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Abstract

An efficient technology of impregnation of carbonate crushed stone by oil-product based on SCF-
impregnation process usage with propane/butane solvent was developed. Regular impregnation
throughout the volume of crushed stone sample is achieved. As a result of the appliance of pro-
posed technology, the humidity of the treated crushed stone samples decreased down to 0.54%.
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1. Introduction

During the last few years, specialists of road construction industry pay increasingly more attention to investigat-
ing the possibilities of reinforcing and strengthening the low-durable materials (sand-and gravel mixtures, low-
durable stone materials, grounds, etc.) by various reinforcing substances of poly-functional action of organic and
non-organic origin.

At present, there are already papers in which the authors suggest various versions of reinforcing the carbo-
nated crushed stone [1]-[3]. For example, the authors of paper [1] suggest the following procedure of impregna-
tion of the crushed stone: the process is carried out at room temperature and under the excess pressure of 0 to 6.0
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MPa using the sleeper-impregnating composition (mineral-coal oil, shale oil, or their mixture of various compo-
sitions). The duration of the process is from 120 to 300 seconds and implies the consequent treatment of the
crushed stone with molten bitumen (3% of the mass of the crushed stone) till reaching the uniform enveloping of
the road material. The use of this method of treatment enables to reduce the water-absorption of the crushed
stone by 2.23 - 3.96 times.

In paper [2] the impregnation of the limestone crushed stone is carried out using bitumen melted under 110°C -
120°C in the presence of product of the interaction of boric acid, diethanolamine and mixture of vegetable oils’
fatty acids (fractions Cg - Cy) with the reagents” mole ratio of 1:3:(0.5 - 2.5) taken in total of 0.5% - 2.0% of the
mass of the bitumen. In this case the consumption of the bitumen was 1.5% - 2.0% of the limestone crushed
stone’s mass. This resulted in the increased fungus resistance and the reduced water absorption to 0.9%.

In paper [3] the reinforcement of the crushed stone made of low-durable carbonate rocks is carried out by im-
pregnating it with melted sulphur. Sulphur as an impregnating material possesses a number of positive proper-
ties: the relatively low temperature of melting 112.8°C - 119.3°C, low viscosity of the melt (6.5 x 102 Pa-s),
sufficient mechanical strength after the crystallization, the hydro-repellence, high water- and chemical stability.
The sulphur melt is able to penetrate rather deeply in pores of various diameters including capillaries, and in the
process of crystallization during the subsequent cooling to unite strongly with the matrix. In this case the con-
struction material with the inter-penetrating structure is formed. As a result of impregnating the carbonate
crushed stone with the melted sulphur a gradient under-the-surface layer appears on the surface of the grains,
having a more solid structure preventing the penetration of water in the porous space of the middle “nucleus”
and its reliable capsulation is formed. This fact of the uneven impregnation—in this case of the crushed stone—
is typical for all the approaches described above that use the liquid-phase solution as an impregnation material.
It is due to this liquid condition such shortcoming features are typical from the point of view of the possibility of
penetrating into the high-porosity matrixes including the high viscosity and low diffusion abilities, the presence
of the surface tension and the capillary effect. As an example, one can list a wide range of heterogenous cata-
lysts that are traditionally synthesized using the method of the liquid-phase impregnation. Such catalysts are re-
ferred to the category of crust catalysts and have the concentration of active centers only in thick surface layer of
the catalyst carrier and this feature is considered as a rule as one of their shortcomings [4]-[6].

The crushed stone modified in this way splits up intensively in the process of road construction and during the
first years of operation thus resulting in the exposition of its inner part that was not treated. This leads to the in-
creased water absorption and the loss of physical-mechanical properties of the crushed stone thus minimizing
the effect of the modification that was performed earlier.

Therefore, the elaboration of new technologies of reinforcing the crushed stone made of low-durable carbo-
nate rocks is an urgent task. Its solution will enable to improve the quality of the crushed stone and to obtain a
highly effective material for road construction.

