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Abstract 

An antimedian of a sequence ( )1 2= , , ,π kx x x  of elements of a finite metric space ( ),X d  is an 

element x  for which ( ),∑ 1=1
k
i d x x  is a maximum. The function with domain the set of all finite 

sequences on X , and defined by ( )πAM = { x : x  is an antimedian of π } is called the antime-

dian function on X . In this note, the antimedian function on finite paths is axiomatically charac-
terized. 
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1. Introduction 

The problem of finding one optimal location for schools, drug stores, police stations, and hospitals requires 
facilities to be placed near the users in order to minimize, for example, the distance traveled to reach them. 
Location theory deals with this type of optimization problem. Location functions such as the median, the center, 
and the mean have been used to solve these type of problems. On the other hand, there are circumstances where 
placing one or more facilities as far as possible from the users is the best solution. For instance, it is necessary to 
locate nuclear power plants far from cities or towns to minimize the risk of radiation problems. Similar problems 
include the determination of suitable locations for observatories, radio stations, airports, and chemical plants. 
The solution to the problem of finding an optimal location for these types of obnoxious facilities on networks 
has been studied by Church and Garfinkel [1], Minieka [2], Ting [3], and Zelinka [4]. In these investigations two 
solutions to the problem are given from an algorithmic perspective. The most appealing solution is called the 
antimedian, the points that maximizes the total distance from the facility to the users. Another solution is the 
anticenter, the points that maximizes the total distance from facilities to users. For more information about 
obnoxious facilities the reader is remitted to [5]-[7]. In the case of tree graphs, Ting [3] published a linear 
algorithm to find the antimedian of a tree, and Zelinka [4] proved that the set of leaves of a tree contains an 
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antimedian. This problem can be approached through the axiomatization of location functions. The input of a 
location function consists of some information with respect to the users of the facilities, and the output is related 
to the consensus reached based on the given information. The rationality of this process is supported by the fact 
that location functions must satisfy a number of consensus axioms. The mean function on tree graphs was the 
first location function studied from the axiomatic point of view by Holzman [8] in the continuous case (in the 
continuous case a tree contains an infinity number of elements, the edges of the tree are considered to be 
rectifiable curves, and a profile π  and its members are allowed to be located anywhere on edges). After that 
Vohra [9] also characterized the median function in the continuous case; in addition the reader can see [10]. In 
the discrete case, the center, the median, and the mean function have been characterized axiomatically on trees 
(see for example [11]-[20]). Not much research has been done with respect to the axiomatic characterization of 
obnoxious location functions, but recently Balakrishnan et al. [21] published a characterization of the 
antimedian function on paths. In what follows, we present a different axiomatic characterization, also on paths, 
of the antimedian function. Ortega and Wang have recently sent for publication an axiomatic characterization of 
the antimean function on paths. For more information about location theory and axiomatization we refer the 
reader to the following references [22]-[27]. 

2. Preliminaries 

Let ( ),X d  be a finite metric space and set  

1

k

k
X X∗

≥

=


 

where 
 timesk

kX X X= × ×


  is the cartesian product of X . The elements of X ∗  are called profiles  and usually 
denoted by ( )1 2, , , kx x xπ =  . Location theory and consensus theory are related to solve the following problem: 
Given a collection of k  users (voters, customers, clients, etc.) with each user having a preferred location point 
in X , one attempts to find a set of elements of X  that satisfy the preferences of the users with respect to 
some well-defined criteria. Modeling this situation requires the use of a location function on X , which is a 
function { }: 2 \XL X ∗ → ∅ , where 2X  denotes the set of all subsets of X . Three well known examples of 
location functions are:  

a) the center function, denoted by Cen, and defined as  

( ) ( ){ }: ,  is minimumCen x X e xπ π= ∈  

where ( ) ( ) ( ) ( ){ }1 2, max , , , , , , ke x d x x d x x d x xπ = 
. 

b) the median function, denoted by Med, and defined as  

( ) ( ){ }:  is minimumMed x X S xππ = ∈  

where ( ) ( )1 ,k
iiS x d x xπ =

= ∑ . 
c) the mean function, denoted by Mean, and defined as  

( ) ( ){ }:  is minimumMean x X SS xππ = ∈  

where ( ) ( )2
1 ,k

iiSS x d x xπ =
= ∑ . 

