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ABSTRACT 

Matrix-assisted Laser Desorption/Ionization with 
Time-of-flight Mass Spectrometry (MALDI-TOFMS) 
was investigated as a method for the rapid identifica-
tion of species. Current demand in microbial identi-
fication is how to compare unknown strains to the 
known one quickly, semi-automatically and accu-
rately. In this paper, we present a software tool that 
allows flexibly microbial matching in a user-friendly 
way, by letting the users to customize comparison 
parameters including: in vitro transcription enzyme, 
mass tolerance, minimum fragment length, intensity 
threshold and corresponding weights. We provide 
three spectral scoring functions to compute the affin-
ity between the species. Therefore, the precision of 
microbial comparison increases. To test and verify 
this tool, we employed experimental spectral data 
based on MALDI-TOFMS and the gene sequences of 
E.coli and Salmonella. This software is written in 
Java for cross-platform intention. 
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1. INTRODUCTION 

MALDI-TOFMS is an analytical technique that meas-
ures the mass-to-charge ratio of charged particles. It is 
used for determining masses of particles, for determining 
the elemental composition of a sample or molecule, and 
for elucidating the chemical structures of molecules, 
such as peptides and other chemical compounds. With 
the development of this technology, microbial identifica-
tion by mass cataloging has attracted considerable atten-
tion owing to its high efficiency and automation. Mean-
while, there is a current demand that to compare mass 
spectrometric observables with theoretical fragmentation 

patterns, and further to determine the genetic affinity 
between the sample gene and genes of known species in 
the database quickly, semi-automatically and accurately. 

Within this context, our paper presents a software tool 
that allows flexibly microbial matching in a user-friendly 
way. When it comes to the matching speed and accuracy, 
this software provides three spectral scoring functions to 
compute the coincidence between the species. As for the 
semi-automation, the tool allows the users to customize 
comparison parameters including: transcription enzyme, 
mass tolerance, minimum fragment length, intensity 
threshold and corresponding weight. 

To test and verify this tool, we employed the experi-
mental spectra data based on MALDI-TOFMS and the 
gene sequences of E.coli and Salmonella. 

The remainder of the document is structured as fol-
lows. We present three algorithms for computing the 
coincidence between the sample gene and genes of 
known species in Section 2, followed by the description 
and the verification of the software separately in Section 
3 and Section 4. Subsequently, related work is discussed 
in Section 5. Finally, Section 6 concludes. 

2. ALGORITHM 

2.1. Overall Algorithm 

The overall algorithm in comparison process is as fol-
low: 

1) Amend the gene sequence of the known reference 
species according to the transcription enzyme. To form 
the theoretical gene sequence, if the promoter is T7, the 
nucleotide sequence “TTCTATAGTGTCACCTAAAT” 
will be added to the original one, while If the promoter is 
Sp6, reverse and complement(A-T, G-C) the original 
gene sequence, and then add the nucleotide sequence 
“CCCTATAGTGAGTCGTATTAC” as its subsequence. 

2) Cut the theoretical gene sequence after every base 
‘G’, omitting the fragments which have less than L nu-
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cleotides. L is determined by the user. 
3) Calculate the mass of all fragments (also referred to 

as ‘fingerprint biomarkers’) from the sequence and then 
form the sequence’s mass vector. The mass of every 
fragment is: 

- 329.2 305.2

361.2 18.0148 1.0072

M fragment A G

T

   
    Da



  (1) 

A, G, C and T separately stand for the one-to-one total 
number of Adenylic acid, Guanylic acid, Cytidylic acid 
and Thymidylic acid in each fragment. 

4) Take the mass vector of the gene sequence and cal-
culate the score indicating their similarity by using one 
of the spectral scoring functions introduced below. 

2.2. The First Spectral Scoring Function 

The first spectral scoring function [1] in our work is as 
follow: 

Let N denote the total number of fingerprint bio-
markers in the given theoretical gene sequence. A vector 
u of length N is constructed. The elements of u contain 
0’s and 1’s. The ith element of u is 0 if the ith fingerprint 
peak is not observed in the blinded sample and 1 if the 
mass of ith fragment is observed within tolerance in the 
blinded sample. The number of 1’s in u (or sum of all 
elements of u) indicates the number of fingerprint bio-
markers observed in the blinded sample.  

For each blinded sample and each reference species, 
likelihood is computed based on the number of frag-
ments observed in the blinded sample. This likelihood is 
a value between 0 and 1. If the likelihood is close to 1, 
then the reference bacterium is determined to be present. 
If the likelihood is close to 0, then the blinded sample 
does not contain the significant fingerprint biomarkers, 
and the reference is determined to be absent. 

