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Abstract

We prove that the multiplication ring of a centrally closed semiprime ring R has a finite rank op-
erator over the extended centroid C iff R contains an idempotent q such that qRq is finitely gener-
ated over Cand, for each X € qRq, there exist z € gRgq and e an idempotent of C such that xz =eq.
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1. Introduction

The symmetric ring of quotients Q, (R) of a semiprime ring R is probably the most comfortable ring of quo-
tients of R . This notion was first introduced by W.S. Martindale [1] for prime rings and extended to the semi-
prime case by Amitsur [2]. Recall that a ring R is said to be semiprime (resp. prime) if 1> =0 for every
nonzero ideal | of R (resp. if 1J=0 for all nonzero ideals I, J of R). The center C of Q (R) is
called the extended centroid of R, and the C -subring Q; :=RC of Q, (R) generated by R is called the
central closure of R. A semiprime R is said to be centrally closed whenever R=RC . For every gqeR,
we will denote L, and R, the left and right multiplication operators, respectively, by g on R.The multip-
lication ring of R, M (R), is defined as the subring of L(R) generated by the identity operator 1d, and
the set |L,,R |0 e Rﬁ . The goal of this paper is to give a semiprime extension of the following well-known re-
sult (see for instance [3], Theorem A.9):

“If the multiplication ring of a centrally closed prime ring R has a finite rank operator over C then R
contains an idempotent g such that gRq is a division algebra finitely generated over C .
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It is also well know that the extended centroid of a prime ring is a field, however, for a semiprime ring, we
can only assert that said extended centroid is a von Neumann regular ring. This is the cause of the difficulty of
extending this result. The starting point of this path relies on the fact that each subset S of Q,(R) has an
associated idempotent e, of the extended centroid C (see [4], Theorem 2.3.9) and on a consequence (see
[4], Theorem 2.3.3 and Proposition 1.1 below) of the Weak Density Theorem ([4], Theorem 1.1.5).

2. Tools

We shall assume throughout this paper that R is a centrally closed semiprime ring. First of all, we recall that if
B, is the set of all idempotents in C has a partial order given by e< f iff e=ef . Moreover, B, is a
Boolean algebra for the operations

enf=ef, evf=e+f—-ef, and e =1-e.

In fact, [5], Theorem 1.8 remains valid in case that A=R isaring, and so this Boolean algebra is complete,
that is, every subset of 3, admits supremum and infimum. We will use the properties of the idempotent
associated to a subset referred to in ([4], Theorem 2.3.9 (i) and (ii)) without notice.

Given a C-submodule M of R, we will say that M is C -finitely generated if there exist q,,q,,--,
g, €R suchthat M <" Cq.

Next, we establish our main tool.

Proposition 1.1 Let N be a C -finitely generated C -submodule of R, and let g e R. Then there exists

fo e By suchthat:a) f,<e,,.b) f,geN andc) N+Cq= N@(1-f )q
Proof. We denote e =g, I]f geN,then f,= =€ Suppose that ge R\N . If NnCq=0, then we take
f, =0. In other case, take e/iq e NnCq, for some /]ie C . By ([4] Theorem 2.3.9), there exists xeC such

that Aul=A and AueB;. In particular, Aueqe N, and Aue<e. Thus, the family {f} < B, of all non-
zero idempotents satisfying f, <e and f,qe N is not empty. Let f,=vf,. Note that f, € B; because of
completeness of B;, and, of course, f,<e.If f,q¢ N,then, by ([4], Theorem 2.3.3), there exists F €M (R)

such that F(f,q)=0 and F(N)=0.But, since F(fq)=0,we have fieBF(q)” =0 andso f, S

forall i.Hence f; sl—e[ that is, foe[ =0, which is a contradiction with F( f,q)# 0. Therefore

{F)}]’ {F(a)]
f,q belongs to N. Take m =(1— f,)q. Let us see that N+Cq=N@Cm. Indeed, for every peN+Cq,
we can write:

p=m'+ig=m'+Af,g+imeM +Cm. @
Moreover, if there exists m, e N and AeC such that
m, = Zem = de(1- f,)aq,

then leq=m, +Aef,qe N.Take peC suchthat A°u=1 and wA isanidempotentin C. Itis clear that
ureqeM andso pde< f, by maximality. Thus, y/ie(l— fo) =0 and um, =0.Finally, note that:

0=Aum, = /12#6(1_ fo)q = /Ie(l_ fo)q =my.

