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Abstract 

This paper presents closed-form expressions for the series, ( ) ( )∑ n nx n11 coth+− , where the sum 
is from n = 1 to n = ∞. These expressions were obtained by recasting the series in a different form, 
followed by the use of certain relationships involving the elliptical nome. Among the values of x for 
which these expressions can be obtained are of the form: 2lπλ and 2lπ/λ, where l is an integer be-
tween ‒∞ and ∞. The values of λ include 1, 2 , 3 , and 3. Examples of closed-form expressions 
obtained in this manner are first presented for x = π/4, π/2, π, and 2π. Additional examples are 
then presented for ( )x 2 3= π , ( )2 2π , 2π , and 3 2π . This undertaking was prompted 

by the author’s work on an electrostatics boundary-value problem related to the van der Pauw 
measurement technique of electrical resistivity. The presence of this series for x = π in the solution 
of that problem and its absence from any compendium of infinite series that he consulted led to 
this work. 
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1. Introduction 
The series S(x), where 

( ) ( ) ( )1

1
1 cothn

n
S x nx n

∞
+

−

= −∑                               (1) 

does not appear in any of several compendiums of infinite series or products [1]-[4]. The author first encoun-
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tered it for x = π, as part of a solution to an electrostatics boundary-value problem, and he deduced a simple 
analytic expression for S(π) based on the known solution to this problem in a limiting case. This is opposed to a 
“first-principles” derivation. The problem involves the determination of the electrical resistivity of a uniform 
material in the shape of a thin square of side “a” and thickness c, as c → 0. This situation arises in the semicon-
ductor industry in the electrical characterization of blank wafers of materials, such as silicon, within which nu-
merous circuits are fabricated. 

The particular measurement configuration considered here is shown in Figure 1. 
Depicted in this figure there is a square sample of side “a” and a square contact array of semi-diameter w, ro-

tated by 45˚ with respect to the sample and displaced from the center of the sample by the vector s. This dis-
placement can be in any direction and magnitude as long as the array remains completely within the sample (in-
cluding on the boundary). Current Io is forced to enter contact 1 and leave contact 2, and the resulting potential 
difference between contacts 4 and 3, ∆φ = φ4 − φ3, is determined from a voltage measurement. Mathematically, 
the contacts are considered point-like, which in practice means that their diameter w  (the same is also true 
for c). The practical purpose of solving the boundary-value is to determine the voltage and thus the stability of 
the results with respect to the displacement and w [5]. In [5], these results were compared to those associated 
with a non-rotated array. When s = 0 and w/a = 1/2, we obtain the situation shown in Figure 2, where all four 
contacts are on the boundary in a highly symmetric arrangement. 

This is a special case of the more general one considered by van der Pauw [6] in a seminal paper in which 
neither the sample nor the contact array is required to have any simple shape, only that the sample be thin, have 
no holes in it, and that all contacts are point-like and on its periphery. He used the method of conformal mapping, 
not the electrostatics method of [5]. For the particular configuration in Figure 2, his results reduce to: 

( )
π

ln 2o

c
I
ϕρ

  ∆
=      

                                 (2) 

In this equation, ρ is the electrical resistivity. When w/a < 1/2 and s ≠ 0, Equation (2) must be modified, such 
that: 

 

 
Figure 1. General configuration of the electrostatics boundary-value problem that led to the 
series in question. 
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Figure 2. The limiting case of the configuration in Figure 1, or the symmetric van 
der Pauw arrangement, satisfied by Equation (5). The current and voltage points are 
not shown. 
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                                (3) 

Clearly, F(1/2, 0) = ln(2). The function F(w/a, s) was calculated in [5] using a standard separation-of-va- 
riables technique applied to Laplace’s equation for the potential everywhere within the sample, along with the 
appropriate surface boundary conditions on its gradient. The function F(w/a, 0) is as follows: 

[ ]1 2 3 4 5
1

,0 :
n

wF g g g g g
a

∞

=

  = − − + 
 

∑                            (4) 

1
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2 sinh π
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n n
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5
π πcosh cosh π 1 cos π 1n w w n w wg n n
a a a a

      = + − + +            
 

Allowing w/a = 1/2, we obtain, after considering even and odd n separately: 

