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Abstract 
In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and 
high order generalized derivatives for non-smooth functions, in which the involved functions are 
Riemann integrable but not necessarily locally Lipschitz or continuous. Indeed, we define a func-
tional optimization problem corresponding to smooth functions where its optimal solutions are 
the first and second derivatives of these functions in a domain. Then by applying these functional 
optimization problems for non-smooth functions and using this method we obtain generalized 
first derivative (GFD) and generalized second derivative (GSD). Here, the optimization problem is 
approximated with a linear programming problem that by solving of which, we can obtain these 
derivatives, as simple as possible. We extend this approach for obtaining generalized high order 
derivatives (GHODs) of non-smooth functions, simultaneously. Finally, for efficiency of our ap-
proach some numerical examples have been presented. 
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1. Introduction 
A function is smooth (of the first order) if it is differentiable and its derivatives are continuous. The nth-order 
smoothness is defined analogously, that is, a function is nth-order smooth if its ( )1 thn − -derivatives are 
smooth. So, the infinite smoothness refers to continuous derivatives of all orders. From this perspective a 
non-smooth function only has a negative description—it lacks some degree of properties traditionally relied 
upon in analysis. One could get the impression that non-smooth optimization is a subject dedicated to overcom-
ing handicaps which have to be faced in miscellaneous circumstances where mathematical structure might be 
poorer than what one would like, but this is far from right. Instead, non-smooth optimization typically deals with 
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highly structured problems, but problems which arise differently, or are modeled or cast differently, from ones 
for which many of the mainline numerical methods, involving gradient vectors and Hessian matrices, have been 
designed. Moreover, non-smooth analysis, which refers to differential analysis in the absence of differentiability 
and can be regarded as a subfield of nonlinear analysis, has grown rapidly in the past decades. In fact, in recent 
years, non-smooth analysis has come to play a vital role in functional analysis, optimization, mechanics, diffe-
rential equations, etc. 

Among those who have participated in its development are Clarke [1], Ioffe [2], Mordukhovich [3], Rock-
afellar [4], but many more have contributed as well. During the early 1960s there was a growing realization that 
a large number of optimization problems which appeared in applications involved minimization of non-differ- 
rentiable functions. One of the important areas where such problems appear is optimum control. The subject of 
non-smooth analysis arises out of the need to develop a theory to deal with the minimization of non-smooth 
functions. 

Recent research on non-smooth analysis mainly focuses on Lipschittz function. Properties of the generalized 
derivatives of Lipschtitz functions are summarized in the following result of Clarke, 1983 [1]. A function 

: nf →   is said to be Lipschitz on a set U if there is a positive real number K such that 

( ) ( ) for all  , .f y f z K y z y z U− ≤ − ∈  

A function f that is Lipschitz in a neighborhood of a point x is not necessarily differentiable at x, but for lo-
cally Lipschitz functions the following expressions exist 

( ) ( ) ( )
0

, : limsup
f x v f x

f x v
λ

λ
λ

+

↓

+ −
=  

and 

( ) ( ) ( )
0

, : liminf .
f x v f x

f x v
λ

λ
λ

−

↓

+ −
=  

The symbols ( ),f x v+  and ( ),f x v−  denote the upper Dini and lower Dini directional derivatives of f at x 
in direction of v. Hence, we may consider any of these derivatives as a generalized derivative for locally Lip-
schitz functions. However they suffer from an important drawback. Both of them are in general not convex in 
the direction and simple examples (which are left to the reader) can be constructed to demonstrate this. Thus 
they lack the most important property of the directional derivative of a convex function. Clarke observed that in 
the definition of the upper Dini derivative if one moves the point x, i.e., move through points that converge to x, 
then one can generate a generalized directional derivative which is sublinear in the direction. Thus we arrive at 
the definition of the Clarke generalized directional derivative. 