Thus, the sum is direct. Note that f, € BB; verifies properties a), b) and ¢). []

As a consequence, we have the following:

Corollary 1.2 Let M be a nonzero C-submodule of R and qeR suchthat M < Cq. Then there exists
eeB; suchthat M =Ceq.

Proof. If geM take e=1. In other case, M +Cq=Cq. By Proposition 1.1, there is e e B; such that
egeM and Cq=M @®C(1-e)q.Thus, Ceq@®C(1-e)q=M @&C(1-e)q,andso, Ceq=M . [J

Note that if p, ge R then it may be that peCq but q¢ Cp. This forces us to make a convenient defini-
tion of set C -linearly independent. We will say that n nonzero elements q,,q,,---,q, of R are C-linearly
independent (or that the set S::{ql,qz,---,qn} is C -linearly independent) if, for all A,4,,---,4,€C,
ZJ,,qi =0 implies A4qg =0 forall ie {1n} , or equivalently, if the C -linear envelope M of the subset

S satisfies: M =@, Cq; . Note that for every 0=qeR and eeB,, if eq and (1-e)q are nonzero, then
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the sets S:={q} and S = {eq,(l—e)q} are C-linearly independent and both generate the C-module Cq . In
general, any C-finitely generated C-module M can be obtained as the C-linear envelope of C-linearly inde-
pendent sets with different cardinal. In this sense, in ([4] Theorem 2.3.9. (iv)) is asserted that one can select a
C-linearly independent set with a minimal number of generators under certain conditions. In any case, certain
properties of the vector spaces remain true for the C-submodules: the next results, probably well-known, are ob-
tained as a consequence of Proposition 1.1.

Corollary 1.3 Let {g;,q,,---,0,} be a subset of R and N CM two C-finitely generated C-submodules
of R suchthat M =N+ " Cq,. Thenthereare ee,, -, € B, such that the subset of R

[Py P P = {(1-€) (18 ) Gy, (L, ) 0| (1- ) g, # O

is C -linearly independent,and M = N@T:ij.

Proof. If g, eN, we take e =1. In other case, by Proposition 1.1, there exists e € B; such that
N+Cqg =N@®C(1-e)q, . Now,if q,e N®C(1-e)q, thentake e, =1,andif g, e N®C(1-e)q, then,
by Proposition 1.1, there exists e, € B; such that N®C(1-eq,)+Cq, =N®C(1-¢)q, ®C(1-e,)q,. TO
conclude, it is enough to repeat this procedure n times. []

Corollary 1.4 If N is a C-finitely generated C-submodule then there exist m<n and p;,p,,--,p, €N

suchthat N =@ Cp;.

Proof. Let q,,q,,---,0, € R such that N gzi”:qui. By Corollary 1.3 we can assume that the set
{ql, qz,---,qn} is C-linearly independent.

Itis clear that N +zi”:1qu =@, Cq, . By Proposition 1.1, there exist e,,e,,---,e, € By such that, for every
1<j<n, eq; eN®@/,Cq and

n

©C =N O@C(1-¢)q,

i=1

Hence,
n-1 n-1
@qu ®Cenqn @C(l_en)qn =N ®®C(1_ei)qi @C(l_en)qn'
i=1 i=1

Therefore, @ Cq, ®Ce,q, =N®@,C(1-¢)q,. Analogously, since e,q, =r"’+s with
M2 eN®@ C(l-¢)q and seC(l-e,,)d,,, we have

n i

n-2 n-2
{@qu fCre Cen_lqn_l} ®C(1-€, )0, = {N D©EPC(1-¢)q; } ®C(1-€,,)0
i=1 i=1

andso, @ Cq,+Cr?+Ce,,q,,=NOPC(l-¢)q.
By repeating this procedure, there are r,,r,,---,r; e N@®C(1-e )q, such that