( ) ( ) ( )( )1

1 1

coth π1 ,0 1 1 sinh 2 π
2

n

n n

n
F n n

n

∞ ∞
+

= =

  = − − 
 

∑ ∑                        (5) 

Using the relationship [4]: 

( )( ) ( )
1

π 31 sinh 2 π ln 2
6 4n

n n
∞

=

 = −  
 

∑                              (6) 

and F(1/2, 0) = ln(2), we obtain: 

( ) ( ) ( )1

1

coth π π 11 ln 2
6 4

n

n

n
n

∞
+

=

 − = +  
 

∑                             (7) 

It is clear that the sum in Equation (7) should be very close to ln(2) because coth(nπ) → 1 so quickly with n. 
In fact, the right-hand side of Equation (7) is 0.6968⋅⋅⋅, while ln(2) = 0.6931⋅⋅⋅, resulting in a percentage differ-
ence of about 0.5%. When the left-hand side was summed directly, the two sides agreed to the limit of precision 
of the software used, or 15 significant figures. 

2. Alternate Derivation for Several Values of x 
The above derivation is based on a requirement of a physics problem and applies to only one value of x, x = π. 
The following derivation, which applies to an array of values of x, proceeds by recasting the series in a different 
form and applying certain existing relationships to evaluate the resulting series. 

Using the definition of the hyperbolic cotangent, we rewrite S(x) as: 

( ) ( )
( )
( )
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1 e
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S x
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−
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+
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−
∑                                (8) 

This series can be expressed in a more useful form for our current purpose. We first note that for 1y < , 
( )1 1 ky y− = ∑ , where the sum is from k = 0 to k = ∞, and that ( ) ( ) 1ln 1 1 m mz z m++ = −∑ , where 1 1z− < ≤  

and the sum is from m = 1 to m = ∞. In this case, 2e nxy −=  and z = 1. Consequently, after a few simple mani-
pulations, we can express S(x) as: 

( ) ( ) ( )2

1
2 ln 1 e ln 2kx

k
S x

∞
−

=

= + +∑                               (9) 

For certain values of x, the series can now be evaluated in a straightforward manner, using existing relation-
ships. 

3. Evaluation of the Series 
These relationships are stated in [4] (“Series of Logarithms” and “Specific Values” of “Series Expansion of In-
verse Elliptical Nome Q”). Obtained from “Series of Logarithms” is the most fundamental of these relationships 
for our purpose: 

( ) ( )( )2

1

1ln 1 ln 16 1 .
24

k

k
q m q m

∞

=

   + = −     
∑                          (10) 

In this expression, q is the elliptical nome [7] and m is the inverse elliptical nome (0 < m < 1). In the second 
section of [4], certain values of q are stated along with their associated m. All of these expressions for q are of 
the form: πe λ− , where λ is real and >0 (this must be true of λ, based on the definition of q in [7]). Thus, if we are 
to use these results, x = πλ/2, although it is not clear why or if x must be some multiple of π to obtain an analytic 
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expression for S(x). Since Equation (10) is fundamental to the evaluation of S(x), some background information 
concerning it is called for. First, it is equivalent to: 

( ) ( )
1 242

1
1 16 1k

k
q m q m

∞

=

 + = − ∏                              (11) 

Second, in [4] under “Inverse Elliptic Nome Q m[q] and K [m[q]] Expressed through Infinite Products” are 
the following relationships: 

( ) ( ) ( ) ( )8 82 1 2 1 2 2 1

1 1
1 1 1 16 1 1k k k k

k k
m q q q q q

∞ ∞
− − −

= =

 = − − + = + + 
 
 ∏ ∏              (12) 

Using this equation to form the right-hand side of Equation (11) easily leads to its left-hand side, after a few 
simple algebraic manipulations. The equality between the first and second terms in Equation (12) is discussed in 
[8], while that between the first and third is discussed in [9]. 

