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Abstract

Uses of the Buys-Ballot table for choice of appropriate transformation (using the Bartlett technique), assess-
ment of trend and seasonal components and choice of model for time series decomposition are discussed in
this paper. Uses discussed are illustrated with numerical examples when trend curve is linear, quadratic and

exponential.
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1. Introduction

A time series is a collection of observations made se-
quentially in time. Examples occur in a variety of fields,
ranging from economics to engineering and methods of
analyzing time series constitute an important area of sta-
tistics [1]. Time series analysis comprises methods that
attempt to understand such time series, often either to un-
derstand the underlying context of the data points (Where
did they come from? What generated them?), or to make
forecasts. Time series forecasting is the use of a model to
forecast or predict future events based on known past
events.

Methods for time series analyses are often divided into
three classes: descriptive methods, time domain methods
and frequency domain methods. Frequency domain me-
thods centre on spectral analysis and recently wavelet
analysis [2,3], and can be regarded as model-free ana-
lyses. Time domain methods [4,5] have a distribution-
free subset consisting of the examination of autocorrela-
tion and cross-correlation analysis.

Descriptive methods [1,6] involve the separation of an
observed time series into components representing trend
(long term direction), the seasonal (systematic, calendar
related movements), cyclical (long term oscillations or
swings about the trend) and irregular (unsystematic, short
term fluctuations) components. The descriptive method
is known as time series decomposition. If short period of
time are involved, the cyclical component is superim-
posed into the trend [1] and the observed time series(Xt,
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t=12,---,n) can be decomposed into the trend-cycle
component (M, ), seasonal component (S,) and the ir-
regular/residual component (e,)

Decomposition models are typically additive or multi-
plicative, but can also take other forms such as pseudo-
additive/mixed (combining the elements of both the ad-

ditive and multiplicative models).
Additive Model: X, =M, +S, +e, (1)
Multiplicative Model: X, =M, xS, xe, (2)
Pseudo-Additive/Mixed Model; X, =M, xS, +e, (3)

The pseudo-additive model is used when the original
time series contains very small or zero values. For this
reason, this paper will discuss only the additive and mul-
tiplicative models.

As far as the traditional method of decomposition is
concerned (to be referred to as the Least Squares Method
(LSE)), the first step will usually be to estimate and eli-
minate A, for each time period from the actual data
either by subtraction for Equation (1) or division for
Equation (2). The de-trended series is obtained as X,
—M, for Equation (1) or Xt/M, for Equation (2). In
the second step, the seasonal effect is obtained by esti-
mating the average of the de-trended series at each sea-
son. The de-trended, de-seasonalized series is obtained as
X,—M,-S, for Equation (1) or X,/(M,S,) for Equa-
tion (2). This gives the residual or irregular component.
Having fitted a model to a time series, one often wants to
see if the residuals are purely random. For detailed dis-
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cussion of residual analysis, see [4,7].
It is always assumed that the seasonal effect, when it
exists, has periods. That is, it repeats after s time periods.
S, =S, for all ¢ (4)

For Equation (1), it is convenient to make the further
assumption that the sum of the seasonal components over
a complete period is zero.

2 S.; =0
=

Similarly, for Equations (2) and (3), the convenient
variant assumption is that the sum of the seasonal com-
ponents over a complete period is s.

S
ZSH./' =S
=

It is also assumed that the irregular component e, is
the Gaussian N(0,o?) white noise for Equation (1),
while for Equation (2), e, is the Gaussian N(1,07)
white noise.

This paper discusses the uses of the Buys-Ballot table
for 1) choice of appropriate transformations (using the
Bartlett technique) 2) assessment of trend and seasonal
components and 3) choice of model for time series de-
composition. We describe in great detail the Buys-Ballot
table in Section 2 for better understanding of the methods
used to achieve these objectives.

When any of the assumptions underlying the time se-
ries analysis is violated, one of the options available to
an analyst is to transform the study series. The choice of
appropriate transformation for a study series using Buys-
Ballot table is described in Section 3. The presence and
nature of trend and seasonal component of a study series
can be inferred from the plot and values of the periodic

()

(6)
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/annual and seasonal averages. Assessment of trend and
seasonal component of the actual series from the Buys-
Ballot table was discussed in Sections 4 and 5 respec-
tively. A major problem in the use of the descriptive time
series analysis is the choice of appropriate model for
time series decomposition. This problem was addressed
using Buys-Ballot table in Section 6. Numerical exam-
ples are also given to illustrate these uses.

