regularization is made using a double well potential borrowed from the phase-transition theory. By 
assuming that all patterns are Gaussian distributions with mean fields iu  ( )1, ,i N=  , and a fixed variance 

2σ , the pdf of the mixed Gaussian is given by  

( ) ( ) ( )( ) ( )( ) ( )
1

, , ,
N

i i
i

Prob I x x x g I u x p xσ
=

= ∑P U                          (8) 

where 

( ) ( )2

2

1, exp
22π

I
g I

µ
µ σ

σσ

 −
 = −
 
 

                               (9) 

defines the Gaussian probability density function, ( ) ( ) ( ) ( )( )1 2, , , Kx p x p x p x=P   and  

( ) ( ) ( ) ( )( )1 2, , , .Kx u x u x u x=U   The model is to solve the following minimization problem:  

( ) ( )
( )( )2

2 2 2

1 1 1

1
min , 9

N N N
i i

S i i i i
i i i

p p
E u I p u pλ α

εΩ Ω Ω
= = =

 − = − + ∇ + ∇ +
 
 

∑ ∑ ∑∫ ∫ ∫P U             (10) 

with constraints  

( )
1

0 1 and 1,
N

i i
i

p p x
=

≤ ≤ =∑                                 (11) 

where ( )ip x  are the ownerships and ( )iu x  are called patterns. Unlike the original Mumford Shah model, the 
energy of each channel is defined on the entire domain Ω  instead of on a specific subregion iΩ . In [36] the 
authors introduced a functional with a variable exponent into the Shen's model which provides a more accurate 
model for image segmentation and denoising. 

In this paper, we propose a new multiphase soft segmentation model that integrates phase-transition theory 
into a mixture of Gaussian model for image intensities. The proposed model is an extension of the paper [35]. 

The difference between this work and [35] lies in the facts: i) the data fidelity term in the proposed model is a 
Gaussian mixture model, while the model in [35] is only an approximation of Gaussian mixture model due to 
simplification. Although this simplification facilitates the numerical computation it does not reflect upon the real 
behavior of the data; ii) paper [35] assumed that all the variances of different phases are the same and fixed, 
while in the proposed model each phase could have a different variance which will also be optimized, making 
the model more flexible and more robust. 

This paper is organized as follows: Section 2 addresses the proposed model development. Section 3 presents 
the implementation details and experimental results. Finally, the conclusion is given in Section 4. 

2. Proposed Model 
In this section, we develop a soft multiphase segmentation model under the assumption that the intensity of the 
image is distributed as a mixture of Gaussians. 

We assume the intensity ( )I x  at each point x  is an independent sample from a mixed Gaussian 
distribution with probability ( )ip x . Considering the Equations (6, 7, 8 and 9) the goal of the soft segmentation  
is to estimate the optimal vectorial pair of ownerships ( )xP  and patterns ( )xU , 

( ) ( ) ( )* *
,, arg max , .Prob I= P UP U P U                            (12) 

Through the Bayesian formula, the posterior given I  is obtained by  

( ) ( ) ( ) ( ) ( ), ,Prob I Prob I Prob Prob Prob I=P U P U P U                   (13) 

assuming that the mixture patterns U  and the mixture rules P  are independent. Since I  is given, 
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( )Prob I  is constant. So, the Bayesian based optimal problem becomes  

( ) ( ) ( ) ( ) ( )* *
,, arg max ,Prob I Prob Prob= P UP U P U P U                     (14) 

By taking the logarithmic likelihood [ ] ( ). log .E Prob= − , we have  

( ) ( ) [ ] [ ], ,arg min , arg min , .E I E I E E  =   + +   P U P UP U P U P U                (15) 

As assumed, all the samples ( ){ },I x x∈Ω  are independently Gaussian distributed. So, we have  

( )( ) ( )
1

, log , ,
K

i i i
i

E I g I u x p xσ
Ω

=

   = −     
∑∫P U                          (16) 

where  

( ) ( )
( )2

2

1, exp .
22π

I
g I

µ
µ σ

σσ

 −
 = −
 
 

                             (17) 

For energies ( )E U , we use the general variational form, and assume that all pattern channels are inde- 
pendent to each other. For functions whose gradients are square integrable, we may consider: 

[ ] [ ] 2

1 1
.

K K

i i
i i

E E u uα α
Ω

= =

= = ∇∑ ∑∫U                                (18) 

Finally, for energy [ ]E P , we borrow the expression from paper [35] based on material science and Γ - 
convergence theory.  

