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Abstract 
Recent successful examples for synthesis of new polyolefins containing (polar) functionalities by 
adopting the approaches by controlled incorporation of reactive functionalities (and the subse-
quent introduction of polar functionalities under mild conditions) by coordination polymerization 
in the presence of transition metal complex catalysts have been described. Related methods (such 
as direct copolymerization of olefin with polar monomer using living radical or coordination in-
sertion methods) have also been demonstrated for comparison. Our recent efforts for precise 
synthesis of polyolefins containing polar functionalities by efficient incorporation of reactive 
functionality by copolymerization of ethylene with nonconjugateddiene (1,7-octadiene, vinylcy-
clohexene etc.) or divinyl-biphenyl using nonbridged half-titanocene [ex. Cp’TiCl2(O-2,6-iPr2C6H3), 
Cp’ = C5Me5, tBuC5H4 etc.] catalysts have been introduced. 
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1. Introduction: Background 
Polyolefin has been one of the most important commercial synthetic plastics in our daily life, and the market 
capacity is still increasing even in the conventional polymers such as polyethylene [HDPE (High Density Poly-
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ethylene), LLDPE (Linear Low Density Polyethylene)], polypropylene (PP). Considerable attention has been 
paid to produce new polymers with specified functions called “fine polyolefins” exemplified as COC (cyclic 
olefin copolymer) etc., and design of the efficient metal complex catalysts plays an important key for the success 
[1]-[23]. Precise control in the copolymerization is an important method that usually allows an alteration of the 
(physical, mechanical, and electronic) properties by varying the ratio of individual components. The catalysts 
exhibiting high activities with better comonomer incorporations are thus very important. 

Precise, efficient synthesis of polyolefins containing polar functionalities by controlled polymerization at-
tracts considerable attention [20]-[30] especially because of their promising amphiphilic nature. Two strategies 1) 
direct copolymerization with functionalized (polar) monomers (Scheme 1 and Scheme 2) post polymerization 
modification (Scheme 2) are commonly employed for this purpose.  
 

 
Scheme 1. Approaches for syntheses of functionalized polyolefins by “direct” copolymerization.               
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Scheme 2. Synthesis of functionalized polyolefins by “post modification” approaches.                            

 
However, the conventional radical copolymerization (Scheme 1(a), ex. ethylene/vinyl acetate copolymeriza- 
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2. Synthesis of Polyolefins Containing Polar Functionalities by Controlled  
Introduction of Reactive Functionalities 

Recently, an approach on controlled incorporation of a reactive moiety that introduces functionalities through 
chemical modification (Scheme 2(c)) [21]-[23] [29] [30] has been considered as an alternative route. A known 
classic model of this approach is the introduction of unsaturation as exemplified by using 5-ethylidene-2-nor- 
bornene, 1,4-hexadiene, and dicyclopentadiene (but showed inefficient incorporations in the copolymerization 
by ordinary catalysts) [20] [31]. Introduction of unsaturatedolefinic double bond into the side chain can be pos-
sible by adopting thecopolymerizatioin of ethylene with 7-methyl-1,6-octadiene (MOD, Scheme 3) [29] [30] 
[32], especially due to a difference in the reactivity of two olefinic double bonds (terminal vs trisubstituted). 
However, their incorporations by the ordinary catalysts (metallocenes etc.) were inefficient, affording (co)po- 
lymers with low molecular weights as well as rather broad molecular weight distributions.We reported that co-
polymerizations of ethylene with 7-methyl-1,6-octadiene (MOD) by Cp*TiCl2(O-2,6-iPr2C6H3) (1)—MAO 
catalyst system afforded high molecular weight unsaturated poly(ethylene-co-MOD)s not only with high MOD 
contents, but also with exclusive incorporation of monoolefins (without incorporating trisubstituted olefin) [32]. 
The MOD contents in the resultant copolymers were thus closely related to those in the ethylene/1-octene co-
polymerizations under the similar conditions. 

For introduction of more reactive functionality (terminal olefin) into the side chain for the efficient function-
alization process under mild conditions, use of nonconjugateddiene like 1,5-hexadiene (HD) for synthesis of 
functionalized polyolefin by the favored repeated HD insertion has been considered [33] [34], although most of 
the reported examples using ordinary catalysts such as zirconocene (exemplified as 3 and 4, Scheme 4), titano-
cene, half-zirconocene, and others favored cyclopolymerization incorporating methylene-1,3-cyclopentane unit 
(Scheme 4, route A). The approach should introduce promising possibilities like, incorporation of terminalole-
finic double bond (route B) that would introduce polar functionality in a controlled manner by chemical modifi-
cation under mild conditions. 