2. Buys-Ballot Table

A Buys-Ballot table summarizes data to highlight sea-
sonal variations (Table 1). Normally, each line is one pe-
riod (usually a year) and each column is a season of the
period/year (4 quarters, 12 months, etc), A cell, (i, j),
of this table contains the mean value for all observations
made during the period i at the season j. To analyse the
data, it is helpful to include the period and seasonal totals
(7 and 7,), period and seasonal averages (X, and
X j) , period and seasonal standard deviations (&,
and o?j) , as part of the Buys-Ballot table. Also included
for purposes of analysis are the grand total (7 ), grand
mean (X )and pooled standard deviation (& ).[8] cred-
its these arrangements of the table to [9], hence the table
has been called the Buys-Ballot table in the literature.

For easy understanding of Table 1, we define the row
and column totals, averages and standard deviations as
follows:

Tj ZZX(i—l).H-j' j:1,2,--~,S,

i=1

Table 1. Buys-Ballot Table.

Season (j) _ .
. . T, X c,
Period (7) 1 2 j s -

1 X, X, X,‘ X, T, 71 A1
2 X X, X, X, T 72 Az
3 XZ 1 XZ\ +2 X2 X3 7; XS OA_S
1 X( 1541 X(rfl)wz X(rfl)xu X(tfl)r+r T X, S,
m X( )41 le 1)s+2 mel)\ j X 77" X S,
T, T, T, T T, r -
X, X, X, X X, X -
5 c I I G, o

N
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m s T
T=ZT,-.= T],Xl..=4, i=12,---,m,
i=1 j=1 N
_ T. — T T
Xj:i, j=12,--+,5, X =——=— n=ms,
’ m Toms  ms

where X,,t=12,---,n is the observed value of the se-
ries, m is the number of periods/years, s is the perio-
dicity, and n=ms is the total number of observations
/sample size.

Finally, Buys-Ballot table is used to estimate the trend
component and seasonal indices from the chosen de-
scriptive time series model. This method, called Buys-
Ballot estimation procedure uses the periodic means
(X,,i=12:--,m) and the overall mean (X ) to es-
timate the trend component. Seasonal means (X_ i
j=12,---,m) and the overall mean are used to estimate
the seasonal indices. The advantages of the Buys-Ballot
estimation procedure are that 1) it computes trend easily,
2) gets over the problem of de-trending a series before
computing the estimates of the seasonal effects and 3)
estimates the error variance without necessarily decom-
posing the series. For further details on the Buys-Ballot
estimation procedure, see [10-14].

3. Choice of Appropriate Transformation

Transformation is a mathematical operation that changes
the measurement scale of a variable. Reasons for trans-
formation include stabilizing variance, normalizing, re-
ducing the effect of outliers, making a measurement
scale more meaningful, and to linearize a relationship.
For further details on reasons for transformation, see
[3,14]. Many time series analyst assume no rmality and it
is well known that variance stabilization implies normal-
ity of the series. The most popular and common are the
powers of transformations such as log, X,, log, X,,
Yx,, Y\JX,, X2 1X?. Selecting the best trans-
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formation can be a complex issue and the usual statistical
technique used is to estimate both the transformation and
required model for the transformed X, at the same time
[15].

[16] have shown how to apply Bartlett transformation
technique [17] to time series data using the Buys-Ballot
table and without considering the time series model struc-
ture. The relation between variance and mean over sev-
eral groups is what is needed. If we take random sam-
ples from a population, the means and standard devia-
tions of these samples will be independent (and thus un-
correlated) if the population has a normal distribution
[18]. Furthermore, if the mean and standard deviation are
independent, the distribution is normal.

[16] showed that Bartlett’s transformation for time se-
ries data is to regress the natural logarithms of the group
standard deviations (&,,i=1,2,---,m) against the natu-
ral logarithms of the group means (X,, i=12,--,m)
and determine the slope, A, of the relationship.

log, 6, = a+ flog, X, +error

Y]

For non-seasonal data that require transformation, we
split the observed time series X,, t=12,---,n chrono-
logically into m fairly equal different parts and compute
(X, i=12,,m) and (&, i=12,--,m) for the
parts. For seasonal data with the length of the periodic
interval, s, the Buys-Ballot table naturally partitions the
observed data into m periods or rows for easy application.
[16] showed that Bartlett’s transformation may also be
regarded as the power transformation

{IOge th ﬁ =1
Y[ —

- Xt(l"B), p#1 ®)

Summary of transformations for various values of g
is given in Table 2. However, [16] concluded that it is
better to use the estimated value of the slope, g, di-
rectly in the power transformation (Equation (8)) than to
approximate to the known and popular logarithmic, square
root, inverse, inverse of the square root, squares and in-
verse of the squares transformations.

An example that requires logarithmic transformation is
the Nigerian Stock Exchange (NSE) All Shares Index
(1985 — 2005) that is listed as Appendix A [19]. Sum-
mary of the regression analysis of log,(&,) on
log, (X,), i=12,-,21 isgivenin Table 3.

Table 2. Bartlett’s transformation for some values of .