Thus the main target of this investigation is elaboration of innovative technology of the uniform going all the
way through impregnation of the crushed stone ensuring the reduction of water absorption even under the condi-
tions of the fragmentation of the crushed stone in the process of operation. It is suggested to use as the basis of
this technology the super-critical fluid impregnation process (the process of impregnation using the solvent in
the super-critical fluid state [7]) by impregnating the crushed stone by the de-asphaltizer that is obtained in the
process of the liquid propane/butane extraction from the crude oil residues.

The SCF technologies based on the use of operating mediums in sub- and SCF states nowadays represent one
of the prospective innovative scientific-technological directions. The SCF that simultaneously combine the ad-
vantages of gaseous and liquid states of operating mediums considerably intensify heat and mass transfer prop-
erties. In particular the SCF mediums possess the lowest values of kinematic viscosity (v = #/p) that are by 1 - 2
orders lower than values typical for liquid organic solvents. The presence of kinematic viscosity in denominators
of the Grasgof and Reinolds numbers indicates the considerable intensity of the free and forced forms of move-
ment in the super-critical fluid mediums. The diffusion (binary diffusion and self-diffusion) of the super-critical
fluid mediums exceeds by 1 - 2 levels the similar index for the same liquid organic solvents [10]. In the case of
super-critical fluid mediums, there is no phase interface, the surface tension and, accordingly, the capillary effect.
All this together determines their high penetrating ability into porous structures and the significant perspectives
including those regarding the target of crushed stone impregnation. The effectiveness of this approach was many
times confirmed both by multiple research works [6]-[13] and industrial realizations [7] [9] [14]-[17].
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2. Theoretical Analysis

Taking the SCF impregnation process being a part of the complex technology as a more innovative and less in-
vestigated the authors concentrate their attention on technological fundamentals of this particular process.

One can mention the following as key issues deserving more intent attention:

1) SCF mediums, their properties and validity of their application as solvents within the framework of the task
of the treatment of high-porosity matrixes;

2) Characteristics of phase equilibriums of the potential solvent (propane/butane mixture) intended for use in
the SCF state;

3) Characteristics of the change of the solubility of the impregnation material in the propane/butane mixture
within the range of the change of the phase state of the solvent from liquid to SCF state.

The first issue was described conceptually in the Introduction and is presented in detail in the profile literature.
One can add to the above-mentioned literary sources papers [18]-[23].

The importance of knowing the characteristics of the phase equilibrium of the propane/butane mixture in this
particular case is determined by various phase states of the extragent/solvent in the discussed processes. The au-
thors would like to remind that one discusses the liquid extracting deasphaltization of the crude oil residue dur-
ing the first stage and the impregnation of the carbonate crushed stone with deasphaltizer using the same pro-
pane/butane solvent but in the super-critical fluid state during the second stage of the complex technology. The
authors point out that these characteristics of the phase equilibrium provide the most distinctive picture regard-
ing the parameters of boundaries of various phase states. Figures 1-4 represent the diagrams of the phase equili-
brium of the propane/butane mixture [24]-[26].

In their investigations the authors used the propane/butane mixture [27] containing 75% of propane and 25%
of butane as the liquid extragent (the stage of deasphaltization) and the super-critical fluid solvent (the stage of
super-critical fluid impregnation). The critical parameters of the propane and butane according to [24] are cha-
racterized by the following values: propane: T, = 369.82 K, P, = 4.247 MPa; butane T, = 425 K, P, = 3.797
MPa.

The high solubility of the de-asphaltizate in the liquid propane/butane mixture is the main factor determining
the effectiveness of the extraction process during the first stage of the complex technology and the rapid reduc-
tion of the solving ability of the same propane/butane mixture in respect of the same de-asphaltizate after con-
verting the solvent from the liquid state into the super-critical fluid state must take place at the second stage of

P, MPa
4.5 4

PROPANE

3.5

BUTANE

2.5

MOLE % PROPANE
1-100.00
2-92.58
3-82.62
4-175.45
5-52.11
6 -30.85

7-14.68

00

1.5

343 353 363 373 383 393 403 413 423 433
T,K

>

Figure 1. P-t diagram of the phase equilibrium of the propane/butane mixture [24] [26].
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the discussed technology. This last state is the basis of the mechanism of the impregnation process and must be
realized in the high pressure impregnation chamber.

