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Abstract 
Purpose: The study aimed to investigate, using a photoplethysmographic (PPG) technique, how 
pulsatile blood flow within the patellar bone and skin over the patella reacts to normobaric (NBO) 
and hyperbaric oxygen breathing (HBO). Methods: Eleven healthy volunteers, breathed air or 
oxygen. Subjects were blinded to breathing gas. A range of partial pressures of oxygen were ad-
ministered in 10 minute intervals: 21 kPa, 101 kPa (NBO), 21 kPa, (compression to 280 kPa), 59 
kPa, 280 kPa (HBO), 59 kPa, (decompression), and 21 kPa. Changes were measured continuously 
for each individual. Results: Hyperoxia decreased pulsatile patellar blood flow ~32 resp. 38% and 
skin blood flow ~36 resp. 42% during the first 2 - 3 minutes of NBO resp. HBO. This decrease was 
normalized within 5 minutes after exposure. The results were similar when switching from air to 
NBO (101 kPa) and from air at pressure (59 kPa) to HBO (280 kPa). Conclusions: The study shows 
that pulsatile patellar skin and bone blood flow, decreases significantly as a reaction to oxygen 
breathing in healthy subjects. The results suggest that a non-invasive PPG technique could be used 
to monitor blood flow changes in bone during oxygen treatment. 
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1. Introduction 
Basic knowledge concerning blood flow regulation in bone tissue is lacking. Growth, remodelling and repair of 
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bone tissue require delivery of both nutrients and oxygen using blood flow as the pathway [1]. Disruption of 
normal bone blood flow has been shown to possibly be responsible for the development of both severe and 
common bone related diseases [2]. Most probably, there are vast differences in how and why blood flow is dif-
ferently regulated in different parts of the skeleton [3].  

A few facts are known about bone blood flow: 
• Blood flow in bone is correlated to the position of the subject.  
• The vascular organization in irregular and in flat bones differs significantly from that in long bones.  
• The considerable periosteal blood supply present in flat bones is lacking in long bones [3].  
• Bone blood flow is almost three times as high as the adjacent soft tissue blood flow [4].  
• Bone blood flow is not proven to correlate to systemic blood pressure [5]. 
• Approximately 4% - 28% of the total cardiac output is estimated to be directed to bone blood flow [6].  

Hemodynamic changes to hyperoxia in tissues other than bone have been extensively studied, but the under-
lying mechanisms are still far from completely understood [7]-[9]. Hyperoxia-mediated vasoconstriction and, as 
a result, decreased blood flow have been shown to occur in most healthy vascular beds in animals and man [10]. 
In the latter, this has been demonstrated in the brain, retina, myocardium, and in skeletal muscle. Vasodilatation 
in the microcirculation in some tissues has also been reported [11].  

Hyperbaric oxygen (HBO) therapy has been shown to enhance bone turnover, to improve healing of infection 
in bone tissue, e.g. infectious complications after craniotomy or laminectomy [12], and also to improve healing 
after osteoradionecrosis [13]-[15], even though the exact mechanisms involved have not been entirely elucidated 
and the immediate reactions of HBO on bone blood flow have not been studied previously. 

The physiologic effects of HBO are reported to have many different mechanisms including intravascular and 
tissue gas bubble reduction, improved tissue oxygenation, vasoconstriction, increased antimicrobial activity, 
modulation of inflammation and immune function, promotion of angiogenesis and the above mentioned in-
creased bone turnover [16]. As the knowledge of which clinical protocol of HBO to use for best efficacy is not 
yet evaluated and there are known side-effects of HBO (mainly oxygen seizures), it is important to study the ba-
sic physiological reactions to HBO in humans. Lack of reliable and suitable methods for monitoring the oxygen 
content in target tissues makes evaluation and dosage of HBO difficult. 

Presently, there has been no clinical non-invasive method available to evaluate oxygen content in bones, 
making it very difficult to follow the clinical progress of HBO treatment for i.e. osteomyelitis and osteoradione-
crosis. Monitoring changes in bone blood flow during oxygen treatment could be of value in the study of 
physiological reactions related to HBO treatment.  

In the present study a newly developed method, photoplethysmography (PPG), where changes in pulsatile 
blood flow within the patellar bone and overlying skin are recorded continuously is tested. PPG is a non-inva- 
sive optical technique and has been used to monitor blood flow in skin and muscles [17]-[19], but also to moni-
tor hemodynamic sensing in implanted devices [20]. Furthermore, it has been used to study experimentally in-
duced changes in pulsatile blood flow within the patellar bone [21]-[23]. However, the method has not yet been 
evaluated for hyperbaric use.  

