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Abstract

Evaluation of multiorgan protection strategies against ischemic injury in humans is essential to
improve quality of life and reduce mortality. Over the past 40 years a host of pharmacologic and
non-pharmacologic interventions have been evaluated with the aim of limiting cell damage pro-
duced by ischemia-reperfusion injury. Different conditioning strategies, such as remote condi-
tioning, are documented to mitigate ischemic injury in animal and human studies and may have
remarkable clinical promise. However, successful clinical application of these interventions re-
mains questionable since protection is known to be compromised in humans with comorbidities
either with or without medications. Regardless, ongoing studies continue to examine the underly-
ing mechanisms involved in this endogenous cytoprotective phenomenon to further its successful
implementation in the clinical setting. In this review, we examine recent findings in support of
remote conditioning stratagems for organ protection and their relevance for translation to clinical
use.
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1. Introduction

Obstruction of arterial blood flow to any organ ultimately results in development of cellular injury the extent of
which depends, in part, on duration of ischemia; restoration of blood flow to the affected tissue delays, and may
even prevent progression of cellular necrosis. The principal objective of tissue necrosis reduction strategies is to
limit adverse remodeling that ultimately leads to diminution of organ function and failure. In the heart early
reperfusion of an infarct-related artery, combined with adjunctive pharmacologic treatment, has shown some
promise to mitigate ischemia-related injury, particularly in experimental models. Kloner recently examined
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clinical trials that focused on reducing tissue damage during acute myocardial infarction [1]; he concluded that
some adjunctive agents that target specific intracellular signalling pathways, platelet aggregation, etc. were able
to promote infarct shrinkage over and above that obtained by reperfusion interventions. The search continues for
more efficient cardioprotective strategies that will improve outcomes in myocardial infarction patients.

Numerous experimental studies with different pharmacologic compounds have documented significant pro-
tection against ischemic injury; however, translation of successful cellular protection strategies from animal
studies to the clinical arena remains a major challenge. For the heart, this topic was recently debated at the 6"
International Cardioprotection Workshop of the UCL-Hatter Cardiovascular Institute; recommendations for in-
vestigating novel protective strategies for preclinical, percutaneous coronary intervention, and coronary artery
bypass graft studies were proposed (the reader is referred to the published report from this meeting [2]). Inter-
estingly, conditioning strategies were deemed most promising for clinical utilisation in the setting of acute
myocardial infarction. In this review, we discuss remotely applied conditioning strategies in the context of in-
farct shrinkage and their potential application for clinical use.

2. Ischemic Preconditioning

Almost 30 years ago Murry and co-workers [3] published their seminal study in dogs documenting a delay in
development of myocardial necrosis in tissues exposed to brief, non-lethal periods of ischemia-reperfusion prior
to a prolonged ischemic event. In the heart, ischemic preconditioning mitigates tissue necrosis, cardiac arrhyth-
mias and contractile dysfunction produced after an acute occlusive event depending on the animal species
[4]-[7]. Protection by preconditioning has also been documented to extend to the microcirculation in both in vivo
and ex vivo studies [8] [9]. The coronary microcirculation, which is both part of the problem and solution for-
modulating tissue injury, is often forgotten in studies investigating organ protection mechanisms, particularly in
animal studies. While studies examining the effects of conditioning stratagems on protection of the coronary
vasculature are limited some improvements of myocardial perfusion and recruitable coronary reserve have been
reported [10]. Questions regarding restoration of blood flow to an ischemic region are particularly relevant con-
sidering that local oedema, inflammation and altered ventricular mechanics negatively influence distribution of
blood flow and therefore cellular adaptation post-ischemia [11] [12]. As mentioned earlier restoration of blood
flow, shortly after onset of an ischemic event, is a priority for salvage of non-irreversibly injured cells. The time-
frame within which blood flow is restored is an important predictor for shrinkage of ischemic injury as is the
duration of ischemia.