2.3. The Second Spectral Scoring Function 

Based on the first method, the second spectral scoring 
function [2] in our work allows the user to define two 
intensities, partitioning the whole experimental peaks 
into three parts: the first peaks list, whose intensities are 
higher than the larger defined intensity; the second peaks 
list, whose intensities are between the two defined inten-
sities; and the third peaks list, whose intensities are 
lower than the smaller defined intensity. Furthermore, 
users can assign the credibility for the three intervals of 
peaks, and give weights for them separately, but the 
weighted sum must be one. This method considers the 
reliability of the intensities and involves the users’ ex-
perience. The scoring function is as follow: 

 1 1 2 2 3 3D MP W MP W MP W N        (1) 

where: 

MP1 is the number of the matched fragments between 
the theoretical fragments and the experimental peaks 
whose intensities are higher than the larger defined in-
tensity. 

MP2 is the number of the matched fragments between 
the theoretical fragments and the experimental peaks 
whose intensities are lower than the larger defined inten-
sity and higher than the smaller defined intensity. 

MP3 is the number of the matched fragments between 
the theoretical fragments and the experimental peaks 
whose intensities are lower than the smaller defined in-
tensity. 

W1, W2 and W3 are separately the credibility of the 
three intervals of peaks corresponding to MP1, MP2 and 
MP3. 

N is the total number of fingerprint biomarkers in the 
given theoretical gene sequence. 

A higher score indicates more genetic affinity, indi-
cating a higher possibility of being the same species. 

2.4. The Third Spectral Scoring Function 

The third spectral scoring function [2,3] in our work is 
as follow: 

   
2* M M

C
M M M M




   
            (3) 

The scalar product (often referred to as a ‘dot-product’) 
of two mass in the function is defined as: 


1 2
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i j
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m              (4) 

where M is the mass vector of one sample’s fragmenta-
tion, which has N1 fragments with mi standing for the 
mass of the ith fragment, while M' is the mass vector of 
the other sample’s fragmentation, which has N2 frag-
ments with standing for the jth fragment. The discrete 
delta function δ is: 

 
1; δ

δ
0;otherwise

k
k


 


             (5) 

Given inevitable experimental inaccuracy, the discrete 
delta function δ can be further modified to be: 

 
1; tolerance

δ
0;otherwise

k
k

  


           (6) 

Based on the formulas, the inner-product is greater if 
the two samples have more fragments of the same mass. 
The spectral scoring function normalizes the in-
ner-product value to a range between zero and one, and a 
high value of the spectral scoring function indicates a 
higher possibility of being the same species. 
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3. SOFTWARE tion of the experimental inaccuracy by means of adopt-
ing tolerance, and finally provides the comparison con-
sequence of the selected method. For further research, it 
is available for users to save the comparison result as a 
txt report file. Figures 2, 3 and 4 separately represent the 
user interfaces of the three scoring methods in the soft-
ware. 

To perform microbial comparison, the software uses the 
exported ASCII Spectrometry .txt file from DataEx-
plorer (Figure 1), whose data is the mass-intensity spec-
trometry result from MALDI-TOFMS, and the theoretic 
gene sequence of the known reference species, either .txt 
file imported from the local file system or direct text 
pasted in the blank box, as inputs. The software offers 
three spectral scoring functions mentioned above, and 
users can choose one of them to calculate the coinci-
dence between the experimental data and the theoretic 
DNA sequence. In all the three methods, users are free to 
customize some conditional parameters in their mass- 
spectrometry experiment, including: in vitro transcrip-
tion enzyme-either T7 or Sp6, mass tolerance, minimum 
fragment length and intensity threshold. In addition, in 
Method 2, users can customize the intensity range and 
corresponding weight according to their previous ex-
perience of the importance of the peaks among the rela-
tive intensity scope. Subsequently, the software parses 
the input file, generates peak lists after filtering peak 
values below the intensity threshold, with the considera- 

4. VERIFICATION 

This paper presents two parts of experiments, the nega-
tive control and the positive one, to verify the accuracy 
and the utility of the software. 

In the negative control, we divide it into two parts, 
and in each part we use five sets of data from five sepa-
rate experiments of one species and the DNA sequence 
of another species as input to test the consequence of 
inconsistence. For example, we calculate the coincidence 
between the theoretic sequence of E.coli and each set of 
the experimental data of Salmonella. To ensure justice, 
we control the experimental conditions with the same 
parameters. Table 1 shows the results of these negative 
control experiments. 

 

 

Figure 1. Mass-intensity spectrometry of the experimental gene in DataExplorer. 
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Figure 2. The user interface of Method 1. 
 

 

Figure 3. The user interface of Method 2. 
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Figure 4. The user interface of Method 3. 
 

Table 1. The results of the negative control experiments. 

