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Abstract 
This work is concerned with the estimation from the outside of effective yield strength for the 
stage II consolidated material package of axisymmetric solid particles. Once an appropriate simple 
representative axisymmetric unit cell is chosen, the kinematical approach of the yield design ho-
mogenization method is used in order to obtain external estimates which has been found depend-
ing on the loading history (isostatic and closed die compactions) as well as on the relative density 
of the material powder. For comparison purpose, finite element simulations that describe the be-
havior of spherical elastic plastic particles uniformly distributed inside the material powder are 
carried out. 
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1. Introduction 
Isostatic and closed-die compaction are useful methods to manufacture complex shape engineering components 
such as, for example, gears, and cams for automotive applications. The ability to control accurately the size, 
composition and morphology of the microstructure, as well as the ease of processing are major advantages of the 
process. Consolidation in powder compaction occurs simply by the motion of particle centers toward each others 
by mechanisms of rearrangement and deformation. Nowadays the process of compaction is a successful and 
well-established process for metals, alloys, polymers and ceramics. It is usually divided into two stages accord-
ing to packing state change and relative density. For the first stage, referred to as “stage I”, relative density is 
low ( )0.7 0.9D≤ <  and consolidation of the powder is attributed to both changes in particles packing and 
particle deformation by growth of localized necks between particles. In the second stage, referred to as “stage II”, 
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at higher compacted relative densities ( )0.9D ≥ , consolidation occurs purely by plastic deformation. The 
change in component dimension is much greater during stage I than in stage II compaction. It should be men-
tioned that a stage II powder is different from a porous solid (or sintered powder) of equal relative density in that 
the former has zero or low cohesive strength, while the later usually has tensile strength equal to the compres-
sive one. Densification of the compact is achieved at elevated temperature with or without the simultaneous ap-
plication of pressure [1] [2]. The present paper is concerned with the theoretical estimation “from the outside” of 
macroscopic yield surfaces for cold pressed powder in stage II at fixed relative density. 

In modeling the compaction process, the powder medium is considered as a solid with isolated voids that un-
dergoes large elastic-plastic deformation. Numerous theoretical, numerical and also experimental studies have 
been published on the subject. A review as well as further details dealing with powder compaction modeling can 
be found for example in [3] [4]. The used phenomenological models provide information on the macroscopic 
behavior of the powder assembly such as density distribution, stress state and the shape of the compact during 
and after compaction. For describing the plastic flow of metal powders at low homologous temperature, Gu et al. 
[5] have developed a “two-mechanism” rate-independent constitutive model representable as a combination of a 
distortion mechanism and a consolidation mechanism which are dominated at the microstructural level by 
inter-particles sliding and the deformation of particles, respectively. Research work based on micromechanical 
approach has been initiated and developed by Ashby and co-workers (see for example the reference mentioned 
above) and Fleck et al. [6] [7]. Basically, the essential physics are the relationship between the macroscopic 
strain and the micro-mechanics of grain contact deformation, and the relationship between local contact loads 
and the resulting macroscopic stress. Fleck et al. [6] used the Bishop and Hill [8] method to estimate the ma-
croscopic yield surface for a random aggregate made from rigid-perfectly plastic spheres. The roles of in-
ter-particles friction, cohesive strength of the contacts and anisotropy resulting from grain periodicity upon the 
macroscopic yield surface was examined by these authors and also by Xin et al. [9]. The later used explicit Fi-
nite Element Analysis (FEA) to simulate monolithic and composite powders consisting of periodic unit cells. 
They concluded that the size and the shape of the macroscopic yield surface is sensitive to the magnitude of the 
cohesive strength between particles but the effect of friction is relatively minor. 

In this study, in the framework of the kinematic approach of the Yield Design Homogenization Method 
(YDHM) [10]-[13], external estimates of the effective yield strength of an array of axisymmetric particles are 
determined for both modes of compaction. In this context, since the yield design theory stipulates that large 
geometry changes are precluded, an appropriate axisymmetric Representative Volume Element (RVE) for ma-
terial powder in stage II at fixed relative density is proposed together with four axisymmetric relevant (virtual) 
velocity fields. Similar investigations have been carried in [14] for stage stage II compaction using another ap-
propriate axisymmetric RVE. For comparison purpose, Finite Element (FE) simulations similar to those of Og-
banna and Fleck [15] for spherical elastic plastic particles uniformly distributed inside the consolidated material 
powder are carried out. They have been used to examine the evolution of contact size, contact pressure and ma-
croscopic yield surface with the degree of consolidation.  