We are interested in finite metric spaces defined in terms of connected graphs. Let ( ),G V E=  be a finite 
connected graph, and let d  be the usual distance on V , where ( ),d x y  is the length of a shortest path 
between x  and y . It is well known that ( ),V d  is a metric space, and observe that a profile in a graph G  
is simply a sequence of vertices where repetitions are allowed. We will investigate some properties of the 
antimedian function on finite metric spaces defined in terms of a very special type of connected graphs, namely 
paths. 

3. The Antimedian Function on Paths 

In this section P  or ( ),P V E=  will denote a path of length p . We will label the vertices of P  as 
0,1, 2, , p  and assume that the order that the vertices have in the path is given by the order of the numbers 
0,1, 2, , p . Hence, P  will be represented as  
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0 1 2 .P p= → → → →                                      (1) 

Notice that the set of vertices is { }0,1,2, ,V p=   and also that vertex 0  is adjacent to vertex 1 , vertex 1  
is adjacent to vertex 2  and so on. In the case p  has an even number of vertices, we will write 2 1p k= + . In 
the case p  has an odd number of vertices, we will write 2p k= . Let ( )1 2, , , nx x xπ =   be a profile on P ; 
for any x V∈  we define the status of x  with respect to π  to be the number  

( ) ( )
1

, .
k

i
i

S x d x xπ
=

= ∑  

A vertex x  is called an antimedian of π  if  

( ) ( )   .S y S x y Vπ π≤ ∀ ∈  

The antimedian of π  is the set  

( ) { } is an antime dian of .AM x V xπ π= ∈  

In order to study the antimedian function on P , we will divide the paths in two classes. The set of paths that 
have an odd number of vertices will be called odd paths, and the set of paths with an even number of vertices 
will be called even paths. Let ( )1 2, , , nx x xπ =   be a profile on P , the notation  

w π∈  
will indicate that there is { }1,2, ,i n∈   such that ix w= . We also use [ ]π  to denote the set of all the 
different vertices included in π , and the number of vertices in the profile π  counting repetitions is denoted 
by π .  

For example consider the profile ( )0,0,1,1,5,0,5,5,1,0,3,3π =  on P  with 5p = . In this case 1 π∈ , 
[ ] { }0,1,3,5π = , and 12π = . 

If ( )1 2, , , nx x xπ =   and ( )1 2, , , my y yβ =   are profiles on P , denote by α πβ=  the profile  

( )1 2 1 2, , , , , , , .n mx x x y y yα πβ= =    

The profile α  is called the concatenation of π  and β . The following result related to the antimedian 
function has been proved in [21].  

Lemma 1 Let ( )1 2, , , nx x xπ =   and ( )1 2, , , my y yβ =   be profiles on P . If ( ) ( )AM AMπ β∩ ≠ ∅ , 
then  

( ) ( ) ( ).AM AM AMπβ π β= ∩  

The definition of the antimedian function implies the following characteristic of this function.  
Lemma 2 Let ( )1 2, , , nx x xπ =   be a profile on P , and let σ  be any permutation of { }1,2, ,n . Then  

( ) ( )AM AM σπ π=  

where ( ) ( ) ( )( )1 2, , , .nx x xσ
σ σ σπ =    

The median function on finite tree graphs satisfies the following property that was proved in [13], and will be 
important in the proof of several results.  

Lemma 3 Let ( )1 2, , , nx x xπ =   be a profile on a finite tree T . If ( )m Med π∈  and if  
( ) 1 2, s sP m y my y y=   is a path contained in T  such that ( )1y Med π∉ , then  

( ) ( ) ( ) ( )1 2 .sS m S y S y S yπ π π π< < < <  

The property of the median function described by Lemma 3 will be called the increasing status property.  
Lemma 4 Let ( )1 2, , , nx x xπ =   be a profile on a path P  of length p . Then 
a) ( ) ( )0S S pπ π<  implies ( ) { }AM pπ = , 

b) ( ) ( )0S p Sπ π<  implies ( ) { }0AM π = . 
Proof. Notice first that a path is also a tree; consequently, we can apply to P  the increasing status property. 