The key problem of solubility and especially in super-critical fluid solvents is the subject of intensive investi-
gations of the last 2 - 3 decades [7] [9] [28]-[30] including the research in the direction of elaborating new expe-
rimental methods and methodologies [31] of investigating this important thermo-dynamic characteristics.

Three main factors determining the solubility of a substance in one or another solvent include: the nature of
the substance to be dissolved and of the solvent, their aggregate states and thermo-dynamic conditions.

Two factors working in opposite way determine the character of the change of the solubility of a substance in
the super-critical fluid solvent. On the one side, the temperature growth leads to the increase of the pressure of
saturated vapours of the solved substance and as the result its concentration in the phase of the solvent increases
meaning that the solubility increases as well. On the other side, the growth of the temperature (at P = Const)
leads to the reduction of the density of the super-critical fluid solvent. And this determines the reduction of the
solving ability of the super-critical fluid medium or the solubility of the substance in the super-critical fluid.

Figure 5 and Figure 6 show the character of the change of the solubility of the model substance and naph-
thalene (C1oHg) on the isobars in the regions of the liquid, sub-critical and super-critical fluid states of the sol-
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Figure 5. The character of the change of the solubility of the model
substance on isobars in the regions of liquid, sub-critical and super-
critical fluid states of the solvent [30].
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Figure 6. The character of the change of the solubility of naphtha-
lene in carbon dioxide on isobars in the regions of liquid, sub-
critical and super-critical fluid states of the solvent [32].
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vent. One should pay attention to the fact that in the region of the super-critical fluid state at the pressures that
are lower than the value of the pressure in the first crossover point P* (Figure 7), when the temperature increas-
es one would observe the drastic reduction of the solubility and this is the essence of the mechanism of the su-
per-critical fluid impregnation process realized in the dynamic regime. The authors remind that the static regime
of the super-critical fluid impregnation process presumes the cyclic-periodical character of the treatment of the
solid matrix. In this case within the framework of each cycle the matrix is kept for some time (15 - 20 minutes)
in the medium of the super-critical fluid solution of the impregnation material and only after that the pressure is
drastically reduced (sometimes not completely) in order to reduce the dissolving ability of the solvent and to in-
itiate the fall-out of the impregnation material in the solid matrix. The dynamic regime presumes the continuous
circulation of the super-critical fluid solution of the impregnation material through the impregnation vessel at a
certain permanent pressure P < P* with the abrupt increase of the temperature in the area of location of the ma-
trix being impregnated (in our case it is the crushed limestone). Thus the characteristics of the phase equilibrium
and the character of the change of the solubility in the wide range of the change of parameters and the phase
state of the propane/butane mixture determine the regime conditions of the execution of the liquid extraction (1)
and the super-critical fluid impregnation (11) processes: (1): P, < Py < P*, T), < T¢; (I1): P,y = P;, Tyy > T¢p. Ac-
cording to [26] for the above-given composition of the propane/butane mixture intended for use the critical pa-
rameters have the following values: T, = 386 K (~113°C); P, = 4.31 MPa. As for the value of the pressure in the
first crossover point, for example, for naphthalene (Figure 6) with carbon dioxide as the solvent it has the value
of about 130 bars. The authors remind that when the values of the pressure are higher or lower in the crossover
point (irrespective whether it is the first or the second) the direction of the change of the solubility becomes ab-
solutely opposite when the temperature increases. Besides, the naphthalene is a pure hydrocarbon whereas the
deasphaltizer is a mixture. One can make approximate assessments of the value of the pressure in the first cros-
sover point only on the basis of reference data for solubility for main components of this mixture. The practical
absence of experimental data for solubility of substances in the propane/butane mixture in the super-critical fluid
state induced the authors of this investigation to an indirect experimental assessment of this parameter. The im-
portance of notions regarding the value of this parameter is plain and evident. If the condition P,, < P* is not ful-
filled when the temperature rises the solubility will increase and the sedimentation will be absent and actually
the impregnation process. And finally the analysis submitted for the characteristics of the pure solvent and not
the solution is conditioned by the fact that super-critical fluid solutions are, as a rule, diluted and the presence of
the dissolved substance does not render any significant influence on the values of critical parameters.