Oxygenation in target tissue is very difficult to measure non-invasively in humans, especially in bone tissue. 
There is a need for different techniques to evaluate the correct dose of oxygen to use to reverse ischemia in these 
tissues. The results of such information could possibly be used in the evaluation of the usefulness of oxygen 
therapies.  

Our aim of the study was to examine whether the PPG technique could measure changes in blood flow of tis-
sues that corresponded to changes in inhaled dose of oxygen. We therefore tested the technique in healthy sub-
jects under extreme oxygenation of tissues (HBO). It was hypothesized that the PPG technique could be applied 
to detect pulsatile blood flow changes in skin and bone tissue of healthy subjects during their exposure to nor-
mobaric and hyperbaric hyperoxia. Whether or not the vascular system in the bone tissue would react in the 
same way as other vascular beds was not known. 

2. Methods 
2.1. Subjects 
Eleven healthy non-smoking subjects (two females) were recruited from recreational divers to participate in the 



A. C. Larsson et al. 
 

 
975 

study. They were of mean age 30 ± 4 (mean/SD), height 177 ± 9 cm, weight 83 ± 13 and BMI 26 ± 3.  
For one of the subjects, the PPG data was lost due to a technical error; this subject was therefore excluded 

from all analysis. 
All subjects gave their written, informed consent to participate prior to the tests. The study was conducted in 

conformity with Ethical Principles for Medical Research Involving Human Subjects (World Medical Associa-
tion Declaration of Helsinki, Geneva, 2000) and was approved by the Local Ethics Committee. 

2.2. Experimental Procedures 
Tests were performed in a hyperbaric multi-place chamber (Kockums, Sweden) using hoods (CASTAR, 
STARMed) supplied with either air or oxygen during the experiment. Throughout the experiment the subjects 
were blinded as to when they were breathing either air or oxygen. Subjects were positioned in a semi-recumbent 
position on a stretcher and the patellar PPG probe was attached and tested. The test protocol was started after a 
further 10 minutes of rest. 

All test were done in the afternoon or evening. 
Different O2 partial pressures were administered in the following 10 minute intervals:  
Normobaric: 21 kPa (air), 101 kPa (100% O2) and 21 kPa (Figure 1). 
Hyperbaric: (compression to 280 kPa), 59 kPa (air), 280 kPa (100% O2), 59 kPa, (decompression to 21 kPa 

including a safety stop at 130 kPa for 5 minutes) (Figure 2). 
The chamber was ventilated to hold an environmental temperature of 20˚C - 25˚C.  

2.3. Measurements 
A two channel PPG instrument (Department of Biomedical Engineering, Linköping University, Sweden) and a 
PPG probe were used to continuously record blood flow changes in the patellar bone and in the skin overlying 
the patella. The probe uses near-infrared light sources (bone 804 nm and skin 560 nm). The method has previ-
ously been used for measurements of blood flow in patella [21]. 

The PPG probe was fastened on the skin over the left patella using adhesive tape, and a green coloured cover 
was placed on top to minimize the influence of ambient light. The probe was connected with the PPG instrument 
outside the chamber by a pass-through in the chamber wall. 
 

 
Figure 1. NBO, atmospheric pressure described in ATM right axis, grey line, oxygen breath- 
ing pressure for volunteers in kPa left axis, black line. Time in minutes.                    
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Figure 2. HBO, atmospheric pressure described in ATM right axis, grey line, oxygen breath- 
ing pressure for volunteers in kPa left axis, black line. Time in minutes.                    

 
The pulse-by-pulse amplitude of the AC component of the PPG signal was subsequently extracted with dedi-

cated software (Daquhura 1.3, Linköpings Tekniska Högskola 1995). The analysing software gave simultaneous 
recordings.  

The PPG signal was later analysed using software (MATLAB, R2006b). A base-line, pre-oxygen value was 
calculated from a period of 30 - 60 seconds peak-to-peak recordings, both during normobaric and hyperbaric 
conditions. When the bone blood flow was recorded at its lowest level, ~ after 2 min, another period of 30 sec-
onds peak-to-peak recording was calculated and used as oxygen breathing value. 

Differences in individual data of assessments in pulsatile bone and skin blood flow were expressed as per-
centage of change between air breathing and NBO/HBO respectively, as calibration is a limit.  

2.4. Statistics 
Mean values and standard deviation (SD) were calculated for quantitative, continuous data such as age, height, 
weight. Blood flow changes were expressed as percentage of the pre-oxygen level and were presented as mean 
(95% confidence interval). T-test for dependent samples was used to analyse blood flow changes. The level of 
significance was set at P < 0.05. 