2. Representative Volume Element 
The first step in micromechanical constitutive modeling is the suggestion of a RVE which adequately captures 
essential features of the underlying microstructural geometry and deformation modes of the heterogeneous ma-
terial under consideration. On the other hand, a convenient way to numerically solve the homogenization prob-
lem is to use periodic boundary conditions applied on a periodic unit cell. The two other commonly used boun-
dary conditions are the homogeneous boundary strain rate condition and the homogeneous boundary stress con-
dition. Both homogeneous and periodic boundary conditions may introduce additional constraints resulting in 
“biased” numerical solutions including boundary effects and eventually unrealistic stiff response (See in [16] the 
discussion about the minimal boundary conditions applicable to a RVE of any shape). Periodic boundary condi-
tions require periodic spatial distribution of the microstructure, and this enables the approximation of the hete-
rogeneous material by an indefinite extension of a periodic elementary cell in the three dimensions of space. 
This assumption has been widely used in the literature as it requires the modeling of only the highlighted ele-
mentary cell, greatly saving computational cost. The arrangement of particles for this study is shown in Figure 
1(a). The powder compact is considered as an assemblage of hexagonal cylinder unit cells filled with an axi-
symmetric cylindrical particle (Figure 1(b)). The assumption of regularly (instead of random) packed mono-  
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(a)                               (b) 

Figure 1. Model microstructure for a powder material. (a) 3D 
package of hexagonal cylinder unit cells; (b) RVE Ω for a con-
solidated material powder with 0.90 ≤ D ≤ 0.95 (stage II).        

 
sized particles substantially simplifies the analysis as the entire densification process can be analyzed from rela-
tively simple unit cell calculations. However, it should be mentioned that the stacked hexagonal array RVE as-
sumes a rather unrealistic particle distribution, and as a result, desired modes of deformation such as interpar-
ticle shear are restricted.  

The plastic deformation of particles during stage II compaction is confined in the vicinity of small traction- 
free voids since the interaction of plastic contact zones is such that the solid material is forced to be extruded 
towards the traction-free voids. For the sake of simplicity and having regard to the smallness of the traction-free 
void with respect to the particle dimension, the boundary of the void is assumed diamond shaped with edge   
(Figure 1(b)). This claim is consistent with FE results presented in section 5 and dealing with the deformation 
mode of spherical particle for various initial relative densities. Let us consider an axisymmetric RVE Ω of a 
powder compact with a relative density D  corresponding to stage II compaction, that is 0.90 0.95D≤ ≤ . D   

is defined by the ratio = sD
Ω

Ω
, where sΩ  and vΩ  denote the parts of Ω occupied by the solid particle and  

the void, respectively and ( ).  stands for the volume of ( ). . In the undeformed configuration, Ω is a circular 
cylinder with diameter 2 oLρ  and height 2 zoL  filled with an circumscribed axisymmetric cylindrical particle 
with chamfered edges (initial length o ). Along the compaction process the current values of diameter, height 
and chamfer length fulfill the constraint  

2 2

= 1 z

z z z

L
L L L

ρ ρ−   
+ −   

   



                              (1) 

The macroscopic response of the unit cell model is given by the average state of strain and stress within it. Its 
overall deformation can be calculated from the normal displacements of both rigid plates. Apparently, the ma-
croscopic total logarithmic strains tensor and Cauchy stresses tensor possess the same principal directions, 
which are the radial and axial directions. The logarithmic radial Eρ  and axial zE  strains are given by  

  
ln ,     ln z

z
o zo

L LE E
L L
ρ

ρ
ρ

   
= =       

                             (2) 

The effective strain eE  defined by  

2=
3e zE E Eρ−                                   (3) 

is chosen as the overall plastic deformation of the unit cell model and the independent variable for presenting 
most results. We introduce mΣ  and Σ  as the macroscopic isostatic and deviatoric stresses, respectively, and 
their expressions are  