Ll
[Ca, +Cr} +---+Crl +Ce,q, |®C(1-8,)d, = N®(1-e)q, ®(1-¢,)q,,
and hence, Cg,+Ce,Q,+Cry+---+Cr; =N®C(1-e,)q,. Therefore, since, e,q, =r,+s, with r,eN and
s, €(1-e)q,, and, foreach j>2, r;=r;+s; with r;eN and s; (1-e )qg,, we deduce that
[Celql+Cr21+--~+Crn1]69C(1—el)ql =N&(1-e)q,,
and so, Cegq, +Cr,+---+Cr, =N . Again, by Corollary 1.3, we obtain p,p,,--,p

elements of R suchthat N=@."Cp,. [

Let | =0 bearightideal of R. We say that | isa B, -minimal right ideal if for every nonzero right ideal
J of R contained in |, there exists some ee B; such that 0=eJ =el. Note that if R is prime then,
since C isafield, B; = {1} , and so, the concepts of 1, -minimal right ideal and minimal right ideal agree.

C -linear independent

m
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Recall that for a subset S of R the left annihilator {xeR:xS =0} will be denoted by I(S). The right
annihilator r(S) is similarly defined.

Proposition 1.5 Let | bea B;-minimal right ideal of R . Then there exists an idempotent 0#¢qeR and
eeBB; suchthat el =gR.Asaconsequence gR isa B;-minimal ideal of R.

Proof. Since 1 #0 and R is semiprime, 0= 12 < I, and hence there exists 0=q' el suchthat 0=qlcl.
Note that this implies the existence of some f e B; suchthat 0= fq'l = fl.Since q' e, there exists pel
suchthat 0= fq'p = fq'. Note that fq'p” = fq'p , and then: fq'(p®—p)=0,thatis, f(p*—p)er(fq)nfl.
Since r(fq') is a right ideal of R, if r(fq)nfl #0, by minimality there exists geB; such that
0 gr(fa')ngfl =gl .But since gN c gfl , we have gl = fgl = fg'gl =0, a contradiction. Hence, fp? = fp
(0= fp because fq'p=0). Then 0% fp=fp’ e fpR< fl 1. Since | is B,-minimal, there exists some
eeB; suchthat efpR=el. []

We finalized this section with a desirable result, which is similar to the well-known result for minimal right
ideals (see for instance [4], Proposition 4.3.3).

Proposition 1.6 Let g be an idempotent of R . The following assertion are equivalent:

1) gR is B, -minimal right ideal of R.

2) Forevery xeqRg\{0} thereexist zeqRq and eeB; suchthat xz=eq.

Proof. (1) = (2). Since q is an idempotent, it is clear that g is the unit of gRq. Take xe qRq\{O} Ct
is clear that 0 xR =0xR < R, and so, since xR is right ideal of R, there exists f € B, suchthat fxR= fgR.
In particular, there is z'e R suchthat fxz'= fq. Therefore xfqz'q= fxz'q= fq.

@2 = @

Let | be a nonzero right ideal of R such that | < gR. Let us see that there exists f € B, suchthat fqel .
Indeed, if we take 0= pel, by semiprimeness of R, there exists q'eR such that 0= pg'p. Note that
gp'=p’ forevery p'el cqgR.Consequently, pg'q=qpq’q isanonzero element of gRq, and hence there
are zeR and eefB; such that (pg'q)(qzq)=eq. Therefore eqe pRc |, and so, eqRqcel ceqRq .
Thus el =eqRq. [J

A nonzero idempotent g of R is said to be B, -minimal when the above assertions are fulfilled.