The statistical package Statistica 10.0 (StatSoft Inc., Tulsa, USA) was used for descriptive statistics and sta-
tistical analysis. 

3. Discussion 
3.1. Results 
Both during the initiation of NBO and HBO, the patellar and skin pulsatile blood flow decreased during the first 
three minutes of oxygen breathing (Figure 3). Blood flow returned to base-line levels within 5 - 8 minutes (data 
not shown).  

When switching from air to oxygen breathing during NBO, both the bone blood flow decreased, −32% (95% 
CI, −21 to −42), as did the skin blood flow −36% (95% CI −24 to −48). The pattern of change in blood flow 
during HBO was seen as a decrease in bone blood flow, −38% (95% CI −22 to −54) and also in the skin, −42% 
(95% CI −26 to −58) (Figure 4). Irrespective of NBO or HBO, a similar pattern of changes were seen in blood 
flow in both tissues. No systematic differences were found between the two experimental situations when com-
paring the percentage change. 
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Figure 3. PPG recording during HBO therapy in subject 4, showing blood flow changes in (1) bone, (2) skin.     

 

 
Figure 4. Percentage change in bone and skin blood flow during the first 2 - 3 
minutes of NBO and HBO respectively. 0 in the figure represents our initial 
calibration point from which changes were measured, not a zero-point for 
blood flow of the subjects.                                           

3.2. Bone Blood Flow 
Hypoxia is one of the possible regulators of microcirculation in bone tissue. Shim and Peterson [5] observe that 
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this metabolic control mechanism is the most potent regulator of bone blood flow in rabbits. They note that 
blood flow appears to be closely related to oxygen and carbon dioxide tension, pH, and acid metabolites. In ad-
dition Brookes & Revell [3] propose that local acidosis provides a stimulus for bone accumulation, and Gross et 
al. [24] hypothesize that hypoxia is responsible for bone vaso regulation. These statements are in accordance 
with our results, measuring hyperoxia, which showed that changes in tissue oxygen levels had an impact on 
pulsatile bone blood flow.  

Blood flow in most tissues is influenced by activity. In the present study, a 10 minute resting period before 
exposure was used [25]. Since we do not yet know the correct resting time to down-regulate bone blood flow to 
base-line values, the 10 minute period may have been too short. In the future it would also be of great interest to 
study the correct resting-time and compare blood flow in healthy bone to blood flow in bone with some of the 
disorders where HBO is currently used as an adjunctive treatment.  

3.3. HBO 
Studies in rats and humans show that exposure to HBO causes a general, quick vasoconstriction and blood flow 
reduction in various organs [9] [26]. 

Several possibilities are discussed as mechanisms causing the vasoconstriction: i.e. reactive O2 species inhibit 
vasodilatation; the superoxide anion is an endothelium derived contracting factor [27] and endothelin-1 concen-
tration increases during HBO [28]. Another possibility may be that arterioles adjust their diameter and resistance 
to maintain constant delivery of oxygen. The increased PO2 at 2.8 ATA increases dissolved O2 in the blood. 
Maintaining a constant delivery of oxygen, a decrease in flow through a reduction of diameter of the arterioles 
would be expected. Vucetic et al. [29] reports an overall reduction in human retina arteriole diameter of 10% af-
ter 10 min HBO (2.5 ATA), which corresponds with a 40% fall in blood flow.  

HBO exposure induces an early cerebral vasoconstriction in mice due to inactivation of eNOS-derivated NO, 
and is then followed by a late vasodilatation [30]. This late cerebral vasodilatation during HBO exposure could 
be due to differences in HBO profile (i.e. pressure and exposure time), the different vessels and species used in 
the studies, or the fact that studies have focused on either early or late reactions to HBO [9]. Responses in rat 
and human cells, or tissues, to HBO might not be comparable, although rat and human circulatory physiology 
are very similar. In addition, one might argue that reactions to hyperoxia probably are quite different in patho-
logical tissues.  

The effect of HBO on cerebral blood flow is however, found to be highly dependent on the monitoring 
method, since other studies reveale no such systematic changes [31]. Microcirculatory brain blood flow in rats 
decreases significantly in the first few minutes after HBO but returns to baseline levels within a variable period, 
still under HBO [11]. This finding is supported by our results showing decreased blood flow initially.  