Definition 1.1. Let : nf →   be a locally Lipschitz function. Then the Clarke generalized directional de-
rivative of f at x in direction of v is given by 

( ) ( ) ( )
0

, : limsup .o f x v f x
f x v

λ

λ
λ↓

+ −
=  

Clarke also defined the following notion of generalized gradient or subdifferential [1]. 
Definition 1.2. Let : nf →   be locally Lipschitz. Then the Clarke generalized gradient or the subdiffe-

rential of f at x, denoted by ( )f x∂ , is given by 

( ) ( )( ) ( ){ }: , , ; lim .n k k k

k
f x co v x D f x x k v f x

→∞
∂ = ∈ ∃ ∈ → →∞ = ∇  

Here ( )f∇ ⋅  denotes the gradient of f; ( )D f  denotes the set under which f is differentiable and co denotes 
the convex hull of a set. It is shown in [5] that the mapping ( )f x∂  is upper semicontinuous and bounded on 
every bounded set. 

However, one can realize that calculating the Clarke subdifferential from first principles is not always a sim-
ple task. In this manuscript, we develop the definition for GFD of non-smooth functions which will be seen as a 
refinement of what is given in [6], to derive GHODs of non-smooth functions, simultaneously. 

The paper is organized as follows. Section 2 presents the basic definitions and facts needed in what follows. 
Our results are then stated and proved in Section 3. We develop the definition for GFD and GSD of non-smooth 
functions which will be seen as a refinement of what is given in theorems (2.1) and (2.7), to derive GHODs of 
non-smooth functions, simultaneously (Theorem 3.5). Section 4 presents some illustrative example of the results 
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of the paper. 

2. GFD and GSD of Nonsmooth Functions 
In this section, we present definitions and results concerning GFD and GSD, which are needed in the remainder 
of this paper. In order to get this approach some tools from nonsmooth analysis are used, specially generalized 
derivatives. Since the early 1960s, many different generalized derivatives have been proposed, for instance 
Rockafellar [4] [7], Clarke [1], Clarke et al. [8] and Mordukhovich [3] [9]-[12]. These papers and theirs results 
include some restrictions, for examples. 

1) The function ( )f ⋅  must be locally Lipschitz or convex. 
2) We must know that the function ( )f ⋅  is non-differentiable at a fixed point [ ],x a b∈ . 
3) The generalized derivatives of ( )f ⋅  on [ ],a b  is a set, which either is empty or including several members. 
4) The directional derivative is used to introduce generalized derivative. 
5) The concepts limsup and liminf are applied to obtain the generalized derivative in which calculation of 

these is usually hard and complicated. 
6) To obtain the second derivative, the gradient of the function should be computed which will be hard in 

some cases. 
It is commonly recognized that these GDs are not practical and applicable for solving problems. We mainly 

use the new GD of Kamyad et al. [6] for nonsmooth functions. This kind of GD is particularly helpful and prac-
tical when dealing with nonsmooth continuous and discontinuous functions and does not have the above restric-
tions and difficulties. Let 

( ) ( ) [ ]{ }: sin π ,  0,1 ,  1, 2,k kV v v x k x x k= ⋅ = ∈ =   

Given a function ( )f x  on [ ]0,1 , consider the following functional optimization problem: 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) [ ]

1
1 0

1

2

Minimize   d ,

subject to   d ,

1                   0,1 ,   , ,  1, 2, ,

i

i

k k
k

s
i i is

i

J g v x g x x

f x f s x s g s x

i ig C s i m
m m

δ

δ

λ

εδ

∞

=

+

−

⋅ = −

− − − ≤

− ⋅ ∈ ∈ = 
 

∑ ∫

∫



                    (1) 

where ( )kv V⋅ ∈ , 

( ) ( )1

0
d ,     1, 2,3,k kv x f x x kλ ′= − =∫   

and ε , δ  are sufficiently small positive numbers. 
Theorem 2.1. (Kamyad et al., 2011) Let ( ) [ ]1 0,1f C⋅ ∈  and ( ) [ ]0,1g C∗ ⋅ ∈  be the optimal solution of the 

functional optimization problem (1). Then ( ) ( )f g′ ⋅ = ⋅ . 
Definition 2.2. (Kamyad et al., 2011) Let ( )f ⋅  be a nonsmooth continuous function on the interval [ ]0,1  

and ( )g∗ ⋅  be the optimal solution of the functional optimization problem (1). The generalized first derivative 
(GFD) of ( )f ⋅  is denoted by ( )GFd f ⋅  and defined as ( ) ( )GFd f g∗⋅ = ⋅ . 