S/No 1 2 3 4 5 6 7
) 0 12 1 312 2 3 1
Transformation No transformation Jx, log, X, YJx, e Yx? X?

Copyright © 2011 SciRes.
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Table 3. Regression analysis of log,s, on log,X,, i=1,2,L,21 for various transformations of the Nigerian Stock Ex-

change (NSE) All Shares Index (1985-2005).

t—testfor =1.0

Transformations Regression equation R?
df t —value
X, : Original log, &, =-2.5797 +1.0260l0g, X, 0.94 19 0.44
Y =log, X, log, &, =-2.8857 +0.249010g, ¥, 0.02 19 NIA
w=x"" p=1.0260 log, &, =—6.2186 +0.0794log_ 17, 0.00 19 NIA

It is clear from Table 3 that we can approximate the
value of ﬁ:1.0260 to[3z1.0 and the suitable trans-
formation using Table 2 is Y, =log, X, . Regression
analysis summaries for Y, =log, X, and W, :X(M)

t t t i

[3 =1.0260 are also given in Table 3. The transforma-
tion W, =X,(l_ﬁ), B =1.0260 surely removes the rela-
tionships between the standard deviations and the means
for the row/yearly groupings.

4. Assessment of Trend

The time plot of a time series, according to [1] reveals
the nature of the trend which can describe the pattern in
the series. Among other features, the time plot of the pe-
riodic means follows the same pattern as the plot of the
entire series with respect to the trend. Therefore, instead
of looking at the plot of the entire series, one may look at
only the plot of the period/annual means in order to
choose the appropriate trend. We use the following ex-
amples to illustrate this.

41. Linear Trend

The data of Table 4 (linear trend and additive model)
and Figure 1 is a simulation of 100 values from the ad-
ditive model

X, =a+bt+S, +e, 9

with ¢ =5.0, =02, S, =-15 §,=25 §,=35
S,=—45 and ¢, being Gaussian N(0,1) white
noise. The data of Table 4 (linear trend and multiplica-
tive model) and Figure 2 is a simulation of 100 values
from the multiplicative model

X, =(a+bt)xS, xe, (10)

with a=5.0, »=02, § =06 S,=11 §,=09,
S,=14 and ¢, being Gaussian N (1.0,0.01) white
noise. Listed in Table 4 are the periodic/row means
(X, i=12,--,m) of the simulated data, while the
time plots of the actual series and periodic/row means are
shown in Figures 1 and 2, respectively. It is clear that
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the time plot of X, for data with linear trend curve
mimics the time plot of the entire series and the row av-
erages (X, ) can therefore, be used to estimate trend.
The estimate of the parameters of the trend of the en-
tire series can be determined from the estimate of the
trend of the periodic means by recognizing that periodic
averages are centred at the midpoints of the periodic in-
tervals. Thus, while successive values in the actual series
are one unit of time apart starting from ¢ =1, successive
values in periodic average series (X ) are s units of
time apart starting from t=(s+1/2. Thus, periodic
averages are derived from the original series by transla-
tion of the original series by a factor ((s+1)/2) and
dilation by a factor s. That is, periodic averages,
Xi, i=12,---,m may be looked at as the values of the
original series at times ¢, i=1,2,---,m. Thatis,

Xi=X, =a+bt, (11)
s+1 3s+1 5s+1  (2m-1)s+1
where ¢ = , , , for
! 2 2 2 2
i=12,3,---,m, Hence,
)?i :Xt- :a+b(wj
. : >
s—1 .
=a- b(Tj + (bs)i (12)
=a'+b'i
s—1

where a'= a—b(

a =a'+b[s—_1).
2

As an illustration, we observe from Figure 1 that
s=4, b'=0.8003, a'=4.6971. Hence, b =5'/s =0.8003/4
=0.2001, a=a"+b((s-1)/2)=4.6971+0.2001((4-1)/2)
=4.9972.

The estimate of the parameters of the trend of the en-
tire series can be determined from the estimate of the
trend of the periodic means in quadratic [12] and expo-
nential [13] trend curves as shown below.