We first obtain the set ( )Med π ; if ( ) { }Med tπ =  for some 0 t p≤ ≤ , then we define the paths  

( ),0 1 0P t t t= → − → →  
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and  

( ), 1 .P t p t t p= → + → →  

By the increasing status property we have  

( ) ( ) ( ) ( )1 2 0S t S t S t Sπ π π π< − < − < <  

and  

( ) ( ) ( ) ( )1 2 .S t S t S t S pπ π π π< + < + < <  

Observe that 
if ( ) ( )0S S pπ π< , then ( ) { }AM pπ = , and 

if ( ) ( )0S p Sπ π< , then ( ) { }0AM π = . 
On the other hand, assume ( ) { }, 1, 2, ,Med t t t t mπ = + + + . Define the paths  

( ),0 1 0P t t t= → − → →  

and  

( ), 1 2 .P t m p t m t m p+ = + + → + + → →  

By the increasing status property we have  

( ) ( ) ( ) ( )1 2 0S t S t S t Sπ π π π< − < − < <  

and  

( ) ( ) ( ) ( )1 2 3 .S t m S t m S t m S pπ π π π+ + < + + < + + < <  

If ( ) ( )0S S pπ π< , then ( ) { }AM pπ = , and 

if ( ) ( )0S p Sπ π< , then ( ) { }0AM π = .                                                       
We say that a profile π  on P  is of the form ( )20, sp ×  for some integer 1s ≥ , if π  contains exactly s  

times the vertices 0  and p . For example the profile ( )0,0,0, , ,0, ,p p p pπ =  is of the form ( )2 40, p × . 
Profiles π  of the form ( )20, sp ×  are special for the antimedian functions because ( ) { }0,1, ,AM pπ =  .  

Lemma 5 Let π  be a profile the form ( )20, sp ×  for some integer 1s ≥  on a path P  of length p . Then 
( ) { }0,1, ,AM pπ =  .  

Proof. It is well known that if ( ),a bβ =  is a profile on a finite tree T , the median of π  consists of all 
the vertices in the path  

( ) 1 2, sP a b av v v b=   

from a  to b . This implies that  

( ) ( ) ( ) ( ) ( )1 2 .sS a S v S v S v S bβ β β β β= = = = =  

Since a path P  is also a tree, and if ( ),a bβ = , then we have  

( ) ( ) ( ) ( )0 1 2 ,S S S S pβ β β β= = = =  

and the definition of the antimedian function implies that ( ) { }0,1, ,AM pβ =  . Because π  is of the form 
( )20, sp × , then 2sπ = , and we can reorder the vertices of π  to define the profile  

( )0, ,0, , ,0, .p p pπ ′ =   

By Lemmas 1 and 2 we obtain  

( ) ( ) ( ) ( ) ( ) { }0, 0, 0, 0,1, , .AM AM AM p AM p AM p pπ π ′= = ∩ ∩ ∩ =   

  
The next result characterizes profiles π  on a paths of length p  that satisfy the condition ( ) ( )0S S pπ π= , 

and that are not of the form ( )20, sp × .  
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Lemma 6 Let P  be a path of length p , and let ( )1 2, , , nx x xπ =   be a profile that is not of the form  
( )20, sp ×  for some integer 1s ≥ . If ( ) ( )0S S pπ π= , then ( ) { }0,AM pπ = .  

Proof. Since P  is a tree we can apply the increasing status property. We start by obtaining the set 
( )Med π . If ( ) { }Med tπ =  for some 0 t p≤ ≤ , then we define the paths  

( ),0 1 0P t t t= → − → →  

and  
( ), 1 .P t p t t p= → + → →  

By the increasing status property we obtain  
( ) ( ) ( ) ( )1 2 0S t S t S t Sπ π π π< − < − < <  

and  

( ) ( ) ( ) ( )1 2 .S t S t S t S pπ π π π< + < + < <  

Observe that: 
if ( ) ( )0S S pπ π= , then ( ) { }0,AM pπ = . On the other hand, assume ( ) { }, 1, 2, ,Med t t t t mπ = + + + . 

Define the paths  
( ),0 1 0P t t t= → − → →  

and  

( ), 1 2 .P t m p t m t m p+ = + + → + + → →  

By the increasing status property we have  
( ) ( ) ( ) ( )1 2 0S t S t S t Sπ π π π< − < − < <  

and  
( ) ( ) ( ) ( )1 2 3 .S t m S t m S t m S pπ π π π+ + < + + < + + < <  

Note that ( ) ( )0S S pπ π=  implies ( ) { }0,AM pπ = .                                            
From Lemmas 4, 5, and 6 we obtain the following important result that characterizes the output of the 

antimedian function on paths of length p .  
Lemma 7 If ( )1 2, , , nx x xπ =   is a profile on a path P  of length p , then  