Remark 2.3. Note that if ( )f ⋅  is a smooth function, then ( )GFd f ⋅  as introduces in Definition 2.2 is equal 
to ( )f ′ ⋅ . Further, if ( )f ⋅  is a nonsmooth function, then GFD of ( )f ⋅  is an approximation for the first de-
rivative of ( )f ⋅ . 

In what follow, the problem (1) is approximated as the following finite dimentional problem (Kamyad et al. 
[6]): 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) [ ]

1
1 0

1

2

Minimize   d ,

subject to   d ,

1                   0,1 ,   , ,  1, 2, ,

i

i

N

k k
k

s
i i is

i

J g v x g x x

f x f s x s g s x

i ig C s i m
m m

δ

δ

λ

εδ

=

+

−

⋅ = −

− − − ≤

− ⋅ ∈ ∈ = 
 

∑ ∫

∫



                    (2) 

where N is a given large number. We assume that ( )i ig g s= , ( )1i if f s δ= − , ( )2i if f s δ= +  and ( )i if f s=   
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for all 1, 2, ,i m=  . In addition, the authors choose the arbitrary points 1,i
i is
m m
− ∈ 

 
, 1, 2, ,i m=  . 

By trapezoidal and midpoint integration rules, the last problem can be written as the following problem in 
which 1g , 2g ,  , mg  are its unknown variables: 

1 1

1 2

Minimize   ,

subject to         1, 2, , .

N m

ki i k
k i

i i i i i i

v g

f f g f f g i m

δ λ

δ δ εδ
= =

−

− + + − − ≤ =

∑ ∑



                (3) 

Lemma 2.4. Let the pairs ( ),i iv u∗ ∗ , 1, 2, ,i m=   be the optimal solution of the following linear program-
ming (LP) problem: 

1
Minimize   ,

subject to   ,  ,  0,  .

m

i
i

i i i i i i

v

v u v u v u I
=

≥ ≥ − ≥ ∈

∑  

Then ,  1, 2, ,iu i m∗ =   are the optimal solutions of the following nonlinear programming problem (NLP): 

1
Minimize    

m

u I i
i

u∈
=
∑  

where I is a compact set. 
Proof. See [13]. 
Now, by Lemma 2.4, the problem (3) can be converted to the following equivalent LP problem (see [14] [15]) 

( ) ( )

1

0

0

1

Minimize    ,

subject to   ,     1, 2, , ,

                  ,     1, 2, , ,

                 ,     1, 2, , ,
                  ,   

N

k
k

m

k ki i k
i

m

k ki i k
i

i i i i

i i i i i

v g k N

v g k N

u q w z i m
u q g f f

µ

µ δ λ

µ δ λ

εδ

δ

=

=

=

− + ≤ =

− − ≤ − =

+ + + ≤ =

− − = −

∑

∑

∑







2

  1, 2, , ,
                  ,     1, 2, , ,
                  , , , , 0,     1, 2, , .

i i i i i

i i i i k

i m
w z g f f i m
w z u q k N

δ
µ

=

− + = − =

≥ =







                     (4) 

where ig , kµ  and iw , iz , iu , iq  are decision variables of the problem for 1, 2, ,i m=   and 1, ,k N=   
and 

( ) ( )1

0
d ,     1, 2,3, ,k kv x f x x k Nλ ′= − =∫   

and ε , δ  are positive sufficiently small numbers. 

Remark 2.5. Note that ε  and δ  are sufficiently small numbers and the points 1,i
i is
m m
− ∈ 

 
 can be  

chosen as arbitrary numbers for 1,2, ,i m=  . 
Remark 2.6. Let ig∗  be the optimal solution of problem (1) for 1,2, ,i m=  . Then ( )GFd i if s g∗=  for 
1,2, ,i m=  . 