5 j , b'=bs or b=b's ,
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Table 4. Periodic means of the simulated series.
Period/Year Linear Equations (9) and (10) Quadratic Equations (13) and (14) Exponential Equations (16) and (17)
) Add. (X)  Mult (X)) Add. (X,) Mult. (X,) Add. (X.) Mult. (X,)
1 5.631 5.950 56.900 8.180 10.647 11.260
2 6.106 6.396 67.800 19.830 11.197 11.580
3 6.947 6.147 90.200 33.760 12.187 10.710
4 8.260 9.288 124.300 90.800 13.728 15.680
5 8.320 7.340 168.400 101.000 14.101 12.210
6 9.568 10.060 224.800 190.000 15.755 16.580
7 10.359 10.911 292.000 264.000 17.053 18.020
8 11.267 11.881 370.500 347.200 18.576 19.670
9 11.519 10.417 459.600 365.000 19.562 17.450
10 13.019 14.206 561.100 577.000 21.922 24.230
11 13.396 14.125 672.600 667.000 23.299 24.700
12 13.937 12.031 795.600 629.000 24.989 21.380
13 14.520 13.255 929.800 785.000 26.883 24.280
14 16.377 18.476 1076.400 1203.000 30.227 34.800
15 16.880 18.418 1232.900 1319.000 32.408 35.700
16 17.583 17.168 1400.800 1324.000 34.995 34.100
17 18.712 20.478 1580.400 1720.000 38.232 42.460
18 19.977 24.094 1771.200 2168.000 41.850 51.580
19 20.258 20.132 1972.300 1940.000 44,740 44.800
20 19.843 14.640 2183.900 1517.000 47.222 34.110
21 21.522 23.094 2408.800 2558.000 52.110 56.400
22 21.978 20.834 2643.600 2448.000 56.098 53.200
23 22.310 16.033 2889.600 1958.000 60.330 42.130
24 24.741 30.636 3148.800 3983.000 67.052 85.100
25 24.467 23.045 3416.500 3156.000 71.492 67.200
X 15.100 15.162 1221.600 1174.900 32.266 32.373
Note: Add = Additive; Mult = Multiplicative
X, X,
jz | X, =5.0536 +0.1989 1 z: | Ao = 46971 +0.8003 1
e
15 1
10 1
5
0 ‘ ‘ ' ' ‘ ' ' ‘ ‘ ! 0 ' ‘ ‘ ' ‘ ‘
0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30
Time (7) Period (i)
(a) Actual series (b) Periodic means
Figure 1. Time plot of actual series and periodic means of simulated series using Equation (9).
Copyright © 2011 SciRes. AM
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X,=5.0562 +0.2001 ¢

30 40 50 60 70 80 90 100

Time (¢)

0 10 20

(a) Actual series

ET AL.

X, =5.0328+0.7792 i

30
25 1 \

0 T T T
0 5 10 15 20 25 30
Period (1)

(b) Periodic means

Figure 2. Time plot of actual series and periodic means of simulated series using Equation (10).

4.2. Quadratic Trend

The data of Table 4 (quadratic trend and additive model)
and Figure 3 is a simulation of 100 values from the ad-
ditive model

Xt:(a+bt+ct2)+St+et (13)

with s=4, a=5.0, b=-0.35 ¢=0.35 §=-50,
$,=30, S§,=80, S,=-60 and ¢, ~N(0, 1). The
data of Table 4 (quadratic trend and multiplicative mo-
del) and Figure 4 is a simulation of 100 values from the
multiplicative model

X, =(a+bt+ct)xS, xe, (14)
with s=4, a=50, b=-0.35 ¢=035 S =0.,
S,=11 S§,=09, S,=14 and e ~N(,0.333%)

white noise. Listed in Table 4 are the periodic/row means
(X,, i=12,-,m) of the simulated data, while the
time plots of the actual series and periodic/row means are
shown in Figure 3 and Figure 4, respectively.

Figures 3 and 4 show that the graphs of the periodic
means follow the same pattern as the plot of the actual
series with respect to quadratic trend in both the additive
and multiplicative models. Thus, as in the linear trend,
one may look at only the plot of the periodic means in
order to choose the appropriate trend. As in linear trend
also, the estimate of the parameters of the trend of the
entire series can be determined from the estimate of the
trend of the periodic means by recognizing that periodic
averages are centred at the midpoints of the periodic in-
tervals. That is, periodic averages, X, i=1,2,---,m
may be expressed in terms of the original series at times
t,=12,---,m as

X, =X, =a+bt +ct}

1,

Copyright © 2011 SciRes.

2

=aqa _b(s__lj + C(Ejz (15)
2 2
+(bs—cs(s —1))1'+c(s)2i2

=a'+h'i+c'i?

2
where a':a—b(s—_lj—i-c(s—_lj , b':(bs—cs(s—l))
2 2
and c'=c(s)2
As an illustration, from Figure 4, the length of the pe-
riodic interval s = 4, the parameters of the trend of the

periodic averages are a'=6.6541, b'=-5.5799 and ¢’
=5.5992 . Hence, the parameters of the actual series are:

¢ 55992
2
b'+es(s—1)
s
55799+ (0.3500)(4)(4-1)

:a+b((2i—;)S+l)+c((2i—l)s+lj2

=0.3500,

=-0.3451

2
_ 6.6541—0.3451(Ej ~0.3500 (ﬂj
2 2
—5.3490

4.3. Exponential Trend

The data of Table 4 (exponential trend and additive mo-
del) and Figure 5 is a simulation of 100 values from the
additive model

AM



I.S.IWUEZE ET AL. 639

X, X,
4000 4000"
3500 - 3500

3000 X,=54.5749 — 03312 1+ 0.3498 ¢ 3000 X.=56.6757—5.5828 i+ 5.5993
2500 | 2500
2000 A 2000
1500 4 1500
1000 - 1000

500 A 500

0 ‘ : . : . : : : ) 0 ‘ ‘ : ‘ : ‘
0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30
Time (¢) Period (i)
(a) Actual series (b) Periodic means

Figure 3. Plot of actual series and periodic means of simulated series using Equation (13).

