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Abstract

We establish the existence of positive solutions for singular boundary value problems of coupled
systems

—(p(Du) =g, (tu= f(tv)+e(t),
—(p(t)V') —q, (t)v=f,(t,u)+e,(t),
(

)
au(0)-4u'(0)=0, yu(l)+6,u'(1)=0,
a,v(0)—B,v'(0)=0, y,v(1)+8,v'(1)=0.
The proof relies on Schauder’s fixed point theorem. Some recent results in the literature are ge-
neralized and improved.
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1. Introduction

In this paper, we consider the existence of positive solutions for coupled singular system of second order
ordinary differential equations
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(P (t)U) — ()u = f, (V) +e (1),

(P2 (V) =0, (t)v = T, (tu)+e, (1), (L1)
ou (0)_ﬂ1u,(0) =0, nu (1)+51u’(1) =0,

a,v(0)-B,v'(0)=0, y,v(1)+6,v'(1)=0.

Throughout this paper, we always suppose that

(s)) m(t)eC'([0.1].R), pi(t)>0, g (t)eC([0.1].R), q(t)<0, &(t)eC([0.1].R) . f5.%.5 >0,
and By, + a7, + 6, >0 (1=1,2). f, f, e C([O,l]x(0,+oo),(0,+oo)), and may be singular near the zero.

In recent years, singular boundary value problems to second ordinary differential equations have been studied
extensively (see [1]-[3]). Some classical tools have been used in the literature to study the positive solutions for
second order singular boundary value problems of a coupled system of differential equations. These classical
methods include some fixed point theorems in cones for completely continuous operators and Schauder fixed
point theorem, for example, see [4]-[6] and literatures therein. Motivated by the recent work on coupled systems
of second-order differential equations, we consider the existence of singular boundary value problem. By means
of the Schauder fixed point theorem, we study the existence of positive solutions of coupled system (1.1).

2. Preliminary

We consider the scalar equation
~(p(t)u’) —q(t)u=e(t). 1)
with boundary conditions
au(0)-pu’(0)=0, ypu(l)+su’'(1)=0, (2.2)
Suppose that u is a positive solution of (2.1) and (2.2). Then

u(t)=[G(t,s)e(s)ds.
where G(t,s) can be written by

_1[m(t)n(s), (ts)eQ,
G(t’s)'_a){m(s)n(t), )e0

here 1=[0,1], Q=1xI and le{(t,s)eQ|03tss31}, QZ:{(t,s)eQ|0£s£tsl}.

Lemma 2.1. Suppose that (S,) holds, then the Green’s function G(t,s), defined by (2.3) possesses the
following properties:

1): m(t)eC?*(1,R) isincreasingand m(t)>0, x<(0,1].

2): m(t)eC?(1,R) isdecreasingand n(t)>0, x[0,1).

3): (Lm)(t)=0, m(0)=24, m'(0)=a.

4): (Ln)(t)=0, n(1)=6, n'(1)=—y.

5): @ is a positive constant. Moreover, p(t)(m’(t)n(t)—m(t)n'(t)) =w.

6): G(t,s) is continuous and symmetrical over Q.

7): G(t,s) has continuously partial derivative over Q,, Q,.

8): For each fixed sel, G(ts) satisfies LG(t,s)=0 for s=#t, tel.Moreover, R (G)=R,(G)=0
for s€(0,1).

9): G/ has discontinuous point of the first kind at t=s and

G/(s+0,5)-G/(s-0,5)=— se(0,1).

1
p(s)’
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We define the function y,(t):[0,1] >R by

t)=.[;Gi(t,s)ei(s)ds, i=12,
which is the unique solution of
~(p, (1)U’ (1)) —q (t)u(t)=e (t),0<t<l, i=12
au (0 ) u'(0)=0,
(1)+6u (1)=0.

Following from Lemma 2.1 and (S,), itis easy to see that
G, (t,s)>0, forall (t,5)e[0,1]x[0,1], i=12

Let us fix some notation to be used in the following: For a given function h € C [0 1] we denote the essential
supremum and infimum by h* and h, . if they exist. Let, 7. = mtln n(t), ¥ = max;xl( ).