( )1 2 ;    
3m z zρ ρΣ = Σ + Σ Σ = Σ −Σ                            (4) 
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where ρΣ  and zΣ  denote, respectively, the remote macroscopic radial and axial stress on the walls of the unit 
cell. Let us mention from now on that 1) for isostatic compaction the logarithmic strains Eρ  and zE  are equal: 

zE Eρ = ; 2) for closed die compaction (i.e. uniaxial straining): 0Eρ = ; 3) for uniaxial compression (with no 
radial constraint): 0zΣ ≠  and 0ρΣ = ; and 4) for radial compression (with no axial constraint): 0zΣ =  and 

0ρΣ ≠ . 
In the next two sections the unit cell model Ω , representative of the powder compact during stages II 

compaction process, at given relative densities ranging between 0.90  and 0.95 , is used as RVE to derive 
external estimates of effective yield strength.  

3. Basics of the Yield Design Homogenization Method 

The average of a field f  over the domain occupied by Ω  is denoted by ( )1 df f y V
Ω

=
Ω ∫ . For a given 

second order tensor L , let   be the set of microscopic (virtual) velocity fields v  characterized by  

( ) ( ){ }V v v y L y v y= = ⋅ +                                 (5) 

with grad L v= , ( )v y  is periodic and y∈Ω . The symmetric part D  of L  is  

( )1 d
2

D v n n v A
∂Ω

= ⊗ + ⊗
Ω ∫                               (6) 

where ∂Ω  denotes the outer boundary of Ω  and n  is the outer unit normal vector to ∂Ω . Let ( )yσ  be a  

microscopic stress field in equilibrium with Σ  in the sense of the average rule σΣ = . Hill-Mandel'lemma  
states that:  

( ): : dD d y Vσ
Ω

Σ = ∫                                  (7) 

with ( )1 grad grad
2

Td v v= + . The determination of the macroscopic strength homG  of an arbitrary periodic  

heterogeneous medium reduces to solving a yield design boundary value problem defined over a RVE [12] [13]. 
The static definition of homG  reads  

( ) ( ){ }hom div 0,  anti-periodic, and     s s
yG n y G y yσ σ σ σ= Σ = = ⋅ ∈ ∀ ∈Ω          (8) 

The convexity of ( )sG y  forall y∈Ω  implies the same property for the domain homG  [13]. Constituent 
material of the solid grain is characterized by von Mises strength criterion sf  with uniaxial yield stress yσ : 

23    : 0
2

s
yGσ σ σ σ′ ′∈ ⇔ − ≤                             (9) 

where σ ′  is the deviatoric part of σ . The support function sπ  which is defined on the set of symmetric  

second order tensors d  and is convex with respect to d , accordingly reads [10] [11]:  

( )
if tr 0,

if tr 0.
s

y eq

d
d

d d
π

σ

+∞ ≠=  =
                            (10) 

with 2 :
3eqd d d= . If the (virtual) velocity field v  is discontinuous across a velocity jump surface with unit  

normal vector N , the expression of the support function is given by  

 ( )
 
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if . 0,
,

if . 0.
3

s
y

v N
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v v N
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Velocity fields complying with constraints of zero volume change (i.e. tr 0d =  or 
 

0v N = ) are termed 
relevant. Let us keep in mind that for a specified d , ( )s dπ  represents the maximum resisting power the 
material can afford. 

The dual definition of homG  may be expressed through its support function homΠ  defined as  

( ) { }hom homSup : ;  D D GΠ = Σ Σ∈                          (12) 

where D  denotes any symmetric second order tensor. The limit stress states at the macroscopic scale are of the 
form  

( )
hom

D
D

∂Π
Σ =

∂
                                 (13) 

Using Hill’s lemma (7) together with the definition Equation (12), de Buhan [13] has noticed that, for any 
periodic perturbation v , the support-function homΠ  may also be computed as  

( ) ( ){ }hom Min
v

D dπΠ =


                             (14) 

The domain homG  may also be characterized as the convex envelope of tangent hyperplanes:  