X, X,

4000 4000 -
3500 1 3500 -
30001 X, =4.9131-0.3444 1+ 0.3499 3000 1 X,=6.6541-5.5799 i +5.5992 2
2500 \ )
2000 1

1500 -

1000 -

500 1

0 ‘ : T \ T T T \ \ ) ‘ ‘
0 10 20 30 40 50 60 70 80 90 100 25 30
Time (7) Period (i)
(a) Actual series (b) Periodic means
Figure 4. Plot of actual series and periodic means of simulated series using Equation (14).

X, X,
80 7 80 1
707 0] X =9.6916 x ™"
601 X,=9.0431 x (00 601
501 50 A
40 1 40 4
30 A 30 -
20 20 -
10 10

0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30
Time (¢) Period (/)
(a) Actual series (b) Periodic means

Figure 5. Actual series and periodic means of simulated series from Equation (16).
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X, =be" +5, +e, (16)
with s=4, b5=10, ¢=002, S ,=-15 S,=25,
S;=35 §,=-45 and ¢ ~N(0,1). The data of

Table 4 (exponential trend and multiplicative model) and
Figure 6 is a simulation of 100 values from the multi-
plicative model

X, =be” xS, xe, 17
with s=4, b=10, ¢=002 S, =06, S,=11 &,
=09, §,=14 and ¢ ~N(1,0333) white noise.

Listed in Table 4 are the periodic/row means ()_(l.',
i=1,2,--,m) of the simulated data, while the time plots
of the actual series and periodic/row means are shown in
Figures 5 and 6, respectively.

The corresponding graphs of the actual series and the
periodic means, shown in Figures 5 and 6, indicate
clearly that the pattern in the plot of the periodic means
is similar to that of the actual series in both the additive
and multiplicative models.

As in linear and quadratic trend curves, the estimate of
the parameters of the exponential trend of the entire se-
ries can be determined from the estimate of the trend of
the periodic means. That is, periodic averages, X.,i=
1,2,---,m may be expressed in terms of the original
series at times ¢, i=12,---,m as

o C[(Zi—l)s+l}
Xi=X, =be" =be' *

18
= [bec[zljje(cs)i Y ( )

(52

where b':be%[ :) and c¢'=cs.
As an illustration, from Figure 6 the length of the pe-

X

r

140 4
120 A

100 | X; =8.7021 x e(OOZO(\ 0

80 1
60 A

40 1
20 1

et
0 10 20 30 40 50 60 70 80 90 100

Time ()

(a) Actual series

riodic interval s = 4, the parameters of the trend of the
periodic averages are b»'=9.9323, and ¢ =0.0780.
Hence, the parameters of the actual series are:

¢ 0.0780

=0.0195,

S
s-1 4-1

b= b'ec(Tj ~0.9323x em%[TJ ~10.2273

5. Assessment of Seasonal Component

The seasonal component consists of effects that are rea-
sonably stable with respect to timing, direction and mag-
nitude. Seasonality in a time series can be identified from
the time plot of the entire series by regularly spaced
peaks and troughs which have a consistent direction and
approximately the same magnitude every period/year, re-
lative to the trend.

For time series which contain a seasonal effect, the
overall average ()?) and the seasonal average()_(.j,
j=12,---,s5) of the Buys-Ballot table are used to assess
the effects either as a difference (X, - X ) orasaratio

(X,/X ). That s, the deviations of the differences sea-
sonal averages and the overall average (additive model)
from zero or the ratios of the seasonal averages to the
overall average from unity (multiplicative model) is used
to assess the presence of seasonal effect. The wider the
deviations, the greater the seasonal effect.

This is illustrated below with stimulated time series
data for the additive and multiplicative models when
trend-cycle components are assumed 1) linear (Equations
(9) and (10), respectively) 2) quadratic (Equations (13)
and (14), respectively) and 3) exponential (Equations (16)
and (17), respectively). The assessed values of the sea-

)?,,: 9.9323 x e(o 0780 i)

Period (i)

(b) Periodic means

Figure 6. Actual series and periodic means of simulated series from Equation (17).