Based on GFD of nonsmooth functions, Kamyad et al. [6] introduced an optimization problem similar to the 
problem (1) that its optimal solution is the second order derivative of smooth functions on an interval. To attain 
this goal they define 

( ) ( ) ( ) [ ]{ }: 1 cos 2 π :  0,1 , .k kV v v x k x x k= ⋅ = − ∈ ∈  

In addition, suppose 0ε >  and 0δ >  are two sufficiently small numbers and m∈ . For given conti-
nuous function ( )f x  on [ ]0,1 , defined the following functional optimization problem: 
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( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) [ ]

1
1 0

1

2

Minimize   d ,

subject to   d ,

1                   0,1 ,   , ,  1, 2, ,

i

i

k k
k

s
i i is

i

I g v x g x x

h x h s x s g s x

i ig C s i m
m m

δ

δ

λ

εδ

∞

=

+

−

⋅ = −

− − − ≤

− ⋅ ∈ ∈ = 
 

∑ ∫

∫



                     (5) 

where ( )kv V⋅ ∈  for all 1, 2,3,k =   and ( ) ( )1

0
dk kv x f x xλ ′′= ∫ . Also if ( ) [ ]1 0,1f C⋅ ∈  then ( ) ( )h f ′⋅ = ⋅  

and otherwise ( ) ( )GFdh f⋅ = ⋅  where ( )GFd f ⋅  is the GFD of ( )f x  (see [6]). 
Theorem 2.7. Let ( ) [ ]2 0,1f C⋅ ∈  and ( ) [ ]0,1g C∗ ⋅ ∈  is the optimal solution of functional optimization 

problem (5). Then ( ) ( )g f∗ ′′⋅ = ⋅ . 
Proof. See [16]. 
Definition 2.8. Let ( )f ⋅  be a continuous nonsmooth function on interval [ ]0,1  and ( )g∗ ⋅  be the optimal 

solution of the functional optimization problem (5). We denote the GSD of ( )f ⋅  by ( )GSd f ⋅  and it is defined 
as ( ) ( )GSd f g∗⋅ = ⋅ . 

Note that if ( )f ⋅  is a smooth function then the ( )GSd f ⋅  is ( )f ′′ ⋅ . Also if ( )f ⋅  is a nonsmooth function 
then GSD of ( )f ⋅  is an approximation for second order derivative of ( )f ⋅ . Thus, according to the above 
mentioned statements for GFD and generalized results, problem (5) is converted to the following equivalent li-
near programming problem: 

( ) ( )

1

0

0

1

Minimize    ,

subject to   ,     1, 2, ,

                  ,     1, 2, ,

                 ,     1, 2, ,
                  ,     

N

k
k

m

k ki i k
i

m

k ki i k
i

i i i i

i i i i i

v g k N

v g k N

u q w z i m
u q g h h i

µ

µ δ λ

µ δ λ

εδ

δ

=

=

=

− + ≤ =

− − ≤ − =

+ + + ≤ =

− − = −

∑

∑

∑







2

1, 2, ,
                  ,     1, 2, ,
                  , , , , 0,     1, 2, ,

i i i i i

i i i i k

m
w z g h h i m
w z u q k N

δ
µ

=

− + = − =

≥ =







                      (6) 

where ig , kµ , iw , iz , iu , iq  are decision variables of the problem for 1, 2, ,i m=   and 1, ,k N=   and  

( ) ( )1

0
dk kv x f x xλ ′′= ∫  for 1, 2,3, ,k N=   and ε , δ  are sufficiently small positive numbers. 

Remark 2.9. Let ig∗  be the optimal solution of problem (6) for 1, 2, ,i m=  . Then we have ( )GSd i if s g∗=  
for all 1,2, ,i m=  . 

3. Main Approach 
In this section, we propose a method based on GD of Kamyad et al. to obtain simultaneously GFD and GSD for 
smooth and nonsmooth functions in which the involved functions are Riemann integrable. 

Theorem 3.1. Let ( ) ( ) ( ) [ ]1 2,  ,  0,1f g g C⋅ ⋅ ⋅ ∈  and 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

1
10

1
1 20

d 0,

2 d 0.

v x f x v x g x x

v x f x v x g x v x g x x

′ + =

′′ + + =

∫

∫
 

for any ( ) [ ]2 0,1v C⋅ ∈  where ( ) ( )0 1 0v v= = , ( ) ( )0 1 0v v′ ′= = . Then we have ( ) [ ]2 0,1f C⋅ ∈  and ( )f ′ ⋅ =  
( )1g ⋅ , ( ) ( )1 2g g′ ⋅ = ⋅ . 
Proof. By Theorem 2.2 in [6] we have ( ) ( )f g′ ⋅ = ⋅ . Now we use integration by parts and the first condition. 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1 11
1 100 0 0

d d dv x f x x v x f x x v x g x x v x g x x′′ ′ ′ ′= − = −  ∫ ∫ ∫              (7) 