mole fraction

P P** P

Figure 7. The character of the change of the solubility of the model sub-
stance in the on isobars in the super-critical fluid solvent and the crossover

points [33].
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3. Experimental
3.1. Materials

Crushed limestone was used as a raw material, mesh size 20 - 40 um [34] from Saltykovsky field in Republic of
Tatarstan. Quantity chemical analysis is presented in Table 1.

Deasphaltizate was used as an impregnation material, which had been gained from the heavy oil residue of
conversion process of high-viscosity oil from Ashalchinsk place by thermal-steam effect method [35] and pro-
pan/butanoicdeasphaltizing [36].

3.2. Set Description

For complex technology practice the experimental set was created, which is shown on Figure 8.

The set includes pressure creation and maintenance system and control and temperature regulation system.
Pressure creation system consists of balloon with C3Hg (1), volume 40 L, cooling unit (2), made by Thermo
Electronic Corporation (“Neslab RTE 7”), cooling working spaces of pump, plunger-type gradient pump made
by Thar Technology (3) and used for gas supply with a constant volume flow rate from 0.1 till 20 ml/min, pres-
sure regulating valve made by Go-Reg (BP66-1A11CJ0151). Initially, the propane-butane mixture, which is in
the working space of the pump, should be cooled and condensed by the cooling unit, and then pushed the plun-
ger of the pump in the system. Further, the plunger returns to its original position and working volume becomes
to be filled with gas again. Due to the fact that the pump has two spaces, plungers which work in phase opposi-
tion, and due to the availability of the receiver (4) mounted in front of the system, constant discharge of pro-
pane-butane mixture is achieved. After receiver the mixture goes by tubes through heat exchanger (5) to extrac-
tor (6), which is pre-loaded with residual oil. During the extraction deasphaltizing the asphalt is accumulated at
the bottom of the extractor. The extractor is a vessel of high pressure with a volume of 170 ml. Liquid solution
of diasphaltizate in propane-butane mixture, which is draw out from the extractor (upper part) and passes
through the heat exchanger (7), goes to the impregnation vessel (8), which is already operating under supercriti-
cal parameters of above mentioned solution, which is provided primarily due to the heat exchanger (7) and to a
lesser degree due to adjustment valve after impregnation vessel. Thus the crushed stone impregnation in im-
pregnation vessel is carried out under supercritical propane-butane solution of deasphaltizate. In addition to
above it is necessary to mention that it is the case of dynamic impregnation, during which the process is conti-
nuous, as well as material deposition of impregnation in porous structure. This settlement, caused by decrease of
dissolving capacity of propane-butane mixture, is realized not due to sudden one-time release of pressure as it is

77 7 9

Figure 8. Complex experimental set of crushed stone impregnation by mesh
of residual oil: 1—baloon with C3;Hg; 2—cooling unit; 3—pump; 4—receiver;
5—heat exchanger; 6—extractor; 7—heat exchanger; 8—heated vessel for
impregnation; 9—throttle valve; 10—heated separator; 11—throttle.

Table 1. Quantity chemical analysis of crushed limestone composition mesh size 20 - 40 um.