( ){ }hom hom: 0
D

G D D= Σ Σ −Π ≤                           (15) 

4. External Estimates of Effective Yield Strength 
External estimates of effective yield surfaces of powder compacts at fixed densities D  are derived through the 
fundamental inequality of the yield design kinematic approach, using four classes of virtual velocity fields for 
appropriate unit cell model. For a broad and systematic treatment of the yield design kinematic theory, we refer 
the reader to one of the excellent reviews by Salençon [10] [11]. This approach is but the dualization of the static 
reasoning by means of the virtual work principal. Its implementation relies upon the fundamental inequality  

( ) ( )ext mrv v≤P P                                   (16) 

where ( )ex vP  is the power performed by external loading in the virtual velocity field v  (so-called failure 
mechanism) and ( )mr vP  is the maximum resisting power developed by the material on account of its strength. 
The general expression of ( )mr vP  is given by  

( ) ( )  ( )d , dmr v d V N v Aπ π= +∫ ∫D S
P                           (17) 

where D  is the domain occupied by the mechanical system under consideration and S  is a surface across 
which the velocity field is discontinuous. An important part of the solution procedure is the optimization of the 
virtual failure mechanisms in order to obtain the best external estimate for the ultimate loads supported by the 
structure under consideration. For each separate geometrical configuration of the considered classes of virtual 
mechanisms, an optimization problem is solved. It concerns the minimization of a nonlinear objective function 
depending on a finite number of bounded variables, namely the geometrical parameters used to define the shape 
of each geometrical configuration. 

4.1. First Proposed Class of Virtual Velocity Fields 
Using cylindrical reference coordinate system with radial coordinate ρ , circumferential angle θ  and axial 
coordinate z , the unit cell is assumed to be subjected to axisymmetric deformations so that all field quantities 
are independent of θ . In order to comply with the incompressibility constraint (i.e. div 0y v = ) a continuous 
virtual velocity field v  necessarily has the general expression  

( ), z
Av z e weρρ
ρ

= +                                (18) 

where A  and w  are constants to be determined. Figure 2 schematically shows the relevant class of virtual 
velocity field ( )1v  which analytical expression is given by  
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Figure 2. Boundary conditions and loading of the quarter of 
the unit cell Ω. The failure pattern depends upon geometric-
al parameter α which defines the shapes of the three zones.   
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The three zones ,  and  are separated by two velocity jump axisymmetric surfaces, the cross sections of 
which by the figure plane are the lines 12  and 23  to be determined. There is interaction between the plastic 
zones of the grain which are in contact with the surrounding grains. The virtual motion (19) is such that 1) the 
volume  is given a downwards axial uniform translation velocity ( ) ( )1 1

1 1 zv w e= ; 2) a continuous velocity field 
( )1
2v  is given to the volume , while the remaining part of the unit cell is kept motionless: ( )1

3 0v = . The failure 
pattern depends upon one dimensionless geometrical parameters α , with 0 1α≤ < , which position the end 
point c  of the failure lines 12  and 23 . The constants ( )1

2w , ( )1
2A  and ( )1

2w  allow to precise the shapes of 
these failure lines. Indeed, to fulfill the slip condition 0vN =  across the lines 12  and 23 , it can readily be 
shown that necessarily the polar equations of these lines are respectively  

( ) ( )
( ) ( )

( )

1 1
1 22 1

1
2

1
2 z

w wh L
A

ρ ρ α
−

= +                            (20) 

with ( ) ( )1
zh Lρ =  for failure line 12  and  

( ) ( )
( )

( )

1
1 22

1
2

1
2 z

wg L
A

ρ ρ α= +                              (21) 

with ( ) ( )1 0g Lρ =  and ( ) ( ) ( ) ( )1 10 0 zh g Lα= =  for failure line 23 . The components of the macroscopic 
stress tensor can be calculated using one of the following expressions  

1 1d d
II II

V x t A
Ω ∂Ω

Σ = Σ = ⊗
Ω Ω∫ ∫                           (22) 

where t  is the traction on the boundary of the unit cell. Accounting for the particular situation at hand, it is an 