Since by assumption 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11
1 1 1 100 0 0

d d dv x g x x v x G x v x G x x v x G x x′ ′ ′′ ′′= − = −  ∫ ∫ ∫  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11
2 2 2 200 0 0

d d d .v x g x x v x G x v x G x x v x G x x′ ′= − = −  ∫ ∫ ∫  

Again by using integration by parts and rule for ( ) ( )1
20

dv x G x x′∫  we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11
2 3 3 300 0 0

d d d ,v x G x x v x G x v x G x x v x G x x′ ′ ′′ ′′= − = −  ∫ ∫ ∫  

where ( ) ( )1 10
d

x
G x g t t= ∫ , ( ) ( )2 20

d
x

G x g t t= ∫  and ( ) ( )3 20
d

x
G x G t t= ∫  for each [ ]0,1x∈ . Since by assump-  

tion ( ) ( ) ( ) ( ) ( ) ( )( )1
1 20

2 d 0v x f x v x g x v x g x x′′ ′+ + =∫ , (7) yields ( ) ( ) ( ) ( )( )1
2 10

d 0v x g x v x g x x′+ =∫  so that 

( ) ( ) ( )( )1
3 10

d 0v x G x G x x′′ − =∫ . 

By Lemma 2.1 of [6] it follows that ( ) ( )1 2g g′ ⋅ = ⋅ . Thus, by Theorem 2.2 of [6], we conclude that ( )f ′′ ⋅ =  
( )2g ⋅ . 

Corollary 3.2. Suppose that the conditions of Theorem 3.1 hold. Then ( ) [ ]2 0,1f C⋅ ∈  and ( ) ( )2f g′′ ⋅ = ⋅ . 
Let 

( ) ( ) ( ) [ ]{ }: 1 cos 2 π ,  0,1 , .k kV v v x k x x k= ⋅ = − ∈ ∈  

Then ( ) ( )0 1 0k kv v= =  and ( ) ( )0 1 0k kv v′ ′= =  for all ( )kv V⋅ ∈ . We note that V is a total set in  
( ) [ ] ( ) ( ) ( ) ( ){ }2 0,1 : 0 1 0 1 0U v C v v v v′ ′= ⋅ ∈ = = = = . Hence, for any ( )v U⋅ ∈ , there exist coefficients 0 1, ,c c  

∈   such that 

( ) ( ) [ ]
1

: ( ) , 0,1 .k k k
k

v x c v x v V x
∞

=

= ⋅ ∈ ∈∑  

Theorem 3.3. Let ( ) ( ) ( ) [ ]2
1 2,  ,  0,1f g g C⋅ ⋅ ⋅ ∈  and 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

1
10

1
1 20

d 0,

2 d 0.

k k

k k k

v x f x v x g x x

v x f x v x g x v x g x x

′ + =

′′ ′+ + =

∫

∫
 

for any ( )kv V⋅ ∈ . Then we have ( ) [ ]2 0,1f C⋅ ∈  and 

( ) ( ) ( ) ( )1 2,     .f g f g′ ′′⋅ = ⋅ ⋅ = ⋅  

Theorem 3.4. Let 0ε >  be a small number, ( ) [ ]2 0,1f C⋅ ∈  and m∈ . Then there exist 0δ >  such that  

for all 1,i
i is
m m
− ∈ 

 
 and 1,2, ,i m=  , 

( ) ( ) ( ) ( ) ( ) ( )2 21 d 2 .
2

i

i

s
i i i i is

f x f s x s f s x s f s x
δ

δ
εδ

+

−
′ ′′− − − − − ≤∫  

Proof. The result is clear by Theorem 2.4 of [6] and the integral properties. 
Let 0ε >  and 0δ >  be two sufficiently small given numbers and m∈ . For a given function ( )f x  on 

[ ]0,1 , the following functional optimization problem defined the Extension generalized derivative (EGD): 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]