Preconditioning-mediated protection does not only occur in the heart; protection by this intervention has also
been reported in brain, liver and kidneys [13] [14]. Protection by ischemic preconditioning is immediate, trig-
gered by the release of endogenous mediators (nitric oxide, adenosine, bradykinin) [15]-[17], depends on activa-
tion of complex second messenger systems [18], and anti-oxidant pathways [19]. A “second window (delayed)”
of protection has also been described that is dependent on induction of cytoprotective proteins [20] [21]. Bene-
fits of ischemic preconditioning have also been reported in the absence of direct ischemic or pharmacologic in-
terventions; for instance, ventricular wall distension (i.e. acute volume overload) [22] [23] and increased ven-
tricular after load [24] can induce preconditioning-mediated protection. Additionally, repetitive overdrive pacing,
heat stress and receptor activation stimulate the preconditioning response [20] [25]-[27].

More than 8000 papers have been published since 1986 on various aspects of organ protection by different
conditioning strategies in both animal and human studies. However, the clinical usefulness of ischemic condi-
tioning remains controversial since its initial introduction as a preventive strategy for tissue protection. Several
recently published reviews have discussed the potential for clinical translation of myocardial conditioning
strategies to confer organ protection [28] [29].

3. Remote Conditioning

Remote conditioning of the heart, initially described as “preconditioning at a distance”, was first reported by
Przyklenk and co-workers in dogs [30]; briefly, repeated periods of non-lethal ischemia of the left circumflex
artery vascular bed significantly mitigated development of tissue necrosis in the adjacent vascular bed (left ante-
rior descending coronary artery) which was subjected to prolonged coronary occlusion. Since the publication of
this report, it has been shown that remote ischemic conditioning applied before or after an ischemic event
markedly delays progression of tissue injury not only in the heart but also in other organs. In animals and hu-
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mans, the conditioning stimulus is applied before, during or after coronary occlusion; it generally comprises re-
versible upper or lower limb ischemia induced by repeated inflation of a blood pressure cuff above the systolic
blood pressure for 5 min followed by reperfusion by cuff deflation for 5 min [31]-[34]. The concept of remote
conditioning has also been expanded to include remote post-conditioning (remote stimulus applied after relief of
the arterial occlusion) and remote perconditioning (remote stimulus applied during sustained ischemic insult)
[35] [36]. While interest in clinical application of these non-invasive techniques for tissue protection has ex-
panded markedly in the last decade, or so, the biology and mechanisms involved have not been established.
Therefore, underlying physiopathological mechanisms responsible for protection by remote conditioning need to
be better defined. The commonality of mechanisms proposed for all conditioning strategies (anesthetic, phar-
macologic, non-pharmacologic, direct or remote) suggests the existence of cross-tolerance. Stimulation of en-
dogenous ligands including adenosine, opioids and catecholamines are all known to trigger cellular transduction
pathways that mediate protective signals between the cell membrane and mitochondria where end-effectors are
believed to induce protection [18] [37]. In addition, stimulation of G-protein-coupled receptors, up regulation of
kinases of the RISK (reperfusion injury salvage kinase) or SAFE (survivor activating factor enhancement)
pathways and mitochondrial stabilization have been proposed [36] [38] [39].