L. Siad, S. Gangloff 
 

 
279 

easy matter to establish the following expressions giving the radial ρΣ  and axial zΣ  macroscopic stress 
components in terms of whether averages of radial zp  and axial zp  contact pressures, or the statically 
associated radial Fρ  and axial zF  loads:  

2

22 ,     
4

z z
z z

z z

F Fp p
L L L L L

ρ ρ
ρ ρ

ρ ρ ρπ π

  
Σ = = Σ = =       



                      (23) 

The general form of the virtual power performed by external loading for any velocity field v  reads  
( ) ( ) ( ) ( ) ( )1 , ; d . .IIex z z z zp p v p e v p e v V F v a F v bρ ρ ρ ρΩ

= ⋅ + ⋅ = +∫P                  (24) 

where the dot stands for the inner product of vectors. For the velocity field ( )1v , Equation (24) reduces to  
( ) ( )( ) ( ) ( )1 1 1 12 2

1 2, ; 2 4ex z z z zP v L w L Aρ ρπ πΣ Σ = Σ + Σ                         (25) 

The maximum resisting power ( )1
mrP  developed by the unit cell at hand in the proposed failure mechanism  

( )1v  arises from the velocity jump ( )1v 

 

 

 along lines 12 , 23  and also within volume  where the virtual  

velocity is continuous. ( )1
mrP  writes then  

( ) ( )( ) ( )( ) ( )( )23121 1 1 1LL
mr mr mr mrv v v= + +P P P P                          (26) 

with  
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         
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
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
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

P

P

P

ln .

z

z

L LL
L

ρ
ρ

ρ

ρ ρ ρ

α
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 
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             (27) 

Comparing (26)-(27) and (25), the fundamental inequality (16) results in:  

( )
( )

( )( )
1

1 12
2 2

12
2

z z
mr

y y y

L Aw v
L L L

ρ

ρ ρ ρσ σ π σ

 ΣΣ
+ ≤  

 
P                        (28) 

which may be rearranged to provide upper bound solutions to the normalized macroscopic axial stress once the 
normalized macroscopic radial stress is given a particular value. Indeed, one has  

( )1 , ;z
z r

y y

D ρ α
σ σ

 ΣΣ
=   

 
S                                   (29) 

where  

( )
( )( )
( )

( )

( )

2 1
1 2

1 12 2
1 1

1 2
2

mr z
z

y y

v L A
L w L w

ρ

ρ ρσ σπ

    Σ   = −
       

P
S                            (30) 

Whenever the geometric parameter α  which settles the virtual motion, takes all admissible values, the 
inequality (29) is associated to a family of necessary conditions for stability. The best upper bound is derived 
from this inequality when α  is chosen such that the function ( )1

zS  is at minimum. Thereupon the parameter 
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α∗  associated with the minimum of ( )1
zS  defines the critical volume  and  of the solid grain and the 

corresponding potential slip failure lines 12  and 23 . In other words, in order to optimize the proposed failure 
mechanism family ( )1v , ( )1

zS  has to be minimized with respect to α . The minimum value 
( ) ( )1 , ;z y z rD ρσ α∗ ∗Σ = ΣS  is reached for α α∗=  satisfying the equation  

( )

( )
1

0z α
α

∗∂
=

∂
S

                                   (31) 

The relationships contained in Expressions (30) are too involved to allow differentiation to derive directly the 
critical condition, and the procedure is cumbersome. Alternatively, the optimization of the proposed virtual 
failure mechanism in order to obtain the minimum upper bound for the ultimate loads supported unit cell IIΩ  
is performed through the numerical minimization of ( )1

zS  with respect to parameter α  under the constraint 
0 1α≤ < . In this study, the problem is solved using simple in-house Fortran code. This proves to be accurate, 
computationally very cheap, and results in the best upper bound, considering the class of velocity field ( )1v , of 

zΣ , that is  

( )1 ,z z
z r

y y y

D ρ

σ σ σ

∗
∗  ΣΣ Σ

≤ =   
 

S                                (32) 

In the macroscopic stress plane reported to macroscopic normalized stresses axes , z

y y

ρ

σ σ

 Σ Σ
  
 

 the  

corresponding curve to the theoretical bound (32) is simply represented by a horizontal line which intercept with 
the coordinate axis zΣ  depends upon the relative density D  (see Figure 9(a), Fiugre 10(a)). From the 
standpoint of the YDHM, this line delimits from the outside the effective yield surface of the consolidated 
material powder under consideration. 