1
1 2 2 10

1

2
1

2 2
1 2

1
1 2

Minimize   , 2 d

subject to   d ,

1                  d 2 ,
2

1                   ,  0,1 ,

i

i

i

i

N

k k k
k

s
i i is

s
i i i i is

i

L g g v x g x x v x g x v x f x x

f x f s x s g s x

f x f s x s g s x s g s x

ig g C s

δ

δ

δ

δ

εδ

εδ

=

+

−

+

−

′ ′′⋅ ⋅ = + +

− − − ≤

− − − − − ≤

−
⋅ ⋅ ∈ ∈

∑ ∫

∫

∫

, ,     1, 2, , .i i m
m m

  = 
 



         (8) 
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where ( )kv V⋅ ∈  for all 1, 2,3,k =  . 
Theorem 3.5. Let ( ) [ ]2 0,1f C⋅ ∈  and ( )1g∗ ⋅ , ( ) [ ]1

2 0,1g C∗ ⋅ ∈  be the optimal solution of the functional op-
timization problem (8). Then ( ) ( )1f g∗′ ⋅ = ⋅ , ( ) ( )2f g∗′′ ⋅ = ⋅ . 

Proof. The result follows from Theorems 3.3, 3.4. 
Definition 3.6. Let ( )f ⋅  be a nonsmooth continuous function on the interval [ ]0,1  and ( )1g∗ ⋅ , ( )2g∗ ⋅  be 

the optimal solutions of the functional optimization problem (8). The Extension generalized first and second de-
rivatives (EGDs) of ( )f ⋅  is denoted by ( )GFd f ⋅  and ( )GSd f ⋅ , respectively, and defined as ( ) ( )1GFd f g∗⋅ = ⋅  
and ( ) ( )2GSd f g∗⋅ = ⋅ . 

Definition 3.7. Let ( )f ⋅  be a nonsmooth Lebesgue integrable function on the interval [ ]0,1  and ( )1g∗ ⋅ , 
( )2g∗ ⋅ , be the Lebsgue integrable functions optimal solutions of the functional optimization problem (8). The 

EGDs of ( )f ⋅  is denoted by ( )GFd f ⋅  and ( )GSd f ⋅ , respectivily, and defined as ( ) ( )1GFd f g∗⋅ = ⋅  and 
( ) ( )2GSd f g∗⋅ = ⋅ . 

Note that if ( )f ⋅  is a smooth function, then ( )GFd f ⋅  in Definition 3.6 is equal to ( )f ′ ⋅  and ( )GSd f ⋅  is 
equal to ( )f ′′ ⋅ . Further, if ( )f ⋅  is a nonsmooth function, then GFD of ( )f ⋅  is an approximation for the first 
derivative and GSD of ( )f ⋅  is an approximation for the second derivative of ( )f ⋅ . 

We approximate the obtained generalized derivatives of nonsmooth function ( )f ⋅  with Fourier series 

( ) ( ) ( )( )

( ) ( ) ( )( )

0
1

1

0
2

1

cos π sin π ,
2

cos π sin π ,
2

k k
k

k k
k

a
g x a k x b k x

c
g x c k x d k x

∞

=

∞

=

= + +

= + +

∑

∑
 

where the coefficients ka , kb , kc , kd  satisfy the following relations: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 11 1

1 1
2 21 1

cos π d ,     sin π d ,

cos π d ,     sin π d .

k k

k k

a k x g x x b k x g x x

c k x g x x d k x g x x

− −

− −

= =

= =

∫ ∫

∫ ∫
 

1, 2,k =  . From Fourier analysis [17], we have lim 0k ka→∞ = , lim 0k kb→∞ = , lim 0k kc→∞ =  and  
lim 0k kd→∞ = . Hence there exists N ∈  such that 0ka ≈ , 0kb ≈ , 0kc ≈  and 0kd ≈  for all k N> . 