Copyright © 2011 SciRes.
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sonal effects from these series are given in Table 5 while
their corresponding graphs are given in Figures 7, 8 and
9 respectively. As Table 5 and Figures 7, 8 and 9 show,
the patterns of the deviations X, —X (additive model)
of the seasonal averages (X ;) from the overall average
(X ) and ratios X /X (multiplicative model) mim-
ics/follow those of the actual seasonal indices S, used
in the simulation in all series. Thus, an analyst interested
in studying the seasonal effect in any study series only
needs to look at either X , —X or X /X to deter-
mine if there is seasonal effect or not.

However, this should not be used as a conclusive test
for the presence of or otherwise of seasonal effect in a
study series. The use of seasonal averages to measure
seasonal effect is most appropriate in a series with no
trend. When trend dominates other components in any
series, the true seasonal effect may be visible from
X, -X_ or X /X . Therefore, this assessment pro-
cedure should be used with great caution.

6. Choice of Appropriate Model

Traditionally, the time plot of the entire series is used to
make the appropriate choice between the additive and
multiplicative models. In some time series, the amplitude
of both the seasonal and irregular variations do not
change as the level of the trend rises or falls. In such
cases, an additive model is appropriate. In many time
series, the amplitude of both the seasonal and irregular
variations increases as the level of the trend rises. In this
situation, a multiplicative model is usually appropriate.
The multiplicative model cannot be used when the origi-
nal time series contains very small or zero values. This is
because it is not possible to divide a number by zero. In
these cases, a pseudo-additive model combining the ele-
ments of both the additive and multiplicative models is
used.

How can an appropriate model be obtained from the
parameters of the Buys-Ballot table? The relationship

between the seasonal means()?.j, j=1,2,---,s) and the

Table 5. Actual values of seasonal effects (Sj) , deviations of seasonal averages from the overall averages ()? ; —X.) and
ratios of seasonal averages to the overall averages (Xj/)f(n) for the simulated series.

Linear Quadratic Exponential
Season j Additive Multiplicative Additive Multiplicative Additive Multiplicative
Equation (9) Equation (10) Equation (13) Equation (14) Equation (16) Equation (17)
s, X, -X s, X -X s X,-Xx 5 X-X S, X,-x S X -X
1 -15 -1.71 0.61 0.62 -50 -103.0 0.6 0.60 -0.6 -1.47 0.6 0.61
2 25 2.24 1.08 1.01 30 12.00 11 0.99 11 0.62 11 1.01
3 35 3.47 0.93 0.90 80 97.00 0.9 0.90 0.9 1.09 0.9 0.89
4 -4.5 -4.01 1.38 1.47 -60 -7.00 14 151 -1.4 -0.24 14 1.50
> 1.67
4
1.4
3
1.2
2
1
] J
0 0.8 1
e 0.6
-2 0.4 1
e} 0.2 7
—4 0 T T T T 1
0 1 2 3 4 5
-5 Season () Season (j)

(a) Additive model

(b) Multiplicative model

Figure 7. Assessment of seasonal effects when trend is linear.
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1.4 7
1.2 1

0.8
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0.21
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Figure 8. Assessment of seasonal effect when trend is quadratic.

Season (f)

(a) Additive model

1.6

Season ()

(b) Multiplicative model

Figure 9. Assessment of seasonal effect when trend is exponential.

seasonal standard deviations c}.j., j=1 2,-~,s) gives
an indication of the desired model. An additive model is
appropriate when the seasonal standard deviations show
no appreciable increase/decrease relative to any increase
or decrease in the seasonal means. On the other hand, a
multiplicative model is usually appropriate when the sea-
sonal standard deviations show appreciable increase/de-
crease relative to any increase/decrease in the seasonal
means. This is vividly demonstrated in Table 6 for addi-
tive and multiplicative models. Time plots of )?.j and
c,, (j=12,--,s) are given in Figures 10 through 12
for values of Table 6.

As Tables 6 and Figures 10 through 12 show, the ob-
servations are true for all trending curves and for both

Copyright © 2011 SciRes.

additive and multiplicative models. For the multiplicative
model, the plot of standard deviation, (& ;) clearly show
appreciable increase or decrease as the seasonal averages
()_(.j) change. For the additive model, the plot of (&)
show no appreciable change relative to the plot of sea-
sonal averages ()?.j) in all the series. However, as noted
earlier, when trend dominates other components, the sea-
sonal standard deviations may not follow the observed
pattern and therefore, may not be used effectively for
choice of appropriate model for decomposition. Therefore,
the use of the plot of the seasonal averages and standard
deviations as basis for the choice of appropriate model
should be done with great care.

AM
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Table 6. Seasonal means and standard deviations for the simulated series.