Content in % on abs.dry test portion

No.
SiO, Al,O; Fe;Os CaO MgO Losses  Insoluble precipitate Organic matters
1. 9.28 1.60 0.93 48.75 0.78 37.81 10.72 Less than reference standard
2. 9.39 1.66 0.91 48.26 0.78 37.68 10.99 Less than reference standard
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in static method, but because of increase of temperature which is realized on the spot of technological drawing
between heat exchanger (7) and separator (10) including both. Thus, this is the case only when the pressure dur-
ing the impregnation process is lower than pressure rating in the first crossover point on the chart of solvability
of impregnating solution in propane/butane mixture, which is in SCF condition.

Appropriate temperatures in the extractor, impregnation chamber and separator are supported with electric
heating jackets with stepwise adjustment.

4. Results and Discussion

The process of crushed stone impregnation with deasphaltizate comes to the following technological processes:
extraction of deasphaltizate (oil hydrocarbons) with liquid propane from the heavy oil residue; impregnation of
crushed stone with deasphaltizate under supercritical parameters of propane-butane mixture; regeneration of
propane-butane mixture and return of it to recycle.

Operating parameters of providing complex process are given in Table 2.

Vent and content of deasphaltizate are defined by the nature of solvent, content of raw material, correlation of
“extragent/raw material” and operating parameters of providing extraction process.

The asphalt, received during deasphaltization of oil residue with propane-butane mixture, has low content of
satisfied hydrocarbon, high temperature of malaxation and critical content of asphalt pitch.

The asphalts have high density. High value of temperature of melting and cocking properties of asphalt is
connected with great content in it of asphalt pitch. Due to that asphalt cements from them can be made by simple
compounding of asphalt and initial axial oil [36].

Figure 9 shows comparison of deasphaltizate and asphalt spectra.

Maximum output of deasphaltizate corresponds to condition No. 1 (Table 2), providing of extraction process.
It is known [36], that with increase of deasphaltizate output, in its structure increases content of ressin, sulfur
and metals. At the same time, as shown on Figure 9, the sulfur and metals are preferably concentrated in the
asphalt.

Table 3 shows results of chemical analysis about content of V in asphalt.

The influence of SCF impregnation process conditionson quality of crushed stone impregnation is shown on
photos given in Figure 10.
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Figure 9. Deasphaltizate (2) and asphalt (1) spectra, received on first stage of complex process

(conditions No. 1 in Table 2).
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Figure 10. Photos of crushed stone samples: (a) Source sample; (b) Outer look of crushed stone sample
after impregnation process; (c) Sample piece after impregnation in conditions No. 1 (Table 2); (d) Sam-
ple piece after impregnation in conditions No. 4 (Table 2).

Table 2. Operating parameters of providing complex process.

No. of operating Pextraction, Textraction, Pimpregnations Timpregnations Mass ratio Vent of
condition Mpa °C MIla °C “extractant:oil residue” deasphaltizate, %
1 45 85 45 85 2:1 66
2 45 85 45 138 151 54
3 6.0 85 7.0 138 2:1 65.4
4 7.0 85 7.0 138 151 52
5 7.0 85 7.0 138 11 42

Table 3. Results of chemical analysis about V content in asphalt for a sample, received under conditions No. 1 (Table 2).

Content

Vin ash Ash content

23.4 mg/kg 0.34%

Homogeneous deasphaltizate shell formed on the surface of the stone after the impregnation process (see
Figures 10(b)-(d)), has good hydrophobic and adhesive properties. The latter has its force if applied to the as-
phalt coat material, which traditionally placed on the surface of crushed-stone layer during pavement forming up.
Water absorption of the crushed stone sample is 0.24%.

However, during road construction process and during first years in service, crushed stone fractionizes inten-
sively, whereby its inner part becomes bare. In case of impregnation with the traditional approach, this part
usually stays untreated, it causes increasing of water uptake of the material and deterioration of its physical and
mechanical properties. One of the solutions to this problem is a pass-through and uniform impregnation of
crushed stone.