Note that, we can approximate the generalized derivatives of nonsmooth function ( )f ⋅  with polynomials 
0

M n
nn a x

=∑  of degree M. For this purpose put 

( ) ( )1 0GF M n
d i i n inf s g s a s

=
≅ =∑  

and 

( ) ( )2 0GS .M n
d i i n inf s g s b s

=
≅ =∑  

Hence, in what follow, by using the methods of [6], we will convert the problem (8) to the corresponding 
finite dimensional problem, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]

1
1 2 2 10

1

2
1

2 2
1 2

1
1 2

Minimize   , 2 d

subject to   d ,

1                  d 2 ,
2

1                   ,  0,1 , ,

i

i

i

i

N

k k
k

s
i i is

s
i i i i is

i

L g g v x g x x v x g x x

f x f s x s g s x

f x f s x s g s x s g s x

i ig g C s
m m

δ

δ

δ

δ

εδ

εδ

=

+

−

+

−

′⋅ ⋅ = +

− − − ≤

− − − − − ≤

− ⋅ ⋅ ∈ ∈


∑ ∫

∫

∫

( ) ( )1

0

,     1, 2, , ,

                   d ,k k

i m

v x f x xλ

=


′′= −∫



            (9) 

where N is a given big number. Let ( )i if f s= , ( )1i if f s δ= − , ( )2i if f s δ= + , ( )2 2i ig g s= , ( )1 1i ig g s=   

and ( )ki k iv v s=  for 1, 2, ,i m=   and 1,i
i is
m m
− =  

 
. Then by trapezoidal and midpoint integration rules,  
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problem 9 can be written as the following problem: 

( ) ( )( ) ( )1 2 2 1
1 1

1 1 2 1

2 2
1 1 2 2 1 2

Minimize   , 2

subject to   ,

1 1 2 ,     1, 2, , .
2 2

N m

ki i ki i k
k i

i i i i i i

i i i i i i i i

L g g v g v g

f f g f f g

f f g g f f g g i m

δ λ

δ δ εδ

δ δ δ δ εδ

= =

′⋅ ⋅ = + −

− + + − − ≤

− + − + − − − ≤ =

∑ ∑



        (10) 

Now, problem (9) can be converted to the following equivalent linear programming problem (see [14] [15]): 

( )

( )

( ) ( )

1

2 1
0

2 1
0

1 1

Minimize    ,

subject to   2 ,

                  2 ,

                  ,
                  ,
                  

N

k
k

m

k ki i ki i k
i

m

k ki i ki i k
i

i i i i

i i i i i

i

v g v g

v g v g

g f f

µ

µ δ λ

µ δ λ

τ ρ σ γ εδ

τ ρ δ
σ

=

=

=

′− + + ≤

′− − + ≤ −

+ + + ≤

− − = −

−

∑

∑

∑

( ) ( )
1 2

2
1 2 1

2
1 2 2

,
                 2 ,

1                 ,
2
1                 ,
2

                 ,  ,  ,  ,  ,  ,  ,  ,  0,

i i i i

i i i i

i i i i i i

i i i i i i

i i i i i i i i k

g f f
u q w z

u q g g f f

w z g g f f

w z u q

γ δ

εδ

δ δ

δ δ

σ γ ρ τ µ

+ = −

+ + + ≤

− − + = −

− + + = −

≥

                      (11) 

where 1ig , 2ig , kµ  for 1, 2, ,k N=   and iw , iz , iu , iq , iτ , iρ , iγ , iσ  for 1, 2, ,i m=   are deci- 
sion variables of the problem (11) and 

( ) ( )
1

d ,     1, 2,3, ,
m

k k i i
i

v s f s x k Nλ δ
=

′′= − =∑   

for 1, ,i m=   and ε , δ  are sufficiently small positive numbers. 
Remark 3.8. Let ( ) [ ]0,1nf C⋅ ∈  and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 1 0 1 0 1 0n nv v v v v v− −′ ′= = = = = = = . Then, by pre- 

vious EGD and using the above method and Taylor expansion of order n, simultaneously, we calculate all de-
rivatives up to nth order of ( )f ⋅ . 

Remark 3.9. By looking at the definition of EGD, for a function as ( ) ( )1
L

l llf x f x
=

= ∑  where  
( )1 2, , , nx x x x=  , we have ( ) ( )

kx k kf x f x∂ = ∂  for all 1,2, ,k L=  . So, to obtain the EGD of the multi-va- 
riable function ( )f x  with respect to kx , we employ the LP problem (11) and gain the generalized first and 
second derivatives of one-variable function ( )k kf x . 