( ) { } { } { } { }{ }0 , , 0, , 0,1, , .AM p p pπ ∈ 
 

Assume  
0 1 2 .P p= → → → →  

is a path of length p . If ( )0,1, , pπ =   and 2p k= , then ( ) { }Cen kπ = . Similarly, if ( )0,1, , pπ =   and 
2 1p k= + , then ( ) { }, 1Cen k kπ = + . Denote by [ ]i kP≤  the set of vertices Vi∈  such that ki ≤ ; similarly 

we define the set [ ]1i kP≥ + . Using the sets  

[ ] [ ] [ ] [ ]1andi k i kP Pπ π≤ ≥ +∩ ∩  

we define a partition of the profile π  as follows: denote by ki≤π  the profile such that [ ] [ ] [ ]i k i kPπ π≤ ≤= ∩  
and each vertex in [ ] [ ]i kP π≤ ∩  is included in the profile ki≤π  as many times it appears in π . In a similar way 
we define the profile 1+≥kiπ  using the set [ ] [ ]1i kP π≥ + ∩ . Notice that π  can be seen as the concatenation of 
profiles ki≤π  and 1+≥kiπ , in other words 1i k i kπ π π≤ ≥ += . The following number  

 ( ) ( ) ( ) ( )
1

1

, , .
i k i k

i k i kx x
d x k d x k S k S kπ π π

π π
≥ + ≤

≥ + ≤∈ ∈

∆ = − = −∑ ∑                          (2) 

will play an important role in the following sections.  

4. The Antimedian Function on Odd Paths  

In this section  
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0 1 2 ,P p= → → → →  

represents a path such that 2p k= , and note that in this case ( ) { }Cen P k= . Let ( )1 2, , , nx x xπ =   be a 
profile on P ; we will use π  to define a new profile that will be denoted π ∗ . This profile contains the vertex 
k  repeated π  times. In other words we are assuming that ix k=  for all ni ≤≤0 . So, π ∗  is the profile  

( ), , , .k k kπ ∗ =   

We want to establish a relationship between ( )0Sπ  and ( )0S
π∗

. From the definition of profiles ki≤π  and 
1+≥kiπ  we derive the identities  

 ( ) ( ) ( )0, 0, , .i kd x d k d x k x π ≤= − ∀ ∈                                (3) 

and  

 ( ) ( ) ( ) 10, 0, , .i kd x d k d x k x π ≥ += + ∀ ∈                                (4) 

Using (3), (4), and the definitions of ( )0Sπ  and ( )0S
π∗

, we get  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1

1
1

0 0, 0, 0, , 0, ,

            0 , , 0 .
i k i k i k i k

i k i k
i k i k

x x x x

x x

S d x d x d k d x k d k d x k

S d x k d x k S S k S k

π
π π π π

π ππ π
π π

≤ ≥ + ≤ ≥ +

∗ ∗ ≥ + ≤
≤ ≥ +

∈ ∈ ∈ ∈

∈ ∈

= + = − + +      

= − + = + −

∑ ∑ ∑ ∑

∑ ∑
 

In terms of π∆ , defined by (2), and ( )0S
π∗

 we deduce the following relation for ( )0Sπ   

( ) ( )0 0 .S Sπ ππ∗
= + ∆  

The next result is corollary to the definition of the number π∆ .  
Corollary 1 If ( )1 2, , , nx x xπ =   is a profile on P , then 0π∆ =  if and only if ( ) ( )

1i k i k
S k S kπ π≥ + ≤

= . 
The definition of ki≤π  and 1+≥kiπ  implies  

( ) ( ) ( ), , , i kd p x d p k d k x x π ≤= + ∀ ∈  

( ) ( ) ( ) 1, , , .i kd p x d p k d k x x π ≥ += − ∀ ∈  

These relations imply  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 1

1
1

1

= , , = , , , ,

            = , , =

            = = .

i k i k i k i k

i k i k
i k i k

i k i k

x x x x

x x

S p d p x d p x d p k d k x d p k d k x

S p d k x d k x S p S k S k

S p S k S k S p

π
π π π π

π ππ π
π π

π π ππ π

≤ ≥ + ≤ ≥ +

∗ ∗ ≤ ≥ +
≤ ≥ +

∗ ∗≥ + ≤

∈ ∈ ∈ ∈

∈ ∈

+ + + −      

+ − + −

− − − ∆

∑ ∑ ∑ ∑

∑ ∑  

The definition of π ∗  and the fact that ( ) { }Cen P k=  indicate  

( ) ( )0S S p
π π∗ ∗=                                       (5) 