Linear Quadratic Exponential
Season Additive Multiplicative Additive Multiplicative Additive Multiplicative
Equation (9) Equation (10) Equation (13)  Equation (14) Equation (16) Equation (17)
y»/ 6-/' y/ 6-/ }/ 6-/ y»/ 6-/ Y/ &/ y’/ 6-/'
1 13.40 6.05 941 5.13 1119 1034 708 707 30.8 17.95 19.61 13.28
2 17.34 594 1525 7.89 1234 1054 1161 1068 3288 18.14 3256 20.08
3 18.57 6.07 13.7 7.83 1319 1074 1058 1113 c 18.72 28.68 21.11
4 11.09 5.84 2229 1055 1215 1094 1772 1740 32.03 1888 48.64 31.8
16 167
14 1 7 141
X/
12 4 12
10 7 10 4 X./
84 8
6 ._/o\_.\‘ 61
44 / 4 /
G
2 G, 24 J
0 T T T T 1 0 T T T T 1
0 1 2 3 4 5 0 1 2 3 4 5
(a) Additive model (b) Multiplicative model
Figure 10. Line plot of )?J and ¢, for simulated data when trend is linear (Equations 9 and 10).
1400 B 2000 T
X,
1300 / 1800
1600
1200 1400 1
1100 4 1200
-
P 1000 |
1000
N 800 1
O-J
900 600
400
800
200
700 T T T T T T T T 1 0 T T T T 1
0 05 1 15 2 25 3 35 4 45 0 1 2 3 4 35
(a) Additive model (b) Multiplicative model

Figure 11. Seasonal means ()?_j) and standard deviations (&j) of simulated series from quadratic trend (Equations 13 and
14).

Copyright © 2011 SciRes. AM
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(a) Additive model
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(b) Multiplicative model

Figure 12. Seasonal means (Xj) and standard deviations (&j) of simulated series from exponential trend.

7. Conclusions

This paper has examined four uses of the Buys-Ballot
table. Uses examined in detail include 1) data transfor-
mation 2) assessment of trend 3) assessment of seasonal-
ity and 4) choice of model for decomposition. Use of
Buys-Ballot table for the estimation of trend and compu-
tation of seasonal indices was not discussed in details.
For data transformation, the relationship between period
/annual averages and standard deviations was used. As-
sessment of trend is based on the period/annual averages
while the assessment of the seasonal effect is based on
the seasonal and overall averages. The choice of appro-
priate model for decomposition is based on the seasonal
averages and standard deviations.

8. References

[1] C. Chatfield, “The Analysis of Time Series: An Introduc-
tion,” Chapman and Hall/CRC Press, Boca Raton, 2004.

[2] D. B. Percival and A. T. Walden, “Wavelet Methods for
Time Series Analysis,” Cambridge University Press,
Cambridge, 2000.

[3] M. B. Priestley, “Spectral Analysis and Time Series
Analysis,” Academic Press, London, Vols. 1-2, 1981.

[4] G. E. P. Box, G. M. Jenkins and G. C. Reinsel, “Time

Series Analysis, Forecasting and Control,” 3rd Edition,
Prentice-Hall, Englewood Cliffs, 1994.

[5] W. W. S. Wei, “Time Series Analysis: Univariate and
Multivariate Methods,” Addison-Wesley, Redwood City,
1989.

[6] M. G. Kendal and J. K. Ord, “Time Series,” 3rd Edition,
Charles Griffin, London, 1990.

[71 G. M. Ljung and G. E. P. Box, “On a Measure of Lack of

Copyright © 2011 SciRes.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Fit in Time Series Models,” Biometrika, Vol. 65, No. 2,
1978, pp. 297-303. doi:10.1093/biomet/65.2.297

H. Wold, “A Study in the Analysis of Stationary Time
Series,” 2nd Edition, Almgrist and Witsett, Stockholm,
1938.

C. H. D. Buys-Ballot, “Leo Claemert Periodiques de
Temperature,” Kemint et Fills, Utrecht, 1847.

I. S. Iwueze and A. C. Akpanta, “Effect of the Logarith-
mic Transformation on the Trend-Cycle Component,”
Journal of Applied Science, Vol. 7, No. 17, 2007, pp.
2414-2422.

I. S. Iwueze and E. C. Nwogu, “Buys-Ballot Estimates
for Time Series Decomposition,” Global Journal of
Mathematics, Vol. 3, No. 2, 2004, pp. 83-98.

I. S. lwueze and J. Ohakwe, “Buys-Ballot Estimates
When Stochastic Trend is Quadratic,” Journal of the Ni-
gerian Association of Mathematical Physics, Vol. 8, 2004,
pp. 311-318.

I. S. lwueze and E. C. Nwogu “Buys-Ballot Estimates for
Exponential and S-Shaped Curves, for Time Series,”
Journal of the Nigerian Association of Mathematical
Physics, Vol. 9, 2005, pp 357-366.