[ ]
( )( )2

2

1

1
9

K
i i

i
i

p p
E p

εΩ
=

 − = ∇ +
 
 

∑∫P                               (19) 

where 1 . Since 1 , the second term will force ip  approximate either 1 or 0. The first term is the 
regularity condition on each ip . The advantage of this expression is that it contains the boundary information. 
By Γ -convergence theory, the term converges to the length of the boundary in the sense of Γ -convergence 
[37] [38] as   goes to zero. 

Now, in combination of (15), (16), (18) and (19), the final proposed segmentation model is the minimization 
of:  

( ) ( )( )22
2 2

2
1 1 1

11, log exp 9 ,
22π

K K K
i ii

i i i
i i iii

p pI u
E I p u pλ α

εσσΩ Ω Ω
= = =

   −− −     = − + ∇ + ∇ +        
∑ ∑ ∑∫ ∫ ∫P U    (20) 

where λ  and α  are weights balancing the effects of the three terms. 

3. Implementation and Experimental Results 
Since the energy functional contains three group parameters, in order to minimize the energy, we use the 
alternating iteration scheme:  

1n n n n
i i i ip u pσ +→ → →  

Each group parameter can be iterated with its Euler-Lagrange equation. The Euler-Lagrange equation for 
patterns ( )iu x , ownerships ( )ip x  and iσ  are as follows: 

( )

( )
( )

2

2

2 2

2
1

exp
2

0
2

exp
2

i
i

i
i i

Ki i
i

i i

I u
p

u I u
I u

p

σλα
σ

σ=

 − −
 
 
 − ∆ − − =
 − −
 
 
 

∑
                     (21) 
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( )( )

( )

( )

2

2
1

2

2
1

exp
2

18 2 1 1 2

exp
2

i

i
i i i i

K
i

i
i i

I u

p p p p V
I u

p

σ
λ

σ

−

=

 − −
 
 
 − ∆ + − − = +
 − −
 
 
 

∑
                   (22) 

( ) ( ) ( )
2 2

2
2 2 2

1 1

1exp exp 0
2 2

K K
i i

i i i
i ii i i

I u I u
p I u p

σ σ σΩ Ω
= =

   − − − −
   − − =
   Ω   

∑ ∑∫ ∫              (23) 

where V  is defined as  

( )

( )

2

2

2
1

2
1

exp
21 ;

exp
2

i

K i
i i

Ki i
i

i i

I u

V V V
K I u

p

σ
λ

σ

=

=

 − −
 
 
 = = −
 − −
 
 
 

∑
∑

                       (24) 

Considering that  

( )( ) ( ) ( )2 21 1 2 1 1i i i i i i ip p p p p p p− − = − − −  

and since 1 1K
ii p

=
=∑  and so ( )1 0K

ii p
=

∆ =∑ . 

We can solve the Equations (21)-(23) using the flow from their associated Euler-Lagrange equations. The 
flow equation for iu  is given by: 

( ), , ,i
u i i i

u
L I u p

t
σ

∂
=

∂
                                 (25) 

[ ]0 0,iu
x T

n
∂

= ∈∂Ω×
∂

 

The flow equations for ip  and iσ  are obtained similarly. 
The numerical solution was obtained using finite differences to discretize the flow equations. For the 

numerical implementation it is supposed that the images are represented by N M×  matrices of intensity values. 
Let ,

i
l ku  denote the value of the image iu  at pixel ( ),l k  with 1, 2, ,l N=   and 1,2, ,k M=  . The flow 

equations obtain images at scales, or times, n ut ndt=  with 1,2, , un dt=   is the step size for Equation (25).  
We denote ( ), ,i nu l k t  by n

iu .  

( )1
, , , ,n n n n n

i i u u i i iu u dt L I u p σ+ = +                               (26) 

Following the same procedure for p  and σ , we have: 

( )1 , , ,n n n n n
i i p p i i ip p dt L I u p σ+ = +                              (27) 

( )1 , , , ;n n n n n
i i s i i idt L I u pσσ σ σ+ = +                              (28) 

where pdt  and dtσ  are the step sizes for Equations (27) and (28), respectively, 
and uL , pL  and Lσ  are given by:  

( )

( )

( )
( )

2

2

2 2

2
1

exp
2

, , ,
2

exp
2

i
i

i
u i i i i i

Ki i
i

i i

I u
p

L I u p u I u
I u

p

σλσ α
σ

σ=

 − −
 
 
 = ∆ + −
 − −
 
 
 

∑
                  (29) 
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( ) ( )( )

( )

( )

( )

( )
( )