3. Main Results
1) 7.20, 7, 20.
Theorem 3.1. We assume that there exists b, >0, b >0,and O<¢; <1 such that

(H,) BU(t)<f(t u)<b(t) forall u>0, ae te(0,1), =12

If 7,20, 7,20, then there exists a positive solution of (1.1).
Proof A positive solution of (1.1) is just a fixed point of the completely continuous map
A(u,v)=(Au,AV): C[O 1]xC[0,1] > C[0,1]xC[0,1] defined as

(Au)(t jG (t.s)[ fi(s.v (s))+el(s)]ds=_[;Gl(t,s) f,(s.v(s))ds+7(t);
(AV)(t IG (t,s [fz(s,u(s))+e2(s)]ds=I:G2 (t,5) f,(s,u(s))ds+,(t);

By a direct application of Schauder’s fixed point theorem, the proof is finished if we prove that A maps the
closed convex set defined as

K :{(u,v)eC[O,l]xC[O,l]:rl <u(t)<R,r, <V(t)<R,, forall te[O,l]}

into itself, where R, >r, >0, R, >r, >0 are positive constants to be fixed properly. For convenience, we
introduce the following notations

B (1) =[G, (t.5)b (s)ds, f(t)=[G, (t.s)b (s)ds, i=12

Given (u,v)e K, by the nonnegative signof G, and f, i=12 we have

(Au)(t IG t,s) f,(s,v(s))ds+7(t) IG t,s 61(( ))ds_jG (t,s BlR(Z:)dsz 3. ngl

Note for every (u,v)eK

(Aiu)(t):.[;Gl(t,s) f,(s,v(s))ds+, (t) JG (t,5) bl( )ds+ 7 SJG (t,s bl(s)ds+yf£ﬂf%+yf

v (s) Rt f

Similarly, by the same strategy, we have

U)

(AV)(t IG (t,5) f,(s,u(s))ds+y,(t) .[G (t,s 6(())ds>J'G t,s)

(S)dsz 3. 1
Raz 2 Riaz
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(sz)(t):jjez(t,s) fz(s,u(s))ds+;/2(t)sI:Gz(t,s) bzz(s) ds+7;‘SJ:GZ(t,s)bZ(S)ds+7;<ﬂ; LI,

ua (S) rlaz - r1a2

Thus (Au,Av)eK if r,r, R, R, arechosen so that
3 1 * l *
B.- Re" 2 B ’rle""?/l <R
s 1 * 1 *
B, R 20 By e +7, <Ry

Note that Bi* >0, B.>0 andtaking R=R =R,, r=r=r,, r :%, it is sufficient to find R>1 such

that

B.-R™ 21, B7-R%+y <R
B, -R™2 21, B -R%+y; <R.
and these inequalities hold for R big enough because ¢; <1.
2) 7, <0, y,<0.

The aim of this section is to show that the presence of a weak singular nonlinearity makes it possible to find
positive solutions if " <0, y, <0.

Theorem 3.2. We assume that there exists b, >0, 6, >0, and 0<g; <1 such that (H,) is satisfied. If
7 <0, y,<0 and

1

3 l-ma;
2| o, ﬂ—l {1— ! j,
=\ A o, o
( 5, ) 1

o
|

. (3.1)
s l-aay
.| o, by [l— 1 j
%\ %2
(,Bl ) oo,
then there exists a positive solution of (1.1).
Proof In this case, to prove that A:K — K itissufficientto find 0<r <R, 0<r, <R, such that
"2‘ ﬂf
R—Zal"rj/l* Zl‘l, rlegRl (32)
n
Ifwefix R = % R, = ﬁTZZ then the first inequality of (3.3) holds if r, satisfies
r I,

2 1

A e
B, (ﬂl ) L 4y, 2

or equivalently
ﬂ,\‘ .
Vyp = g(rz) =h - *2 P e
(4)
The function g(r,) possessesa minimum at
1
ﬁ"Z* l-aap
o =| & —— 2~
(5)

Taking r, =r,,, then (3.3) holds if
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(ﬂl* )az o,
Similarly,
7 2h(n)=1- ﬂ e
()
h(r,) possesses a minimum at
1
. ’gf l-oap
o =| @ —
()
, L l-may 1_ 1
Ve 2| 0, N aa
(ﬂz) 1%