Coincidence Negative 
Control 

Theoretic 
Sequence 

Experimental 
Data Method 1 Method 2 Method 3 

E.coli Salmonella (1) 0 0.005 925 925 925 925 930 0 

E.coli Salmonella (2) 0 0.002 962 962 962 962 960 0 

E.coli Salmonella (3) 0 0.005 925 925 925 925 930 0 

E.coli Salmonella (4) 0 0.004 444 444 444 444 4400 0 

Part I 

E.coli Salmonella (5) 0 0.005 925 925 925 925 930 0 

Salmonella E.coli (1) 0.035 714 285 714 285 70 0.032 142 857 142 857 10 1.75E-04 

Salmonella E.coli (2) 0.035 714 285 714 285 70 0.032 142 857 142 857 10 2.42E-04 

Salmonella E.coli (3) 0 0 0 

Salmonella E.coli (4) 0.035 714 285 714 285 70 0.032 142 857 142 857 10 2.92E-04 

Part II 

Salmonella E.coli (5) 0.035 714 285 714 285 70 0.032 142 857 142 857 10 0.001 472 754 050 073 6400

 
We find that the results of the coincidence are all too 

low for the microbe to be classified as the certain species 
of the theoretic sequence. In other words, it demonstrates 
that the experimental species is probably not the same 
kind as the theoretical species, which accords with our 
expectation.  

Meanwhile, in the positive control, we divide it into 

two parts as well, and we use five sets of data from five 
separate experiments of one species and the DNA se-
quence of the same species as input. For instance, the 
coincidence between the theoretic sequence of E.coli and 
its experimental data is calculated. Also, the circum-
stance of each experiment remains the same as to ensure 
fairness. Table 2 shows the results of the positive control   
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Table 2. The results of the positive control experiments. 

Coincidence Positive 
Control 

Theoretic 
Sequence 

Experimental 
Data Method 1 Method 2 Method 3 

E.coli E.coli (1) 0.074 07 0.069 63 2.62E-04 

E.coli E.coli (2) 0.074 074 074 074 074 10 0.066 666 666 666 666 70 8.20E-04 

E.coli E.coli (3) 0.074 074 074 074 074 10 0.066 666 666 666 666 70 1.32E-04 

E.coli E.coli (4) 0.074 074 074 074 074 10 0.066 666 666 666 666 70 8.76E-04 

Part I 

E.coli E.coli (5) 0.074 074 074 074 074 10 0.066 666 666 666 666 70 0.004 419 889 502 762 430

Salmonella Salmonella (1) 0.035 714 285 714 285 70 0.035 000 000 000 000 000 4.28E-05 

Salmonella Salmonella (2) 0.071 428 571 428 571 40 0.064 285 714 285 7143 0.015 463 917 525 773 200

Salmonella Salmonella (3) 0.035 714 285 714 285 70 0.035 000 000 000 000 000 1.87E-04 

Salmonella Salmonella (4) 0.035 714 285 714 285 70 0.035 000 000 000 000 000 1.82E-05 

Part II 

Salmonella Salmonella (5) 0.035 714 285 714 285 70 0.035 000 000 000 000 000 0.010 344 827 586 206 900

 
experiments. 

Given the allowed tolerance during experiment and 
the previous experience, we find the results of the coin-
cidence are all within acceptance, which reflects high 
probability of the similarity between two species in the 
comparison, and which also demonstrates that our soft-
ware is robust and accurate. 

5. RELATED WORK 

The software in this paper completes the comparison 
between the known species in the databases and the un-
known species which has mass-intensity data generated 
by MALDI-TOFMS. In the next phrase, we will do sta-
tistical analysis to amount of spectra from one species 
and expect to compare affinity among unknown species. 
Furthermore, we will try to model for species and search 
the possible species range for the unknown species based 
on its MALDI-TOFMS data. 

6. CONCLUSIONS 

In order to allow flexibly microbial matching in a user- 
friendly way, we design the software “micromatcher”. 
To perform microbial comparison, the software uses 
exported ASCII Spectrometry .txt file from DataExplorer, 
whose data is the mass-intensity spectrometry result 
from MALDI-TOFMS and the theoretical gene sequence 
of the known species in the database as inputs. The soft-
ware offers three spectral scoring functions and users 
can choose one of them. Then users are free to customize 
some comparison parameters, including: in vitro tran-
scription enzyme, mass tolerance, minimum fragment 
length, intensity threshold and corresponding weight. 
The software parses the input file, generates peek lists 
after filtering peak values below the intensity threshold, 

taking into account the experimental inaccuracy by 
means of adopting tolerance and finally provides the 
comparison consequences. 

The software computes the genetic affinity between 
the sample gene and genes of known species in the da-
tabase quickly, semi-automatically and accurately. 
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