2

2
1

2
1

2
1

2

2
3 2

2
1

2
1

exp
2

, , , 18 2 1 1 2

exp
2

exp
2 2 22 3

exp
2

i

K i
p i i i i i i i

Ki i
i

i i

i

Ki
i i

K ii
i

i i

I u

L I u p p p p p
K I u

p

I u

p p
K KI u

p

σλσ

σ

σ
λ

σ

−

=

=

=

=

 − −
 
 
 = ∆ − − − +
 − −
 
 
 

 − −
 
 
 − + − +
 − −
 
 
 

∑
∑

∑
∑

 

 

            (30) 

( ) ( ) ( ) ( )
2 2

2
2 2 2

1 1

1, , , exp exp
2 2

K K
i i

i i i i i i
i ii i i

I u I u
L I u p p I u pσ σ

σ σ σΩ
= =

 − − − −
 = − + −
 Ω  

∑ ∑∫            (31) 

To start the iteration process, we need to choose the initial values for the ownership functions ip , the 
patterns iu  and the standard deviations iσ . We also need to choose suitable parameters α  and λ . The  
adopted procedures is: given ( )ip x , 1, 2, ,i K=  , we take ( ) ( )0 , ,iu x y I x y=  if ( ), 1ip x y =  and  

( )0 , 0iu x y =  if ( ), 0ip x y = , 0
iσ σ= . 

In Figure 1, a comparison was made between Shen’s model and the proposed model using synthetic images. 
Figure 1(a) is the original image, which is a piecewise constant image added with constant Gaussian noise. 
Figure 1(b) and Figure 1(c) are the reconstructed images using the proposed model after 10 iterations and 50 
iterations resp., while Figure 1(d) to Figure 1(f) are the images reconstructed using Shen’s model after 50 
iterations, 100 iterations and 500 iterations, respectively. We see that the result was improved using the pro- 
posed model with few iterations. However, when Shen’s model is used very little differences is perceived even 
when the number of iterations are increased. 

In Figure 2, we present a comparison between variances updated and not updated. The original image Figure 
2(a) is a piecewise constant image added with different Gaussian noise for different phases. Figure 2(b) is the 
reconstructed image when variances are not updated, and Figure 2(c) is the reconstructed image when variances 
are updated. Figure 2(d), Figure 2(f) are three membership functions obtained with variances not updated, 
while Figures 2(g)-(i) are three membership functions obtained with variances updated. 

Figure 3 shows the bias correction in the proposed model when bias is evident prior to correction in an image. 
Figure 3(a) is the original image. This image was firstly used by X. Bresson and T.F. Chan in their non-local 
Chan-Vese model [6]. It is clear that the object (disk) in Figure 3(a) is biased. Figure 3(b) and Figure 3(c) are 
the membership functions obtained using Shen’s model, while Figure 3(d) and Figure 3(e) are the corre- 
sponding membership functions obtained using the proposed model by setting different variances in the 
implementation. 

In the following experiments, we tested our model on real images. In Figure 4, we carried out the experiment 
on the MRI brain image. Figure 4(a) presents the original brain image; Figures 4(b)-(d) are ownerships of 
white matter, gray matter and CSF, respectively. Figure 4(e) is the reconstructed image; Figures 4(f)-(h) are 
patterns of the three matters. Figure 5 shows a similar result but with natural scene image. 

Finally, we take the experiment on a color image, as shown in Figure 6, where Figure 6(a) is the original 
image; Figures 6(b)-(d) are three phases. 
 

 
(a)                 (b)                  (c)                (d)                   (e)                 (f) 

Figure 1. Comparison between Shen’s model and proposed model using synthetic image.                              
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                       Figure 2. Comparison between variances updated and not updated. 
 

 
Figure 3. Comparison between Shen’s model and proposed 
model using biased image.                                

 

 
Figure 4. (a) Original brain image; (b)-(d) Ownerships of white matter, gray 
matter and CSF; (e) Reconstructed image; (f)-(h) Patterns of white matter, 
gray matter and CSF.                                               



C. A. Z. Barcelos et al. 
 

 
2896 

 
Figure 5. (a) Original natural image; (b)-(d) Ownerships of different phases; 
(e) Recon-structed image; (f)-(h) Patterns of different phases.               

 

 
Figure 6. Experimental result on color image after 300 iterations.            

4. Conclusion 
In this paper, we extended the idea in paper [35] and developed a soft multiphase segmentation model. The 
model is a pure Gaussian mixture model. It allows for the choosing of different means and different variances, 
which leads to a more flexible model. The experiments show that the model is more robust to noise compared 
with the previous model. Moreover, with the experiment on MRI brain image, we see the advantage of soft 
segmentation where we can find and calculate partial volume which is very important for brain image segmen- 
tation. 
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