Also in the second section of [4] are three relationships that allow us to expand the number of values of x ad 
infinitum. These relationships are as follows: 

( ) ( )
( )

2

2 1 1

1 1

m q
m q

m q

 − −
 =
 + − 

                               (13) 

or its inverse, 

( )
( )
( )( )
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2
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m q
m q

m q
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+
                                (14) 

and 

( )
π

π1 e em mλ λ
−−  

− =   
 

                                 (15) 

The first of these three equations allows one to generate the inverse nome of q2, given the inverse nome of q, 
and that of q4 from that of q2, etc. From Equation (14), the inverse nome of q1/2, q1/4, etc. can be generated start-
ing with that of q. Thus, starting with a particular value of X, say X0, one can generate an entire array of X, say 
Xn, to which Equation (10) can be applied, such that: 

02 ; , , 2, 1,0,1, 2, ,n
nX X n= = −∞ − − ∞                     (16) 

By using Equation (15), which follows directly from the definition of elliptical nome in [7] (ch. 17), one can 
generate additional values of X0 through the inverse of λ (i.e., X0 = πλ/2 → X0 = π/2λ). This has been done for a 
few cases in [4]. It also follows directly from Equation (15) that m = 1/2 for λ = 1. 

4. Examples of Closed-Form Solutions 
A few examples of the use of these equations to generate closed-form expressions for S(x) will now be presented. 
They will be for λ = 1/2, 1, 2, and 4, which corresponds to x = π/4, π/2, π, and 2π, respectively. Since the value 
of S(x) for x = π motivated this entire undertaking, it is included here. Starting with λ = 1, for which m = 1/2, one 
can use Equation (14) to generate the value of m for λ = 1/2 and Equation (16) to generate m for λ = 2 and 4. The 
value of m for λ = 1/2 can also be generated from the value of m for λ = 2, using Equation (15). All of these re-
sults are actually presented in [4]. The other starting values of λ in [4] that have been used to generate the re-
maining results are: 2  and 3 . 

π 2;π 4; e ; 12 2 16x q m−= = = −  

π π 5 1 3 2ln 2 ln 1 1.178
4 24 4 4 4

S
        = + + + =                   

                         (17) 
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π;π 2; e ; 1 2x q m−= = =  

π π 3 ln 2 0.781
2 12 4

S      = + =     
     


                                        (18) 

2π;π; e ; 17 12 2x q m−= = = −  

( ) ( )π 1π ln 2 0.696
6 4

S    = + =   
   


                                       (19) 

( ) ( ) 44π; 1 4 1 42π; e ; 2 1 2 1x q m−  = = = − +   

( ) ( )π 1 1 3 22π ln 2 ln 1 0.69315
3 4 4 4

S
      = − − + =               

                      (20) 

( )π 3;π 2 3 ; e ; 2 3 4x q m−= = = +  

π π 5 1 2 3ln 2 ln 1.058
6 122 3 12 3 7 4 3

S
 +       = + + =         −        

                    (21) 

( )π 2;π 2 2 ; e ; 2 2 2x q m−= = = −  

π π 5 1 2 1ln 2 ln 0.925
6 122 2 12 2 17 12 2

S
 −       = + + =        −        

                 (22) 

π 2;π 2 ; e ; 2 2 2x q m−= = = −  

π π 2 1 ln 2 0.716
12 22

S
    = + =           

                                     (23) 

( )π 3;π 3 2; e ; 2 3 4x q m−= = = −  

π 3 π 3 5 1 2 3ln 2 ln 0.701
2 12 6 12 7 4 3

S
     −   = + + =            +        

                    (24) 

All of these results (and others not shown) have been confirmed by an agreement with a direct summation of 
each series. Figure 3 is a graphical representation S(x) vs. x/π. We note that, as expected, S(x) rapidly approaches 
ln(2) with increasing x. At the other extreme, S(x) → ∞ as (1/x) for small x. The inset in Figure 3 demonstrates 
this behavior on a log-log plot. 

5. Conclusion 
Simple analytic formulas have been produced for eight values of x for the series ( ) ( )11 cothn nx n+−∑ , where 
the sum is from n = 1 to n = ∞, although the sum could also be over the negative integers. These values are a 
subset of a much larger set of x for this possible. This larger set obviously encompasses the corresponding nega-
tive values of x. The formulas were produced by recasting the series into a form such that known relationships 
involving the elliptical nome could be applied to their derivation. The author first encountered the series for x = 
π in an electrostatics boundary-value problem. The sum for this value of x was the result of the application of the  
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Figure 3. Graphical representation of the results of this study. The inset is a log-log scale in which the dotted line 
is an eyeball fit. 

 
series to a limiting case of that problem. This value of x was also one of the eight just mentioned. It is quite 
possible that this series, with the appropriate values of x, is at least part of the solution of other physical prob-
lems. 
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