Polymerizations of HD by Cp*TiCl2(OAr) (1), [Me2Si(indenyl)2]ZrCl2 (3) exhibited the remarkable catalytic 
activities, and the resultant poly(HD)s were insoluble [33] [34]. Based on the DSC thermograms (sole glass tran- 
sition temperature), 13C CPMAS spectra, and the dynamic mechanical analysis (DMA), 1 favored repeated 1,2- 
insertion affording polymers containing olefinic double bond in the side chain (uniform distributions), whereas 
the polymerization by 3, Cp2ZrCl2 (4) favored cyclization under the same conditions.  
[Me2Si(C5Me4)(NtBu)] TiCl2 (2) showed low activities with favored repeated insertion, affording high molecular 
weight poly(HD)s which possessed internal olefinic double bonds by accompanied isomerization [34]. 

Note that exclusive repeated insertion of 1,7-octadiene (OD) could be achieved in OD polymerization using 
1—MAO catalyst, affording polymers containing terminal olefinic double bonds in the side chain [35]. Selectiv-
ity of the repeated insertion (percentage of the double bond, hexenyl group, based on the OD insertion) was af-
fected by the OD concentration employed, but the selectivity was high even under low OD concentration [36]. 
The observed higher selectivity in the OD polymerization than that in the HD polymerization would be consid-
ered as the difference of the proposed intermediate in which the other olefin coordinates to Ti after HD or OD 
insertion (formation of 5- or 7-membered ring after cyclization). 

Moreover, the copolymerizations of OD with 1-octene (OC) afforded high molecular weight copolymers with 
uniform molecular weight distributions, and the OD contents (degree of hexenyl group) estimated by 1H NMR 
spectra could be varied by the OD/OC feed ratio [35]. The resultant copolymers were treated with 9-BBN and  
 

 
Scheme 3. Synthesis of poly(ethylene-co-7-methyl-1,6-octadiene) prepared by 
Cp*TiCl2(O-2,6-iPr2C6H3) (1)—methylaluminoxane (MAO) catalyst system 
[32].                                                               
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Scheme 4. Basic scheme for polymerization of nonconjugateddiene (1,5-hexadiene, HD) [33] [34].       

 
then NaOH/H2O2 aq. to givepoly {OC-co-(7-octen-1-ol)} exclusively (98.9%) without decrease/increase in the 
Mn value [35]. The OH group in the copolymers was further treated with AlEt3, and was then added ε-caprolac- 
tone (CL) to afford the graft copolymers, poly{OC-co-(7-octan-1-ol}-graft-poly(CL), via Al-alkoxide initiated 
ring-opening polymerization (ROP, Scheme 5). 

Copolymerization of ethylene with OC, OD were thus conducted, affording poly(ethylene-co-OC-co-OD)s 
containing olefinic double bond in the side chain (Scheme 6) [35]. Note that remarkable activities (activity: 
29,400 - 102,600 kg-polymer/mol-Ti·h) were also observed in the copolymerization, even in syntheses of the 
copolymers with high OC/OD contents (OC+OD total 37.6 - 43.8 mol%). Also note that the resultant copoly-
mers possessed high molecular weights with unimodal molecular weight distributions. 

Introduction of OD in ethylene/styrene copolymer could be achieved using aryloxo-modified half-titanocenes, 
Cp’TiCl2(O-2,6-iPr2C6H3) [Cp’ = Cp* (1), tBuC5H4 (5), 1,2,4-Me3C5H2 (6)], affording high molecular weight 
polymers with unimodal molecular weight distributions (Table 1) [37]. The initial comonomer concentration 
affected both the catalytic activity and the comonomer contents [37]. Complex 6 showed the best catalyst per-
formance in term of both the activity and the comonomer incorporation. The microstructure for poly(ethylene- 
costyrene-co-OD) showed the clear resonance ascribed to the vinyl carbon in the resultant polymers [37]. 
Moreover, no resonance ascribed to the cyclization of OD was observed, indicating that the polymerization pro-
ceeded with notable selectivity of OD repeated insertion, affording polymers containing terminal olefinic double 
bond in the side-chain, as demonstrated previously [35]. The present results should introduce a new promising 
approach for synthesis of new polyolefins. 