The following three lemmas establish an important relationship between the numbers ( )0Sπ , ( )S pπ , and 
π∆ . These results will be used to characterize the antimedian of profiles π  on P .  
Lemma 8 If ( )1 2, , , nx x xπ =   is a profile on P , then ( ) ( )0S p Sπ π=  if and only if 0π∆ = .  
Proof. Assume first ( ) ( )0S S pπ π= , and notice  

( ) ( )0S S pπ π=  

( ) ( )0S S pπ ππ π∗ ∗+ ∆ = + ∆  

π π∆ = −∆  

2 0π∆ =  

This implies 0π∆ = . 
Because of (5) and the fact that 0π∆ = , we obtain  
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π π∆ = −∆  

( ) ( )0S S pπ ππ π∗ ∗+ ∆ = − ∆  

( ) ( )0S S pπ π=  

  
Replacing the equal sign with <  and >  in the proof of Lemma 8, we obtain the next two results.  
Lemma 9 If ( )1 2, , , nx x xπ =   is a profile on P , then ( ) ( )0S S pπ π<  if and only if 0π∆ < .  

Lemma 10 If ( )1 2, , , nx x xπ =   is a profile on P , then ( ) ( )0S S pπ π>  if and only if 0π∆ > .  
We end this section with an important result that characterizes the antimedian of a profile π  on odd paths 

that is not of the form ( )20, sp ×  for some integer 1≥s .  
Lemma 11 Let ( )1 2, , , nx x xπ =   be a profile on an odd path P . If π  is not of the form ( )20, sp ×  for 

some integer 1≥s , then  

( )
{ }
{ }
{ }

0, , if 0;
0 , if 0;

, if 0.

p
AM

p

π

π

π

π
∆ =

= ∆ >
 ∆ <

 

Proof. Assuming 0π∆ =  and because π  is not of the form ( )20, sp × , then Lemma 8 implies 
( ) ( )0S S pπ π= , and Lemma 6 proves ( ) { }0,AM pπ = . 

If 0π∆ > , then Lemma 10 shows ( ) ( )0S S pπ π> , and Lemma 4 demonstrates {0}=)(πAM . 

If 0π∆ < , then Lemma 9 shows ( ) ( )0S S pπ π< , and Lemma 4 proves ( ) { }AM pπ = .               

5. The Antimedian Function on Even Paths 

In this section  
0 1 2 ,P p= → → → →  

represents a path where 2 1p k= + ; so, we have 1
2

pk −
= , and in this case ( ) { }, 1Cen P k k= + . Let π  be a  

profile on P . Using similar ideas as in the last section, we can obtain a relationship between the numbers 
( )0Sπ , ( )0S

π∗
, π , and π∆ . Since the profile ki≤π  contains all the vertices of π  whose index is less or 

equal to k , then  
 ( ) ( ) ( )0, 0, , .i kd x d k d x k x π ≤= − ∀ ∈                                (6) 

Using the profile 1+≥kiπ  we obtain  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10, 0, 1 , 1 0, 1 , 1 0, , .i kd x d k d x k d k d x k d k d x k x π ≥ += + + + = + + − = + ∀ ∈     (7) 

From (6) and (7) and the definition of ( )0Sπ  and ( )0S
π∗

, we deduce  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1

1
1

0 0, 0, 0, , 0, ,

            0 , , 0 .
i k i k i k i k

i k i k
i k i k

x x x x

x x

S d x d x d k d x k d k d x k

S d x k d x k S S k S k

π
π π π π

π ππ π
π π

≤ ≥ + ≤ ≥ +

∗ ∗ ≥ + ≤
≤ ≥ +

∈ ∈ ∈ ∈

∈ ∈

= + = − + +      

= − + = + −

∑ ∑ ∑ ∑

∑ ∑
 

In terms of π∆ , we have the relation  

 ( ) ( )0 0 .S Sπ ππ∗
= + ∆                                        (8) 

Observe that  

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1 , 1 , 1 , 1 , , .i kd p x d p k d x k d p k d x k d p k d x k x π ≤= + + + = − + + = + ∀ ∈  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1, , 1 , 1 , 1 , 1 , , .i kd p x d p k d x k d p k d x k d p k d x k x π ≥ += + − + = − − + = − ∀ ∈  

Using a similar argument as above, we obtain  
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1 1