HBO is known to have a large influence on the cardiovascular system. Systolic blood pressure increases and 
diastolic pressure falls. Peripheral resistance increases by about 30%, while heart frequency and cardiac output 
fall by approximately 20% [32] [33]. In an earlier study, we measured blood pressure and heart rate using the 
same HBO protocol and likewise found that heart rate decreased when switching from air to NBO (from 62 to 
58 beats/min) but also decreased when switching from air at pressure to HBO (from 60 to 54). However, mean 
arterial pressure did not change significantly when switching from air to NBO and when switching pressurized 
air to HBO in healthy subjects [34]. 

It is reported that hyperoxia causes a decrease of blood flow in resting and contracting muscles [35], Iida et al. 
[36] finds that ischemic bone marrow disorders such as osteonecrosis in the knee are likely to develop in areas 
with lower blood volume. In bone, ischemia sometimes stimulates remodelling and neovascularization. It is 
shown that exposure to intermittent normobaric hypoxia results in distinct tissue remodelling [37] [25]. Pro-
longed ischemia may cause cell death, and ischemia is reported to be responsible for osteonecrosis [38]. Obvi-
ously, there is a need for studies on bone blood flow in order to understand some common bone related disor-
ders.  

Neither the clinical indications for HBO therapy nor the correct protocols of HBO to be used for most clinical 
indications have yet been proved. Theories of the paradoxal vasoconstriction measured in healthy tissues by 
oxygen include a threshold level of oxygen where vasoconstriction changes to vasodilatation, changed regula-
tory mechanisms in unhealthy compared to healthy tissues and physiologically local changes in blood flow to 
tissues. Monitoring changes close to the diseased tissue could help both to understand and develop correct HBO 
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protocols. The lack of reliable and suitable monitoring methods of oxygen content in the target tissues makes 
evaluation and dosage of the method difficult. 

PPG monitoring may add some data to the decision process. Often treatment protocols of 60 - 120 minutes of 
oxygen breathing, interrupted by 5 - 10 minutes of air at a pressure of 2.0 - 2.8 ATA are seen. The choice of 
protocol is often based on local tradition.  

We propose that the PPG method could be used to monitor changes in blood flow, and therefore add impor-
tant information in studies on doses and effects of HBO. 

3.4. PPG 
An important limitation of the present PPG technique is the lack of a gold standard for calibration. Therefore, at 
present results from PPG measurements can only be reported as changes from one point in time to another. In a 
review Allen [19] discusses the validity and reliability of PPG measurements. For basal perfusion of the micro-
circulation, the amplitude of the PPG pulse correlates with Laser Doppler blood flow. Also, there are only few 
studies quantifying the repeatability or reproducibility of PPG measurements. An averaging period covering at 
least 30 - 60 heartbeats is suggested to improve confidence in PPG pulse measurements [19], and this time pe-
riod was used in our study. For further discussions on validation of the PPG method see Hagblad et al. [39] and 
Näslund et al. [23]. 

Using a PPG method we have reported decreased blood flow in bone and skin tissues after NBO and HBO 
exposure. For skin, this is in accordance with studies using the Laser Doppler technique [11] [40]. 

The similar results in many studies using different measuring methods indicate that decreased blood flow is a 
valid immediate reaction in skin to increasing oxygen pressure and subsequent oxygen tissue saturation in 
healthy subjects, but also indicate that it is possible to use the PPG technique during hyperbaric conditions. With 
Laser Doppler it is shown that changes occurring immediately after increasing oxygen levels are due to changes 
in the hemodynamic responses tending towards vasoconstriction [11]. Since it is shown that the PPG method for 
blood flow measurements is equal to both Laser Doppler as well as Ultrasound in detecting blood flow changes 
down to a depth of 23 mm [39] we conclude that using the PPG method it is possible to study blood flow 
changes in relation to NBO and HBO both in skin and patellar bone (804 nm for patellar bone and 560 nm for 
skin). This is supported by Näslund et al. [21] where it is shown that experimentally induced arterial occlusion 
and venous stasis is detectable in the patellar bone using the PPG method. 

Prior to the use of PPG monitors for clinical practice under hyperbaric conditions, further tests are necessary 
to ensure a safe and accurate use. There are, to our knowledge, not yet any commercially available PPG moni-
tors for hyperbaric use. 

4. Conclusions 
PPG can be used to monitor dynamic changes in bone blood flow during both normobaric and hyperbaric oxy-
gen breathing. Bone blood flow showed a temporary decrease when PO2 increased, during both normobaric and 
hyperbaric oxygenation in healthy recreational divers.  

The marked changes in blood flow during normobaric hyperoxia suggest that further methodological studies 
on this reaction should be evaluated.  
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