4.2. Second Proposed Class of Virtual Velocity Fields 
Hereafter, one follows the same procedure as in the foregoing analysis but considering a second relevant class of 
virtual velocity field ( )2v  displayed in Figure 3. ( )2v  is defined by  
 

 
Figure 3. Second proposed failure mechanism of Ω. The 
failure pattern depends upon geometrical parameter β which 
defines the shapes of the three zones.                    
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





                      (33) 

where both ( ) ( )222
1 ,  w A  and ( )2

2w  are constants to be determined. After some lengthy but straightforward 
calculations it is found that the polar equations of the failure lines 12  and 23  are respectively given by  

( ) ( ) ( ) ( )

2 2 2
2

2 2
2 1

1
2

L
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A A
ρρ β

ρ
−

=
−

                                 (34) 

with ( ) ( )2
zh Lρ =   and  

( ) ( )
( )

( )

2
2 22

2
2

1
2 z

wg L
A

ρ ρ= +                                 (35) 

with ( ) ( )2 0 zg L=  and ( ) ( ) ( ) ( )2 2 0h L g Lρ ρβ β= = . The parameter β  sets the geometry of the considered 
class of failure mechanisms. Applying again the fundamental inequality (16) results in:  
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with  
( ) ( )( ) ( )( ) ( )( ) ( )( )23122 2 2 2 2LL

mr mr mr mr mrv v v v= + + +P P P P P                  (37) 

and  
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Inequality (36) combined with Equations (37) and (38) may be rearranged in order to provide the following 
upper bound solutions for zΣ   

( )2 , ;z r
y y

Dρ ρ β
σ σ

+  Σ Σ
=   

 
S                                 (39) 
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where, for the sake of conciseness, the expression of the function ( )2
zS  is not written down herein. In the same 

manner for failure mechanism ( )1v , the numerical minimization of ( )2
zS  with respect to β , with 0 1β≤ < , 

allows to obtain the best upper bound solution, considering the class of virtual velocity fields ( )2v :  

( ) ( )2
z r

o

Dρ

σ
+Σ

= S                                   (40) 

Figures 4-5 show the third and forth proposed relevant virtual failure mechanisms. The failure mechanisms 
again exhibit three zones within Ω and contributions to the maximum resisting power are developed inside 
volumes of zones  and , and along the displayed three velocity jump surfaces 12 , 23  and 31 ; the zone 
 is motionless. For the sake of brevity, the details of calculations corresponding to the application of the 
fundamental inequality (16) are not repeated herein; one settles for giving the corresponding results which are 
shown in Figures 9-10.  

5. Finite Element Analysis 
Suitable FE simulations allow to highlight the deformation mode of the chosen unit cell model as well as to 
obtain the overall stress-strain curves that represent the behavior of the powder compact at the macroscopic 
scale. The analysis presented hereafter is similar to Ogbonna and Fleck’s studies [15] where, in particular, the 
nature of contact growth and material flow based on the deformation of a spherical particle subject to combined 
radial and axial constraints is discussed. The “probing method” is used to determine the size and shape of the 
macroscopic yield surface for a consolidated material powder with a prescribed relative density. To this goal, the 
unit cell model is first strained to a prescribed relative density and unloaded to zero macroscopic stress. The 
so-called precompact that results from this operation is then re-loaded along various prescribed straining path 
until the point of plastic collapse. Both proportional and nonproportional straining paths may used to generate 
data for the yield behavior of the unit cell model. The proportional straining paths include the special cases of 
closed die compaction and isostatic compaction. The nonproportional paths are for uniaxial compression and for 
radial compression. The locus of macroscopic stresses at the point of plastic yielding gives the shape of the  
 

 
( )

( )
( )

( )
( )