Taking I, =r,, I, =r,, then the first inequalities in (3.2) and (3.3) hold if y. >h(r) and 7, >g(r,),
which are just condition (3.1). The second inequalities hold directly from the choice of R, and R,, so it

remains to prove that = B >r,, R, = P >r,, This is easily verified through elementary computations:
@ ~ 10 2 a 20
20 r-10
14 %2 1
% * * *\ l-oga * 1~
_ﬂl_ B _ B _ (ﬂl) v _ (’Bl) "
ﬁA " l-aap ﬂg* o (0!1(12 ' ﬂz* )170(10[2 |:(G(10.’2 ’ ﬁz* ) l :|1_a1a2
aqa, —2 - o,
(181) ] ( 1)
_ 1 1
« oy " o S l-ma,
_ 181 _ 1 ﬂl ﬂl* _
= ~ a = P T Ry = o,
(alaz B, ) (o) (ﬁz* ) (:32 )

since ﬁl < B, i=12 Similarly, we have R, >, .

3) 7,20, ;<0 (y; <0,7, zo)

Theorem 3.3. Assume that (H,) is satisfied. If . >0, »; <0 and

N rzofaz
Yy 2, —,32* T am (3.4)
(ﬂl Ty )
where 0<r, <-+oo isa unique positive solution of equation
e " . a l+a, .
b (B vy nt) T =B, (35)

then there exists a positive solution of (1.1).
Proof We follow the same strategy and notation as in the proof of ahead theorem. In this case, to prove that
A:K — K, itissufficientto find r, <R, r, <R, such that

b >r, L R, (3.6)
R "
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B, B .
Rl—iz+)/2, >, r2711+;/l <R (3.7)
If wefix R, = 722 , then the first inequality of (3.6) holds if r, satisfies
r1
b LY (3.8)
(£)
or equivalently
ot
S l-aa,
0<r < A - (3.9)
()
If we chose r, >0 small enough, then (3.9) holds, and R, is big enough.
Ifwefix R = %+ 7, then the first inequality of (3.7) holds if r, satisfies
r-2
ﬁ " ~ 1 ~ 1 ~ %%z
R N Tl B vt
R B Bty -n" (ﬂ1 +71'r21)
o + N o
r,t r,t
or equivalently
~ r2f110!2
7y > f ()=, ~p,.- (3.10)

(B +r5)”

According to

f’(r2)=1—ﬂA2* .

1 aap -1 * x og \?2 aa ¢ P *Lon—1
20, [‘110‘2"212 (ﬂl+71'r21) _rzlzaz(ﬂl"'?/l’rzl) anh

(ﬂf +7 rzal)

P o1
B oqa,t, -0

L e A e, -
_ (B o7 112|:_ﬂ*+7* L UV (Brerem)
+y, T 1) 17/
170

we have f'(0)=—o0, f’(+w0)=1,then thereexists r, suchthat f'(r,)=0,and

f "(I‘2 ) = _[O‘lazﬂfﬁz* (%az _1) a2 (ﬁl* +7 0t )7

l-ap

*n a1 * -y —2-ay -1
+ay o, BN, (—1—a2)(ﬁ1 b ) naht | >0.

Then the function f (r,) possessesaminimumat r,,ie., f(r,)=min . f(r).
Note f'(r,)=0 then we have
-, B, 11 B (ﬁ; +71 b )7

l-ay _ O
or equivalently
l-omay * * Lo L+az _ * 0
N1 (181 oty ) = o, p B,
Taking r, =r,,, then the first inequality in (3.7) holds if Yy 2 f(r21), which is just condition (3.4). The
second inequalities hold directly by the choice of R,, and it would remain to prove that r,, <R, and r, <R,.
These inequalities hold for R, bigenoughand r, small enough.

908
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Remark 1. In theorem 3.3 the right-hand side of condition (3.4) always negative, this is equivalent to proof

that f(r,)<0. This is obviously established through the proof of Theorem 3.3.

Similarly, we have the following theorem.
Theorem 3.4. Assume (H, ) is satisfied. If »; <0, y,.>0 and

hy'™
71* 2 rll _ﬂl* T

* *La .
(ﬂz 720 )

where 0<r, <-+o0 isa unique positive solution of the equation

l-aay * * Lty _ * D
n (ﬂz 720 ) =a,5 P,

then there exists a positive solution of (1.1).
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