I. S. lwueze, E. C. Nwogu and J. C. Ajaraogu, “Properties
of the Buys-Ballot Estimates When Trend-Cycle Com-
ponent of a Time Series is Linear: Additive Case,” Inter-
national Journal of Methematics and Computation, Vol.
8, No. S10, 2010, pp. 18-27.

G. E. P. Box and D. R. Cox, “An Analysis of Transfor-
mations,” Journal of the Royal Statistical Society, Series
B, Vol. 26, No. 2, 1964, pp. 211-243.

A. C. Akpanta and I. S. Iwueze, “On Applying the Bart-
lett Transformation Method to Time Series Data,” Jour-
nal of Mathematical Sciences, Vol. 20, No. 3, 2009, pp.
227-243.

M. S. Bartlett, “The Use of Transformations,” Biometrika,
Vol. 3, 1947, pp. 39-52.

AM



I.S.IWUEZE ET AL.

[18] R. V. Hogg and A. T. Craig, “Introduction to Mathe-
matical Statistics,” 4th Edition, MacMillan Publishing

Company, New York, 1978.

645

[19] Central Bank of Nigeria, The Statistical Bulletin, VVol. 18,
2007.

Appendix
All Shares Index of the Nigerian Stock Exchange (1985-2005)
Month _ A
Year Xi g
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1985 111.3 112.2 113.4 115.6 116.5 116.3 117.2 117.0 116.9 119.1 124.6 127.3 117.3 4.7
1986 134.6 139.7 140.8 146.2 144.2 147.4 150.9 151.0 155.0 160.9 163.3 163.8 149.8 9.5
1987 166.9 166.2 161.7 157.5 154.2 196.1 1934 193.0 194.9 154.8 193.4 190.9 176.9 17.9
1988 190.8 1914 195.5 200.1 199.2 206.0 2115 217.6 2241 2285 231.4 233.6 210.8 15.9
1989 239.7 251.0 256.9 257.5 257.1 259.2 269.2 281.0 279.9 298.4 311.2 325.3 273.9 26.1
1990 3430 3493 356.0 3620 3823 4174 4454 4636 4682 4803 5026 5138 4237 63.1
1991 5287 557.0 601.0 6250 649.0 6518 688.0 7121 737.3 7575 769.0 783.0 6716 837
1992 794.0 810.7 839.1 844.0 860.5 870.8 879.7 969.3 1022.0 1076.5 1098.0 11076 931.0 117.0
1993 11134 11199 11305 11473 1186.9 11875 1180.8 11955 1217.3 13109 14145 15438 1229.0 1311
1994 1666.3 17153 1792.8 18456 18755 1919.1 1926.3 19141 1956.0 20234 2119.3 22050 19132 1545
1995 22853 2379.8 2551.1 27855 3100.8 3586.5 43143 4664.6 4858.1 5068.0 50952 5092.2 3815.0 1149.0
1996 5135.1 51804 5266.2 54124 57041 5798.7 59194 61410 65019 66348 67756 6992.1 59550 652.0
1997 72683 7699.3 85614 8729.8 85923 8459.3 81488 7682.0 7130.8 6554.8 63958 64405 7639.0 876.0
1998 64356 6426.2 62985 61139 60339 5892.1 5817.0 57957 5697.7 5671.0 5688.2 5672.7 59619 293.6
1999 54948 53765 5456.2 5315.7 5315.7 59779 49644 4946.2 4890.8 50325 5133.2 5266.4 52642 304.3
2000 57529 5955.7 5966.2 5892.8 60954 6466.7 6900.7 73941 72989 74153 71644 81110 6701.0 778.0
2001 87942 9180.5 9159.8 9591.6 10153.8 10937.3 10576.4 10329.0 10274.2 11091.4 11169.6 10963.1 10185.0 825.0
2002 10650.0 10581.9 11214.4 11399.1 11486.7 12440.7 12458.2 123279 11811.6 114515 11622.7 12137.7 11632.0 637.0
2003 13298.8 13668.8 13531.1 13488.0 14086.3 14565.5 13962.0 15426.0 16500.5 18743.5 19319.3 20128.9 15560.0 2502.0
2004 22712.9 24797.4 22896.4 25793.0 27730.8 28887.4 27062.1 23774.3 22739.7 23354.8 23270.5 238445 24739.0 2131.0
2005 23078.3 219535 20682.4 21961.7 21482.1 21564.8 21911.0 22935.4 246359 25873.8 246359 24085.8 22877.0 1563.0
X, 55331 56482 5579.6 5818.3 5981.3 6216.6 6099.8 6077.6 6129.1 6357.2 6329.4 64728 6020.3
G, 69552 71166 6743.2 72811 75394 77829 75033 72469 73694 77614 7609.5 7723.7 7235.3
Source: Statistical Bulletin of the Central Bank of Nigeria (CBN, 2007)
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