1
1

, , , , , ,

            , , . .
i k i k i k i k

i k i k
i k i k

x x x x

x x

S p d p x d p x d p k d k x d p k d k x

S p d k x d k x S p S k S k S p

π
π π π π

π π ππ π π
π π

≤ ≥ + ≤ ≥ +

∗ ∗ ∗≥ + ≤
≤ ≥ +

∈ ∈ ∈ ∈

∈ ∈

= + = + + −      

= + − = − − = − ∆

∑ ∑ ∑ ∑

∑ ∑
 

The definition of π ∗  implies the identity  

( ) ( )( ) ( )( ) ( )
0 0

, 1 1 0, 1 0 .
i i

S p d p k d k S
π π

π π
π∗ ∗

= =

= + + = + = +∑ ∑  

This identity provides the following relation between ( )S pπ  and ( )0S
π∗

.  
 ( ) ( )0 .S p Sπ ππ

π∗= + − ∆                                (9) 

The next three results show some properties of the numbers ( )0Sπ , ( )S pπ , π , and π∆ .  

Lemma 12 If ( )1 2, , , nx x xπ =   is a profile on P , then ( ) ( )0S S pπ π=  if and only if 
2π
π

∆ = .  

Proof. Assume first ( ) ( )0S S pπ π= , and notice that (8) and (9) indicate  
( ) ( )0S S pπ π=  

( ) ( )0 0S Sπ ππ π
π∗ ∗+ ∆ = + − ∆  

π ππ∆ = − ∆  

2 π π∆ =  

2π

π
∆ =  

Conversely, if 
2π

π
∆ = , then  

2π

π
∆ =  

2 π π∆ =  

π ππ∆ = − ∆  

( ) ( )0 0S Sπ ππ π
π∗ ∗+ ∆ = + − ∆  

( ) ( )0S S pπ π=  

  
By replacing the equal sign with <  and >  in the proof of Lemma 12, we obtain the following two results.  

Lemma 13 If ( )1 2, , , nx x xπ =   is a profile on P , then ( ) ( )0S S pπ π<  if and only if 
2π

π
∆ < .  

Lemma 14 If ( )1 2, , , nx x xπ =   is a profile on P , then ( ) ( )0S S pπ π>  if and only if 
2π

π
∆ > .  

The next lemma is an important result because it characterizes the antimedian of profiles π , on even paths, 
that are not of the form ( )20, sp ×  for some integer 1≥s .  

Lemma 15 Let ( )1 2, , , nx x xπ =   be a profile on an even path P . If 2π ≥  and π  is not a profile of 
the form ( )20, sp ×  for some integer 1≥s , then  

( )

{ }

{ }

{ }

0, , if ;
2

0 , if ;
2

, if .
2

p

AM

p

π

π

π

π

π
π

π


∆ =




= ∆ >



∆ <
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Proof. Assuming 
2π

π
∆ =  and since π  is not of the form ( )20, sp × , Lemma 12 shows ( ) ( )0S S pπ π= ,  

and Lemma 6 indicates ( ) { }0,AM pπ = . 

If 
2π

π
∆ > , then Lemma 14 implies ( ) ( )0S S pπ π> . Now Lemma 4 proves {0}=)(πAM . 

If 
2π

π
∆ < , then Lemma 13 shows ( ) ( )0S S pπ π< , and Lemma 4 implies ( ) { }AM pπ = .             

The next result is a corollary to Lemma 15.  
Corollary 2 Let π  be a profile on P . If π  is of the form ( )2, 1 sk k ×+  for some integer 1≥s , then  
( ) { }0,AM pπ = .  

Proof. Notice that in this case the profile 1+≥kiπ  contains s  times the vertex 1+k , and the profile ki≤π  
contains s  times the vertex k . Consequently, we have  

( ) ( ) ( ) ( )
1 1

, 1 .
2i k i k i k

S k S k S k sd k k sπ π π π

π
≥ + ≤ ≥ +

∆ = − = = + = =  

Finally, Lemma 15 implies ( ) { }0,AM pπ = .                                                   

6. The Axioms and the Main Result 

The axioms listed below are among the desirable properties that a general location function should satisfy, and it 
is not difficult to verify that the antimedian function satisfies these properties.   