3 3
3 3 3(3)1 2

1 1 2 2,z z
A Av e w e v e w eρ ρρ ρ

= + = +  

Figure 4. Relevant virtual failure mechanism ( )3v  

and ( )4v ; the failure pattern is fixed by the values of 
the geometrical parameters ξ  and η .              
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Figure 5. Relevant virtual failure mechanism ( )4v .    
 
macroscopic yield surface. In the initial undeformed configuration the axisymmetric unit cell model Ω  is a 
circular cylinder with diameter 2 oLρ  and height 2 zoL . Invoking the mass conservation law, the relative 
density is given by  

2
2
3

o o

z

L L
D

L L
ρ ρ

ρ

   
=        

                                 (41) 

which initial value 2 3oD =  is very close to 0.64  corresponding to a random close package of equi-sized 
spherical particles. Ω  is assumed to be subject to axisymmetric deformations along a prescribed strain path. 
By virtue of axisymmetry, only one quarter geometry of the unit cell model, drawn in Figure 6, needs to be 
analyzed. Frictionless rigid plates indenting the solid grain are used to impose the boundary displacement field. 
As a consequence of the lattice periodicity both rigid plates at oLρρ =  and z oz L=  have a uniform normal 
displacements in coordinate directions and their mutual orientations will be maintained during the whole process 
of loading. These requirements impose Ω  to remain, during the finite strain deformation process, a cylinder 
which is thus characterized in an arbitrary state by  

( ) ( ),     o z zo zL L u L L uρ ρ ρ= + = +a b                          (42) 

where uρ  and zu  are the radial displacement of node a  and the axial displacement of node b , respectively, 
Figure 6. Quadratic axisymmetric elements in Abaqus code has been used. All elements are of the hybrid type 
to permit modeling of incompressible behavior. The boundary conditions are outlined in Figure 6: zero normal 
displacement ( )0zu =  and zero shear traction are prescribed along the bottom surface ( )0z = . The radial 
displacement vanishes ( )0uρ =  along the axis of symmetry ( )0ρ =  and the curved surface of the particle is 
traction free. The radial ( )uρ a  and axial ( )zu b  displacements are applied incrementally, on account of the 
history dependence of the material response. Various loading paths are achieved by giving different values to the 
ratios of the displacements ( )uρ a  and ( )zu b  for isostatic and closed die consolidated material powders. The 
powder particles have been assumed to be an elastic, perfectly plastic solid obeying the 2J -flow theory. The 
material properties used for the simulation are chosen as follows: Young’s modulus 52 10  GPaE = × , Poisson 
ratio 0.3ν =  and uniaxial yield stress 200 MPayσ = . Typical deformed shapes of the particle under applied 
macroscopic strain state E  during stage II compaction are shown in Figures 7-8. It is conspicuous from 
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aforesaid figure that the local deformation of the particle may be seen, besides the parameters Lρ  and zL , 
through the sizes of the axial circular contact area (radius ρ ) and the radial annular contact area (radius Lρ  
and width z2 ).  
 

 
Figure 6. FEA of quarter of the unit cell. Boundary 
conditions and loading system through vertical and 
horizontal rigid surfaces.                          

 

 
Figure 7. FEA of isostatic compaction. Characteristic dimensions of the contact 
areas between adjacent solid particles. The unit cell Ω is pressed to a relative density 
D equals to 0.95.                                                        

 

 
Figure 8. FEA of closed die compaction. Characteristic dimensions of the contact 
areas between adjacent solid particles. The unit cell Ω is pressed to a relative density 
D equals to 0.95.                                                        



L. Siad, S. Gangloff 
 

 
285 

6. Results and Discussion 
The obtained external estimates of effective yield surfaces for stage II consolidated material powder, for both 
isostatic and closed die consolidated material powders, are shown in Figure 9 and Figure 10 respectively. The 
relative density has been fixed to 0.90D =  and 0.95.D =  In these figures, the effective yield surfaces are 
displayed in normalized stress plane of radial stress versus axial stress ( ),y z yρ σ σΣ Σ  and also in normalized 
stress plane of mean stress versus effective stress ( ),m y yσ σΣ Σ . The straight line segments of the macros-
copic yield surfaces obtained using the kinematic approach refer to activated failure mechanisms. The obtained 
results are compared with the numerical ones provided by FE analysis which procedure has been outlined pre-
viously. They suggest the following comments.  
 