4. Numerical Results 
In this stage, we have found the GFD and GSD of smooth and nonsmooth functions in several examples using 
problem (11). Here we assume that 0.01ε δ= = , 20N = , 99m =  and 0.01is i=  for all 1, 2, ,99i =  . The 
problem (11) is solved for functions in these examples using simplex method in MATLAB software. Attend that 
in our approach points in [ ]0,1  are selected arbitrarily, and with selection very of these points, we can cover 
this interval. In this examples, ( )1g x  shown the GFD and ( )2g x  shown the GSD of ( )f x . 

Example 4.1. Consider the nonsmooth function ( ) e xf x x −= , [ ]1,1x∈ −  is illustrated in Figure 1. Figure 

2 shows the GFD of ( )f ⋅ , which is the optimal solution of optimization problem (4). 
Example 4.2. Consider the smooth function ( ) ( )2e sinxf x x=  on interval [ ]0,1 . The function ( )f x  is il-

lustrated in Figure 3. Figure 4 shows the GSD of ( )f x  which has been obtained by using the problem (6). 
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Figure 1. ( )f x  of Example 4.1. 

 

 
Figure 2. GFD of Example 4.1 by using the problem (4). 

 

 
Figure 3. ( )f x  of Example 4.2. 
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Example 4.3. Consider the nonsmooth function ( ) 2 1 0.5f x x= − −  on [ ]0,1 . This function is not differen-
tiable in x = 0.25, 0.5, 0.75, and according to the problem (11), GFD and GSD of ( )f x  has been shown in 
Figure 5. 

Example 4.4. Consider the nonsmooth function ( ) 10
1 10i

if x x
=

= −∑  on [ ]0,1 . This function is not differen-

tiable in 
10i
ix = . This function and the GED of this function are shown in Figure 6. 

Example 4.5. Consider function ( ) ( )cos 5πf x x=  on interval ( )0,1  which is a non-differentiable function  

in points 2 1
10i
ix −

=  for any 1,2, ,5i =  . The function ( ) ( )cos 5πf x x=  and the GED of this function are 

shown in Figure 7. 

5. Conclusions 
We propose a strategy for approximating generalized first and second derivatives for a nonsmooth function. We 
assume that the function of interest which has satisfied, is different from what is usually found in the literature,  
 

 
Figure 4. GSD of Example 4.2 by using the problem (6). 

 

 
Figure 5. EGD of Example 4.3 by using the problem (11). 
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Figure 6. EGD of Example 4.4 by using the problem (11). 

 

 
Figure 7. EGD of Example 4.5 by using the problem (11). 

 
since it is not required to be locally Lipschitz or convex. These generalized derivatives are computed by solving 
a linear programming problem, whose solution provides simultaneously the first and second order derivatives. 
The advantages of our generalized derivatives with respect to the other approaches except simplicity and practi-
cally are as follows: 

1) The generalized derivative of a non-smooth function by our approach does not depend on the non-smooth- 
ness points of function. Thus we can use this GD for many cases that we do not know the points of non-differ- 
rentiability of the function. 

2) The generalized derivative of non-smooth functions by our approach gives a good global approximate de-
rivative as on the domain of functions, whereas in the other approaches the GDs are calculated in one given 
point. 

3) The generalized derivative by our approach is defined for non-smooth piecewise continuous functions, 
whereas the other approaches are defined usually for locally Lipschitz or convex functions. 

4) Our approach simultaneously gives first and second derivatives of nonsmooth function plus second deriva-
tive obtained directly from the primary function without need to compute the first derivative. 

5) The generalized derivative by our approach is valid for functions that are only integrable, where continuity 
and locally Lipschitz need not be assumed. 
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In deed we show that if [ ]: ,f a b →  is continuous, and if [ ]: ,a bϕ →  is a smooth function that va-  
nishes at the end points of the interval, then ( ) ( ) ( ) ( )d d

b b

a a
f x x x f x x xϕ ϕ′ ′= −∫ ∫ . In the following form, where  

continuity need not be assumed: if [ ]: ,f a b →  is an integrable function such that  

( ) ( ) ( ) ( )d d
b b

a a
g x x x f x x xϕ ϕ′= −∫ ∫  for some integrable [ ]: ,g a b →  and for all infinitely many times dif-  

ferentiable, or smooth, functions [ ]: ,a bϕ →  such that ( ) ( )0a bϕ ϕ= = , then f agrees almost everywhere 
with an absolutely continuous function; moreover f g′ =  almost everywhere in this case. 
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