3. Theorem

In this section we will prove a semiprime extension of [3], Theorem A.9. Concretely,

Theorem 2.1 Let R be a centrally closed semiprime ring. Then M (R) has a C-finite rank operator if, and
only if, R containsa B, -minimal idempotent q suchthat gRq is C -finitely generated.

We begin this proof with an another consequence of Proposition 1.1,which is an improvement of Corollary
1.2 to case n>1. Given a nonzero C-module M C-finitely generated, we will say that dim,_ (M)=n when-
ever

Kk
n= Min{k eN:3p,, p,.---, P, € R\{0} such that M gZCpi}.
i=1

Lemma 2.2 Let M be a nonzero C -submodule of R and suppose that, for every f B, such that
fM =0, dim, (fM)=n>1. If M c @, Cq for some g eR\{0} then there exists eeB, such that

0=eM =@, Ceq, .
Proof. Itis clear that M+ " Cq, =@ Cq;. By Proposition 1.1, there exist f e, such that

n n-1
@Cq; =[M +@qu}®c(1— f1)
i=1l i=1
and f,q, eM +@,Cq;,infact, fgq, e f,M+@ " Cfq . Moreover,
n-1 n-1
@Cq; ®Cf,q, ®C(1-f,)q, {M +@qu}®c(l— fo) G-
i=1l

i=1

Hence,
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n-1 n-1
@qu ®C.I:nqn = M +@qu'
i=1

i=1

If f,g,=0,then

n-1 n-1
@Cq, =M +PCa;,
i=1

i=1

thatis, M c @?qui , and this is a contradiction. Thus, f g, =0 and
n n-1
@Cfig = f,M +@CH, ;.
i=1 i=1

Note that if f M =0 then 0= fq, e@i”j(:fnqi, which is a contradiction. By Proposition 1.1, there exist
f,, € By such that

n n-2
@Cfnqi = |: an + @Cfnqi i| ®C (l_ fn—l) fnqn—l
i=1 i=1

and f,,f,q,, e f,M+@ Cfq.Therefore, since f g, =p+p with pe fM+@ Cfq and
p'eC(1-f,,)f.q,,,itisclear that

n-2 n-2
|:@Cfnqi + Cp + Cfn—l fnqnlj| ®C (l_ fn—l) 1:nqn—l = |: fn M + @Cfnql :l ®C (l_ fn—l) fnqn—l'
i=1 i=1
Hence,
n-2 n-2
@cf,q +Cp+Cf, f,q,, = f,M +@PCfq;.
i=1 i=1

If f_,fa,,=0,then f M is contained in n-1 summands, which is a contradiction. Hence, since
f ,p="f,_,fq,, wehave

n

n-2
@Cfn—l fnqi = fn—l fn M + @Cfn—l fn qi :
i=1

i=1

n

Note that if f_,f M =0, then 0= f ,fq,, e @i:'fonfl f.g;, which is a contradiction. By repeating this

procedure, we find f,,---, f e B; suchthat, f,---fq,ef,---fM+Cf,---fq, 0=f,---fM,and
&, Cf,---f.q =f,--- f M®Cf,--- f q,.

Therefore, denoting e, = f,--- f,, again by Proposition 1.1, there exists f, € B; such that fe,q ce,M
and,

[Cfe,0, +Ce,q, +---+6,0,|®C(1- f,)e,q, =e,M ®C(1- f,)e,q,
and hence,
Cfe,q, +Ce,q, +---+Ce,q, =e,M ,
or even
Cfe,q, +Cf.e,q, +---+Cfe,q, = f,e,M .

Of course, 0= fe,q, because dim,, (e,M)=n,andso, 0= fe,M .Thus, take e= fe,. [J

The next result is an immediate consequence of the Weak Density (see [4], Theorem 2.3.3). We will denote
by M,, theoperator L R, forall p, gqeR.