 
(a) 

 
(b) 

Figure 9. Yield surfaces for isostatic consolidated material 
powder at relative density taking values 0.90 and 0.95. 
Comparison of the kinematic approach results (solid blue 
lines) to those provided by FE simulations (dashed red lines). 

(a) Normalized plane stress , z

y y

ρ

σ σ

 Σ Σ
  
 

; (b) Normalized 

plane stress ,m

y yσ σ

 Σ Σ
  
 

.                               
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(a) 

 
(b) 

Figure 10. Yield surfaces for closed die consolidated material 
powder at relative density taking values 0.90 and 0.95. Compari-
son of the kinematic approach results (solid blue lines) to those 
provided by FE simulations (dashed red lines). (a) Normalized 

plane stress , z

y y

ρ

σ σ

 Σ Σ
  
 

; (b) Normalized plane stress ,m

y yσ σ

 Σ Σ
  
 

.  

 
• The shape and the size of effective yield surfaces, for both isostatic and closed die consolidated material 

powder, change as the relative density D  change between 0.90 and 0.95. As expected, higher the relative 
density bigger the size of the yield surface.  

• For both values of D  used in the analysis, it seems that a corner exists at the loading point corresponding 
the loading path used to derive the powder consolidated material powder.  

• For a given relative density, the yield stress in uniaxial yield compression is lower for isostatic consolidated 
material powder than for closed die one. The results are opposite for the yield stress in pure radial 
compression. This observation apparently confirms the fact that the yield behavior of a particle is not just a 
function of the relative density but also depends on the loading history.  

• The results provided by the kinematic approach is adequate with the finite element predictions that is taken 
as the reference solutions for the determination of macroscopic yield criteria. Differences can be attributed to 
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the fact that the assumed geometries of unit cells are slightly different for both methods since the size 
contacts for both methods are in some degree different. It should be kept in mind among other from analysis 
developed in section 5 that under isostatic compaction, the contact radius ρ  increases more than the 
contact width z  with increasing relative density for the finite element analysis.  

The corpus of the obtained results should necessarily be enriched by lower bound solutions or, even better, by 
experimental results, since these results are upper bound solutions and they are thus found on the unsafe side of 
the design. Pastor et al. [17] has provided very close lower and upper bounds of the famous Gurson model used 
in ductile failure of materials. The methodology employed by these authors comes just at the right moment to 
address the problem under consideration with however various complexities such as, for example, composite 
powders. Brown and Weber [18] has demonstrated that the yield behavior of compacted and then sintered 
powder is different from that of identical powder compacted without sintering, and the uniaxial tensile yield 
stress is lower for the compacted-only powder. In addition, the Brown and Abou-Chedid's experimental results 
[19] proved that relative density and particle hardening are not the only state variables to represent powder yield 
behavior. In this context, the kinematic approach of the yield design theory could turn out to be useful in 
accounting for the interparticle-cohesion.  

7. Conclusion 
Based on the kinematic approach of the yield design homogenization method, optimal external estimates of 
effective yield surfaces of stage II powder compact materials under isostatic and closed die compaction have 
been obtained. To this goal, an appropriate unit cell model and four relevant failure mechanisms are considered. 
For comparison purposes, numerical simulations based on FEA similar to those of Ogbana and Fleck [15] have 
also been carried out. Several interesting conclusions may be drawn.  
• First, the obtained external estimates of the effective strength criteria of the powder compacts at hand may be 

used either as a rigorous upper bound, or to assess the quality of existing models for yielding of powder 
compacts during stage compaction II.  

• Compared to the results provided by the FEA, the external estimates of the effective yield surfaces could be 
deemed to be acceptable from a practical point of view.  

• As expected, their shape and size are found to be dependent on the relative density and on the loading history 
as well.  

• The results has revealed the existence of a corner on the effective yield surfaces at the loading point.  
• The analysis presented herein may easily be extended to more complex situations than that selected in this 

paper for illustrative purposes (e.g., consideration of additional classes of failure mechanisms is required, 
composite powders compacts, accounting for the interparticle-cohesion). 
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