In Scheme 7, the copolymerizations of ethylene with vinylcyclohexene (VCHen), commercially produced by 
dimerization of butadiene, proceeded via vinyl addition affording high molecular weight copolymers containing 
cyclohexenyl side chains (with uniform compositions as well as with unimodal molecular weight distributions) 
accompanied with certain degree of side reaction (via intra-molecular cyclization after VCHen insertion) [38]. 
This approach could be possible, because both Cp*TiCl2(O-2,6-iPr2C6H3) (1) and CpTiCl2(N=CtBu2) (7) exhi- 
bited efficient vinylcyclohexane (VCH) incorporation in the ethylene/VCH copolymerization [39], as well as 
exhibited negligible comonomer incorporation in ethylene/cyclohexene copolymerization [40]. The Cp-ketimide 
analogue (7) showed the best catalyst performance in terms of both the activity and the selectivity (lowest de-
gree of the subsequent intra-molecular cyclization). Quantitative epoxidation of the olefinic double bonds in the 
resultant copolymer could be achieved by using m-chloroperbenzoic acid under mild conditions; a facile, precise 
synthesis of functionalized polyolefin can be demonstrated by adopting this approach. 
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Scheme 5. Controlled introduction of polarfunctionality into polyolefins, poly(1-octene-co-1,7-octadiene) [35].  

 

 
Scheme 6. Copolymerization of ethylene with 1-octene, 1,7-octadiene [35].     

 
Table 1. Terpolymerization of ethylene and styrene (St) with 1,7-octadiene (OD) by Cp’TiCl2(O-2,6-iPr2C6H3) [Cp’ = Cp* 
(1), tBuC5H4 (5), 1,2,4-Me3C5H2 (6)]—MAO systems [37].                                                       
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Scheme 7. Synthesis of cyclic olefin copolymers containing polar functionality [38].    

 
in the side chain [41]. The unsaturated ethylene/styrene/DVBP polymer was subsequently polymerized via ani-
onic polymerization using nBuLi (Scheme 8). The resultant polymer showed increases in both the Mn value and 
yield compared to the starting polymer and possessed unimodal molecular weight distribution [42]. An increase 
in the styrene content in the whole polymer (35.9 mol% → 50.6 mol%) as well as the intensity of the resonances 
ascribed to carbon of (more than) three styrene repeat units (Tββ) in the 13C NMR spectrum was clearly observed 
[41]. 
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in the polymers showed no melting temperature even with low styrene contents, and these samples do not have 
glass transition temperatures between 20˚C and 290˚C. The results thus strongly suggest that the resultant poly-
mers are terpolymers (amorphous materials) with uniform compositions. 

3. Efficient Introduction of Functional Group into Polyolefins by Direct  
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Copolymerization of ethylene with allyltrimethylsilane (ATMS) by the Cp*-aryloxo analogue (1) afforded high 
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Scheme 8. Post-polymerization of poly(ethylene-co-styrene-co-DVBP) with styrene initiated 
by nBuLi [41].                                                                   

 

 
Scheme 9. Terpolymerization of ethylene and p-methylstyrene (p-MS) with α-olefins [44].         

 

 
Scheme 10. Copolymerization of ethylene with allyltrialkylsilanes [45], vinyltrialkylsilanes [48].      
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copolymers with uniform compositions could be achieved by adopting 7, although both the activity and the Mn 
values decreased upon increasing the VTMS contents. Later, we found that the copolymerization by the con-
strained geometry catalyst (2) also proceeded efficiently [49]. The attempted copolymerization using Cp2ZrCl2- 
MAO catalyst afforded linear polyethylene with low catalytic activity [48]. 

4. Summary and Outlook 
Although recent progress in the living radical, metal-catalyzed coordination polymerization, and the direct ter-
minal alkane C-H activation method offers new promising possibilities, approach on controlled incorporation of 
a reactive moiety that introduces polar functionalities through chemical modification has been considered as an 
alternative approach. An introduction of terminal olefinic double bond by repeated insertion of 1,7-octadiene 
(OD) without cyclization/cross linking in polymerization of OD can be achieved by using our designed catalysts, 
nonbridged half-titanocesnes. These enable us to prepare the functionalized polymers under mild conditions in a 
precise manner. The catalysts also demonstrated new possibilities for direct copolymerization of ethylene with 
vinyltrialkylsilanes that cannot be achieved by ordinary metallocenes. Several promising findings that should be 
very important from both academic and industrial viewpoints can be demonstrated; particular attention should 
be thus paid to explore the possibility for preparing fine polyolefins by adopting these methodologies. 
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