Lemma 2.3 Let p,,---,p,,0, .0, €R. Assume that {p,---,p,} or {g,a,,q,} are C-linearly inde-
pendent sets such that zi”:lM ng = 0. Thenthereare 1< j<n and GeM (R) such that

g
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0#M pj,G(qj) = Zi:lM pi G(gi) "
Proof. Assume that q,,q,,---,q, € R are C-linearly independent. If € o lCla] = 0 forall ie {1n} then,

since "M, =>"M by WE deduce that >iM, . =0, is a contradiction. For simplicity, we

can suppose that € 1B * 0. By [4] (Theorem 2.3.3), there exists G = ZLMSPtj with s., t. e R, such that

1m0
G(e[pl]ql)io and G(q)=0 forall ie{2,-,n}.Put q =G(e[p1]q1) #0, and note that, for every q'eR,
we have:

Z(ZpiQ'Msj,tj (a )j=§piq’0(e[pi]qi)= CH

j=1\i=1

=M =M [

piG(ai) PL G P1G(a
First step in the proof of Theorem
Proposition 2.4 If M (R) has a C -finite rank operator then there are p, e R such that pRg is C-
finitely generated.
Proof. First of all, given a nonzero operator G € M (R) with C-finite rank we can find an operator of the

form > ' M

forsome oK ,and r,s;,r,seR.Wecantakeanelement geR such that L,G=0, because in other case
we would have G(R) c r(R) =0, a contradiction. Analogously, there exists some gqeR suchthat R L, G#0.
Now, F =M, G isa nonzero operator with the desired form. Moreover, if G(R) is C -finitely generated
then F (R) is also C -finitely generated. Secondly, taking in mind Corollary 1.3, we can assume without loss
of generality that the set {pl, P,y pn} is C-linearly independent. Finally, by Lemma 2.3 there are p, qeR

and HeM(R) suchthat 0=M  =>"M oH(q) @D S0, PRq isalso C -finitely generated. O

As a consequence: Zinle ) Moreover, by [4] (Corollary 2.3.10), 0= M oG

(o)

0.+ Which has also C-finite rank. In fact, the most general form of G is: ZLri R, +L +R +aldg

Second step in the proof of Theorem is a consequence of Lemma 2.2, and its proof can be obtained from a
careful reading of the proof of [4] (Lemma 6.1.4).

Proposition 2.5 Let p, ge R suchthat 0= pRq is C -finitely generated. Then there exist a B, -minimal
idempotent g, e R suchthat g,Rq, is C -finitely generated.

Proof. Without loss of generality we can assume that p=q. Since, in other case, if we take 0#r e pRq

then 0= rRr < pRq. Suppose further that gRq = ZLCri , for r, eR. By Corollary 1.3, we can assume that
the sum is direct. Consider the set

k
H ::{keN:k <n;39,0y,---,q, € R\{0}st qRq:@qu}.
i=1

Itis clear that neH . Take m as the minimumof Hand geR suchthat gRq=®",Cq, forsome ¢, eR.
Let 1 =gRgR. If 1 =0, then gRq gI(R):O, which is a contradiction because of semiprimeness of R.
Thus | #0. Let 0J < | be a right ideal of R and 0=z :Ziqxiqyi eJ, where x,y, eR. Setting

u:zixiqyi we note that z=qu. Note that if zRg=0 then 0=quRqu, a contradiction with the semi-

Primeness. Take 0=q’'ezRq, it is clear that q'Rq’' < zRq < qRg. Note that M =q'Rq’ satisfies the hypo-
thesis either of the Corollary 1.2 (if m=1) or of the Proposition 2.2 (if m>1), in any case, there is e e B5;
such that 0+eq'Req’ =@, Ceq, =e(qRq). In particular, el =eq'Req'R cezR < J. Therefore, 0=el =el,
that is, | isa B;-minimal right ideal of R . By Proposition 1.5, there exist ee By, and g, € R such that

el =q,R. Clearly g,=q7eeM,andso g, =>"quqy, where u, v, eR.Hence gq,Rq, <> gRay, and
so g.Rq, is C -finitely generated. []
Finally, the converse is obvious.
Funding
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