The most intriguing aspect of remote conditioning strategies involves the question of how protective signals
are transferred from distant tissues to the target organ. Several hypotheses including 1) communication via blood
or perfusate borne humoral factors, 2) communication by neuronal stimulation and transmission, and 3) commu-
nication by systemic alteration of circulating immune cells have been proposed [36] [40]-[42]. The key require-
ment for protection by the various conditioning stratagems is the restoration of blood flow: this implies that tis-
sues within the organ subjected to ischemia release mediators that trigger protective mechanisms/pathways in
distant tissues [42]. The observation that pharmacologic ganglionic blockade abrogates remote ischemic precon-
ditioning protection suggested that protective signals between organs were primarily transferred via neural
pathways [43]-[45]. Overlap between humoral mediators and neural pathways could also stimulate protection by
stimulation of local afferent nerves [46] [47]. However, controversy remains regarding the requirement of intact,
functional nerves for conditioning-mediated protection [48] [49]. We recently reported that myocardial protec-
tion was not reversed in dogs subjected to ischemia-reperfusion injury after either pharmacologic or surgical
decentralisation of the intrinsic cardiac nervous system [50]. Interestingly, local circuit neurons canprocess in-
formation from the intrathoracic nervous system and transduce afferent neuronal inputs to peripheral autonomic
ganglia even after such ganglia have been disconnected from central neurons [51] [52]. On the basis of our
findings we speculated that inter-organ crosstalk did not require an intact autonomic nervous system. Other po-
tential protective mechanisms for the decentralised heart included reduced oxygen demand and greater perfusion
of the ventricular wall [53]-[55]. At present we tend to favor the humoral hypothesis for remote conditioning-
mediated protection; the quest remains to identify different compounds that modulate intrinsic neurons to induce
cellular protection. Several studies documented that while activation of the sympathetic nervous system was not
obligatory for classical first-window preconditioning [56] [57] intact cardiac nerves and a-adrenergic receptors
was essential for second-window preconditioning [56]. The time-frame for application of remote conditioning
has yet to be defined.

4. Complications Associated with Remote Conditioning in Patients

Although remote conditioning strategies may be an appealing clinical objective the overall success of these in-
terventions in patients is somewhat dismaying. Przyklenk recently pointed out that of 25 published studies ex-
amining remote conditioning in patients undergoing coronary bypass surgery or other cardiac surgery proce-
dures only half reported manifest cardioprotection; [36] the remainder documented either a positive trend, no
benefit or even exacerbation of myocardial injury [28] [58]. Most animal disease models used for experimental
studies inadequately represent the human phenotype due to the complexity and multiplicity of risk factors in-
volved (cf. review from Ferdinandy and co-workers [59]). Consequently, future animal studies need to be less
simplistic; in other words multiple comorbid conditions should be integrated over extended experimental time-
frames in order to allow replication of different clinical scenarios. In general, the presence of multiple comor-
bidities (senescence, metabolic syndrome, kidney dysfunction, diabetes, hypercholesterolemia, etc.) impacts the
overall success of conditioning stratagems for organ protection [60]-[62]. However, it has been shown that cel-
lular protection is still possible as long as a stronger stimulus can be provided to trigger protective mechanisms
[63]. In animal and small scale human studies protection by organ conditioning is attenuated when confounding
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factors, such as diabetes mellitus [63] [64] and senescence [65] [66], are present. For example, in the course of
chronic kidney disease myocardial infarction is worse (compared to matched controls) [67] [68]; this is common
in patients with end-stage renal disease where intermyocyte fibrosis and capillary rarefaction result in increased
oxygen demand and poor oxygen delivery [69]. In this scenario, cardiomyocytes would be continually exposed
to a state near the “brink of ischemia” [68]. Surprisingly the benefits of conditioning (classical preconditioning,
post conditioning and remote conditioning) have been reported not be attenuated in rodents with chronic kidney
disease [68] [70]. The observed infarct shrinkage was primarily attributed to smaller area at risk in animals with
chronic kidney disease and lower hematocrit levels; the latter plays a role in improved reperfusion within is-
chemic tissues after index ischemia. However, the choice of animal species might also be an important con-
founding factor.

5. Blood Flow Regulation by Remote Conditioning

More than a century ago, it was noted that limitation of organ damage depended on securing adequate blood
supply to allow renewal of functional integrity [71]. In the heart, distribution of blood flow across the ventricular
wall under basal conditions is maintained over a wide range of coronary perfusion pressures [72] [73]. Com-
pared to most organs the coronary circulation is unique as coronary artery filling occurs during diastole; as such,
the myocardium is vulnerable to changes in blood pressure under different physiopathological conditions [74]. A
significant decrease in systemic blood pressure in normotensive patients after preconditioning has been reported
[75] [76]; changes at the level of the autonomic nervous system could contribute to the systemic blood pressure
effects induced by preconditioning [45]. Thus, loss of coronary autoregulation is an important contributing fac-
tor for the J-curve relation that is associated with worse outcomes in patients with comorbidities (anemia, heart
failure, coronary artery disease, kidney disease, systemic hypertension, etc.) [77] [78]. Information on this as-
pect is non-existant in the current scientific literature.