Oddness (O): Let L  be a location function on a path P  of length p  with 2p k= . Let π∆  be defined 
as in (2); if π  is not a profile of the form ( )20, sp ×  for some integer 1≥s , then  

( )
{ }
{ }
{ }

0, , if 0;
0 , if 0;

, if 0.

p
L

p

π

π

π

π
∆ =

= ∆ >
 ∆ <

 

Evenness (E): Let L  be a location function on a path P  of length p  with 2 1p k= + . Let π∆  be 
defined as in (2); if π  is not a profile of the form ( )20, sp ×  for some integer 1≥s , then  

( )

{ }

{ }

{ }

0, , if ;
2

0 , if ;
2

, if .
2

p

L

p

π

π

π

π

π
π

π


∆ =




= ∆ >



∆ <


 

Consistency (C): Let L  be a location function on P . If ( )1 1 2, , , kx x xπ =   and ( )2 1 2, , , sy y yπ =   are 

profiles and ( )1 2 1 2, , , , , , ,k sx x x y y yπ =    with ( ) ( )1 2 =L Lπ π /∩ ∅ , then ( ) ( ) ( )1 2L L Lπ π π= ∩ .  
Extremeness (Ex): Let L  be a location function, and π  be a profile on P . If ( )0, pπ = , then  
( ) { }0,1, ,L pπ =  . 
Generalized Extremeness (G-Ex): Let L  be a location function, and let π  be a profile on P . If π  is 

of the form ( )20, sp ×  for some integer 1≥s , then ( ) { }0,1, ,L pπ =  . 
Anonymity (A): For any profile ( )1 2, , , nx x xπ =   on P  and any permutation σ  of { }1,2, ,n , we  

have ( ) ( )L L σπ π= , where ( ) ( ) ( )( )1 2, , , .nx x xσ
σ σ σπ =   

Some of these axioms are not independent. For example it is clear that (Ex) is a particular case of (G-Ex) 
when 1s = . Next we prove that if a location function satisfies (C) and (Ex), it also satisfies (G-Ex). 

Lemma 16 If L  is a location function on P  that satisfies axioms (C), (A), and (Ex), then L  satisfies 
axiom (G-Ex).  
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Proof. Let π  be a profile on P  of the form ( )20, sp ×  for some integer 1≥s . Corollary 2 implies  
( ) { }0,1, ,AM pπ =  . Because of axiom (A), we can reorder the vertices of π  to obtain a profile π ′  of the 

form ( )0, ,0, , ,0,p p pπ ′ =  . We can express π ′  as a concatenation of profiles of the form ( )0, p ; in other 
words ( )( ) ( )0, 0, 0,p p pπ ′ =  . Since L  satisfies axiom (Ex), then ( ) { }0, 0,1, ,L p p=  , and applying 
axiom (C) we conclude  

( ) ( ) ( ) ( ) ( ) { }0, 0, 0, 0,1, , .L L L p L p L p pπ π ′= = ∩ ∩ ∩ =    

  
With the axioms listed above we will give two axiomatic characterizations for the antimedian function. The 

next theorem contains the first of these characterizations.  
Theorem 1 Let L  be a location function on T . L  is the antimedian function on P  if and only if L  

satisfies axioms (O), (E), (Ex), (C), and (A).  
Proof. It is clear that if L  is the antimedian function, then L  satisfies axioms (O), (E), (Ex), (C), and (A). 

Assume now L  is a location function that satisfies axioms (O), (E), (Ex), (C), and (A). To prove that L  is 
the antimedian function we consider three cases. 

Case 1. Assume first π  is a profile of the form ( )20, sp ×  for some integer 1≥s , by Lemma 5 we have 
( ) { }0,1, ,AM pπ =  . Since L  satisfies axioms (C), (A), and (Ex), then Lemma 16 proves L  satisfies 

(G-Ex) which implies ( ) { }0,1, ,L pπ =  . It is clear that in this case ( ) ( ) { }0,1, ,AM L pπ π= =  . 
Case 2. Assume P  is a path such that 2p k= . Let π  be a profile on P  that is not of the form ( )20, sp ×  

for some integer 1≥s . Notice that ( ) { }Cen P k= , and if 0π∆ = , then Lemma 8 shows ( ) ( )0S S pπ π= , and 
Lemma 6 implies ( ) { }0,AM pπ = . On the other hand, since L  satisfies axiom (O) and 0π∆ = , then 
( ) { }0,L pπ = . Therefore, 0π∆ =  means ( ) ( ) { }0,L AM pπ π= = .  
If 0π∆ > , then Lemma 10 indicates ( ) ( )0S S pπ π> , and Lemma 4 proves ( ) { }0AM π = . Since L  

satisfies axiom (O) and 0π∆ > , we obtain ( ) { }0L π = . From this we conclude that if 0π∆ > , then 
( ) ( ) { }0AM Lπ π= = . A similar argument can be used to show that if 0π∆ < , then ( ) ( ) { }AM L pπ π= = . 