Impregnation of crushed stone with liquid solution of deasphaltizate in propane-butane mixture (condition No.
1in Table 2) provides peripheral preferably the so-called “crusted” impregnation (see Figure 10(c)). In the case
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of transfer of propane-butane mixture in a SCF state (conditions No. 2 - 5 in Table 2) impregnating of the
crushed stone with deasphatizate is appears as uniform and “pass-through” (see Figure 10(d)).

Table 4 shows the physical and mechanical properties of the original and impregnated samples of crushed
stone, evaluated under GOST techniques [37].

Indicators of water absorption determined after the crushing of initial and impregnated samples of crushed
stone. As we can see, the rate of water absorption of the sample subjected to liquid impregnation (condition No.
1 in Table 2) does not differ from the rate obtained for the initial sample of crushed stone, due to the inner part
impregnation absence in this sample. In the case of impregnation of the crushed stone with a deasphaltizate so-
lution and propane-butane mixture in a SCF state (conditions No. 2 and No. 4 in Table 2), the water absorption
prosperities of the samples decreases significantly.

In order to do identification, and some other qualitative indicators of the impregnation the structures of initial
and treated samples were researched (the condition No. 4 in Table 2), for this reason appropriate cross-sectional
views were prepared. (see Figure 11).

Description of cross-sectional view of initial crushed stone sample: limestone organogenic-detrital, with
cloggy formations. Outlook of the basic mass formed up by large (up to 3 mm) shells, scattered throughout the
area of the section. Cloggy formations are located between these boundaries sizes 0.04 - 0.2 mm, and smaller
remnants of fauna. All this mass is cemented by fine-grained calcite. The reaction of Alizarin is positive. The
grain size of calcite reaches 0.15 mm. The pores constitute about 3% - 5% of the total weight, and their sizes
reach 0.15 mm. Outlines of pores are isometric and angular. Pores partially filled with grains of gypsum.

Description of the cross-section view of crushed stone sample: treatedorganogenic-detrital limestones, cloggy.
Up to 30% of the thin section is occupied by large (1.0 - 1.5 cm) valves of shells. The remaining section area
consists of cloggy clay-carbonate formations. These formations are coupled via fine-grained poor argillo-calcite.
Cloggy formations dimensions vary in the range from 0.05 mm to 0.24 mm. The porosity is about 3%. Pores
have rounded and angular shapes. Their dimensions vary from 0.1 mm to 0.2 mm. The walls of the pores cov-
ered by a film of oil-product, less often pores are filled with it. The breed has slightly brownish color of the total
mass. Up to 30% of cloggy formations are impregnated by oil-products or have a rim of oil-products. Area of
the road stone breed, which presented by crystalline calcite, remained unchanged. Penetration of oil-products is
observed in the weak areas of the breed. Closer to treated surface the increasing of the amount of cloggy blobs
reaches 50%. In UV the poor luminescence of the treated zones could be noticed.

The proposed technology has the originality for the patent [38].

Figure 11. Photos of sample piece of crushed stone: (a) Source; (b) Treated.

Table 4. Physical and mechanical properties of the original and impregnated samples of crushed stone.

Crushability rate, %/grade

No. of operating Fraction, True density, Average density, Spondiness. % Water uptake,
condition mm glcm?® g/cm?® pong 2 % In dry Hydro-saturated
consistence consistence
Initial sample 20 - 40 2.7 2.36 12.6 3.6 16.4/600 17.1/600
1 20-40 - - - 3.6
2 20-40 - - - 0.95
4 20-40 2.69 2.29 14.9 0.54 16.4/600 16.9/600
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5. Conclusions

An efficient technology of impregnation of carbonate crushed stone by oil-product based on using SCF-im-
pregnation process with propane/butane solvent was developed. Regular impregnation throughout the volume of
crushed stone sample is achieved.

By the nature of the penetration of oil-products in the samples of crushed stone, the aphanitic areas of breed
with impure of clay matter are undergoes for treatment better. At the same time, zones of well-developed poros-
ity weakened sections of the breed are involved.

As a result of the appliance of proposed technology, the humidity of the treated crushed stones samples de-
creased down to 0.54%.
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