An important aspect of post-ischemic recovery of organ function that has not been widely investigated in ex-
periments using remote conditioning stratagems is the re-establishment of blood supply to the affected tissues
particularly at the level of the microvasculature. For example, while it is clear that return of blood supply within
infarct-related vessels (i.e. post-angioplasty) helps to restore vessel patency and triggers myocardial salvage lit-
tle is known about cardiomyocyte viability in relation to spatial distribution of blood flow within the infarct core.
Transient limb ischemia has been shown to reduce coronary resistance and increase flow in pigs [33]; however,
this study did not evaluate distribution of blood flow within the deeper myocardial layers. Jones and co-workers
recently reported improved local and systemic microcirculatory blood flow after limb ischemia in healthy pa-
tients [76]; it remains to be determined whether altered perfusion within the cutaneous vascular bed can be pro-
jected to other organ vascular beds (considering their differing functions).

On the other hand, studies in animal preparations document that transient ischemia produces persistent re-
gional contractile dysfunction despite restoration of blood flow to the infarct-related artery [79] [80]. In the ab-
sence of discernable tissue injury myocardial blood flow and contractile function have been shown to decrease
proportionately along a flow-function relation [81]; this perfusion-contraction mismatch concept that was ini-
tially described by Ross suggests that a supply-demand equilibrium can be achieved in post-ischemic tissues
which allows further adaptation to more prolonged ischemic events [82] [83]. The importance of the perfusion-
contraction mismatch concept in conditioning-mediated myocardial protection remains to be established. Evi-
dently, flow-function relations can be directly affected by alterations in cardiodynamics and cellular biochemis-
try [80] [84] [85]. Additionally, in the heart, microembolization of plaque debris into the microvasculature after
apparent successful reperfusion therapy has been shown to exacerbate tissue injury (cf. review by Heusch and
co-workers [86]). Persistent coronary microvascular abnormalities could help to explain clinical signs of myo-
cardial ischemia observed in post-angioplasty patients presenting with fairly normal coronary angiograms [87].
Clinical findings using myocardial contrast echocardiography document that when perfusion of the deeper
myocardial layers is inadequate and when blood flow to the outer epicardial tissue layer is maintained there is an
increased risk of a major adverse cardiac event [88] [89].

6. Concluding Remarks

The overall consensus of investigations into the potential of endogenous organ protection mechanisms regard-
less of the organ involved is positive. Discovering and understanding the physiopathological mechanisms that
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are involved in activation of endogenous cellular protective mechanisms remains a worthy challenge. The bene-
fits of this rather simplistic and low tech intervention for organ protection should be viewed with optimism by
clinical interventionists.

Numerous questions still need to be resolved regarding mechanisms, timing and best practices for clinically
acceptable conditioning interventions. Additional studies are required to establish which endogenous mecha-
nisms stimulate the intracellular signalling cascade and end-effectors of cellular protection (i.e. mitochondrial
permeability transition pore, etc.). More data is also needed regarding re-establishment of, and regulation of,
blood flow to affected tissues since an insufficient supply of nutrients and oxygen and inadequate drainage of
metabolic degradation products would definitively compromise cellular survival regardless of the therapeutic
intervention. Studies are also required in animals with a multiplicity of co-morbidities; combining different con-
ditioning and pharmacologic interventions to improve clinical outcomes should also be a priority. Finally, large
scale clinical trials will have to be done to ensure that remote conditioning strategies are a viable clinical option
for cellular protection in different organs. Indeed, clinical interest in the concept of limiting organ injury by
pharmacologic or non-pharmacologic strategies remains a priority; remote per- and post-conditioning may
eventually allow fulfillment of this objective to limit ischemic injury in a variety of organs in patients.
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