Case 3. Assume P  is a path such that 2 1p k= +  which means ( ) { }, 1Cen P k k= + , and let π  be a  

profile on P  that is not of the form ( )20, sp ×  for some integer 1≥s . If 
2π

π
∆ = , then Lemma 12 demon-  

strates ( ) ( )0S S pπ π= , and Lemma 6 proves ( ) { }0,AM pπ = . Since L  satisfies axiom (E) and 
2π

π
∆ = ,  

we get ( ) { }0,L pπ = . Therefore, 
2π

π
∆ =  implies ( ) ( ) { }0,L AM pπ π= = .  

If 
2π

π
∆ < , then Lemma 13 indicates ( ) ( )0S S pπ π< , and Lemma 4 shows ( ) { }AM pπ = . Because L  

satisfies axiom (E) and 
2π

π
∆ < , ( ) { }L pπ = . Hence, when π  is a profile that is not of the form ( )20, sp ×  

and 
2π

π
∆ < , ( ) ( ) { }L AM pπ π= = . A similar argument can be used to show that if 

2π

π
∆ > , then  

( ) ( ) { }0L AMπ π= = . Notice that Cases 1, 2, and 3 demonstrate the theorem.                           
We leave it to the reader to prove that the axioms used in the proof of Theorem 1 are independent. Notice that 

in the proof of Theorem 1 we needed to use three axioms to establish Case 1. We want to improve the 
demonstration of this result using fewer axioms. We achieve this objective using axiom (G-Ex) in the following 
theorem which is our main result.  

Theorem 2 Let L  be a location function on T . L  is the antimedian function on P  if and only if L  
satisfies axioms (O), (E), and (G-Ex).  

Proof. It is clear that if L  is the antimedian function, then L  satisfies axioms (O), (E), and (G-Ex). 
Assume now that L  is a location function that satisfies axioms (O), (E), and (G-Ex). To prove that L  is the 
antimedian function we consider three cases. 

Case 1. Assume first π  is a profile of the form ( )20, sp × , then by Lemma 5 we obtain  
( ) { }0,1, ,AM pπ =  . Because L  satisfies axiom (G-Ex), we have ( ) { }0,1, ,L pπ =  . So in this case 

( ) ( ) { }0,1, ,L AM pπ π= =  . 
Case 2. Assume P  is a path such that 2p k=  which means ( ) { }Cen P k= . Let π  be a profile on P  



O. Ortega, Y. Wang 
 

 
87 

that is not of the form ( )20, sp × . If 0π∆ = , then Lemma 8 indicates ( ) ( )0S S pπ π= , and Lemma 6 implies 
( ) { }0,AM pπ = . Since L  satisfies axiom (O) and 0π∆ = , ( ) { }0,L pπ = . Therefore, 0π∆ =  indicates 

( ) ( ) { }0,L AM pπ π= = . A similar argument can be employed to show that if 0π∆ > , then  
( ) ( ) { }0L AMπ π= = , and if 0π∆ < , then ( ) ( ) { }L AM pπ π= = . 
Case 3. Assume P  is a path such that 2 1p k= + , and let π  be a profile on P . Notice that ( ) { }, 1Cen P k k= + .  

If 
2π

π
∆ = , then Lemmas 12 implies ( ) ( )0S S pπ π= , and Lemma 6 shows ( ) { }0,AM pπ = . Because L  

satisfies axiom (E), we conclude ( ) { }0,L pπ = . Therefore, 
2π

π
∆ =  implies ( ) ( ) { }0,L AM pπ π= = .  

A similarly argument can be used to demonstrate that if 
2π

π
∆ > , then ( ) ( ) { }0L AMπ π= = , and if 

2π

π
∆ < , then ( ) ( ) { }L AM pπ π= = . It is clear that Cases 1, 2, and 3 finish the proof of the theorem.       

Notice that the definition of axioms (O), (E), and (G-Ex) indicate that they are independent. So it is not 
necessary to add a proof for the independence of these three axioms. More research is needed to find an 
axiomatic characterization of the antimedian function on tree graphs. 
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