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Abstract 
 
Uses of the Buys-Ballot table for choice of appropriate transformation (using the Bartlett technique), assess-
ment of trend and seasonal components and choice of model for time series decomposition are discussed in 
this paper. Uses discussed are illustrated with numerical examples when trend curve is linear, quadratic and 
exponential. 
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1. Introduction 
 
A time series is a collection of observations made se-
quentially in time. Examples occur in a variety of fields, 
ranging from economics to engineering and methods of 
analyzing time series constitute an important area of sta-
tistics [1]. Time series analysis comprises methods that 
attempt to understand such time series, often either to un-
derstand the underlying context of the data points (Where 
did they come from? What generated them?), or to make 
forecasts. Time series forecasting is the use of a model to 
forecast or predict future events based on known past 
events. 

Methods for time series analyses are often divided into 
three classes: descriptive methods, time domain methods 
and frequency domain methods. Frequency domain me- 
thods centre on spectral analysis and recently wavelet 
analysis [2,3], and can be regarded as model-free ana- 
lyses. Time domain methods [4,5] have a distribution- 
free subset consisting of the examination of autocorrela-
tion and cross-correlation analysis. 

Descriptive methods [1,6] involve the separation of an 
observed time series into components representing trend 
(long term direction), the seasonal (systematic, calendar 
related movements), cyclical (long term oscillations or 
swings about the trend) and irregular (unsystematic, short 
term fluctuations) components. The descriptive method 
is known as time series decomposition. If short period of 
time are involved, the cyclical component is superim-
posed into the trend [1] and the observed time series  ,tX  

 can be decomposed into the trend-cycle 
component 

1, 2, ,t   n
 tM , seasonal component  and the ir- 

regular/residual component . 
 tS

t

 te

t t

Decomposition models are typically additive or multi-
plicative, but can also take other forms such as pseudo- 
additive/mixed (combining the elements of both the ad-
ditive and multiplicative models). 

Additive Model: tX M S e               (1) 

Multiplicative Model: t t t tX M S  e

t t

         (2) 

Pseudo-Additive/Mixed Model; t tX M  S e  (3) 

The pseudo-additive model is used when the original 
time series contains very small or zero values. For this 
reason, this paper will discuss only the additive and mul- 
tiplicative models. 

As far as the traditional method of decomposition is 
concerned (to be referred to as the Least Squares Method 
(LSE)), the first step will usually be to estimate and eli- 
minate tM  for each time period from the actual data 
either by subtraction for Equation (1) or division for 
Equation (2). The de-trended series is obtained as tX  

ˆ
tM  for Equation (1) or ˆ

t tX M  for Equation (2). In 
the second step, the seasonal effect is obtained by esti- 
mating the average of the de-trended series at each sea-
son. The de-trended, de-seasonalized series is obtained as 

t
ˆˆ

t tX M S   for Equation (1) or  ˆˆ
t t tX M S  for Equa- 

tion (2). This gives the residual or irregular component. 
Having fitted a model to a time series, one often wants to 
see if the residuals are purely random. For detailed dis-
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t

s



cussion of residual analysis, see [4,7]. 
It is always assumed that the seasonal effect, when it 

exists, has periods. That is, it repeats after s time periods. 
, for allt s tS S               (4) 

For Equation (1), it is convenient to make the further 
assumption that the sum of the seasonal components over 
a complete period is zero. 

1

0
s

t j
j

S 


                (5) 

Similarly, for Equations (2) and (3), the convenient 
variant assumption is that the sum of the seasonal com-
ponents over a complete period is s. 

1

s

t j
j

S 


               (6) 

It is also assumed that the irregular component t  is 
the Gaussian 

e
 2

10,N   white noise for Equation (1), 
while for Equation (2),  is the Gaussian te  2

2N 1,  
white noise. 

This paper discusses the uses of the Buys-Ballot table 
for 1) choice of appropriate transformations (using the 
Bartlett technique) 2) assessment of trend and seasonal 
components and 3) choice of model for time series de-
composition. We describe in great detail the Buys-Ballot 
table in Section 2 for better understanding of the methods 
used to achieve these objectives. 

When any of the assumptions underlying the time se-
ries analysis is violated, one of the options available to 
an analyst is to transform the study series. The choice of 
appropriate transformation for a study series using Buys- 
Ballot table is described in Section 3. The presence and 
nature of trend and seasonal component of a study series 
can be inferred from the plot and values of the periodic  
 

/annual and seasonal averages. Assessment of trend and  
seasonal component of the actual series from the Buys- 
Ballot table was discussed in Sections 4 and 5 respec-
tively. A major problem in the use of the descriptive time 
series analysis is the choice of appropriate model for 
time series decomposition. This problem was addressed 
using Buys-Ballot table in Section 6. Numerical exam-
ples are also given to illustrate these uses. 
 
2. Buys-Ballot Table 
 
A Buys-Ballot table summarizes data to highlight sea-
sonal variations (Table 1). Normally, each line is one pe- 
riod (usually a year) and each column is a season of the 
period/year (4 quarters, 12 months, etc), A cell,  ,i j , 
of this table contains the mean value for all observations 
made during the period i at the season j. To analyse the 
data, it is helpful to include the period and seasonal totals 
 . .andiT T j , period and seasonal averages  .iX and  

. jX , period and seasonal standard deviations  .ˆi  
and .ˆ j , as part of the Buys-Ballot table. Also included 
for purposes of analysis are the grand total  , grand 
mean

..T

 ..X and pooled standard deviation  ..̂ .[8] cred-
its these arrangements of the table to [9], hence the table 
has been called the Buys-Ballot table in the literature. 

For easy understanding of Table 1, we define the row 
and column totals, averages and standard deviations as 
follows: 

 

 

. 1
1

. 1
1

, 1, 2, ,

, 1,2, ,

s

i i s j
j

m

j i s j
i

T X i

T X j

 


 


 

 









,

,

m

s

 

 
Table 1. Buys-Ballot Table. 

Season (j)  
Period (i) 1 2 … j … s 

i.T  i.X  .
ˆ

i  

1 1X  2X  … jX  … sX  1.T  1.X  1.̂  

2 1sX   2sX   … s jX   … 2sX  2.T  2.X  2.̂  

3 2 1sX   2 2sX   … 2s jX   … 3sX  3.T  3.X  3.̂  

… … … … … … … … … … 

i  1 1i s
X     1 2i s

X    …  1i s j
X    …  1i s s

X    
.iT  .iX  .

ˆ
i  

… … … … … … … … … … 

m  1 1m s
X     1 2m s

X    …  1m s j
X    … msX  .mT  .mX  .

ˆ
m  

. jT  .1T  .2T  … . jT  … .sT  ..T  - - 

. jX  .1X  .2X  … . jX  … .sX  - ..X  - 

.
ˆ

j  .1̂  .2̂  … .
ˆ

j  … .
ˆ

s  - - ..̂  
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formation can be a complex issue and the usual statistical 
technique used is to estimate both the transformation and 

  

  

  

.
.. . . .

1 1

. .. ..
. ..

2

. .1
1

2

. .1
1

2

..1
1 1

, , 1,2, , ,

, 1, 2, , , ,

1
ˆ , 1,2, ,

1

1
ˆ , 1, 2, ,

1

1
ˆ

1

m s
i

i j i
i j

j
j

s

i ii s j
j

m

j ji s j
i

m s

i s j
i j

T
T T T X i m

s

T T T
,X j s X n

m ms ms

X X i m
s

ms

X X j s
m

X X
n







 

 


 


 
 

   

    

  


  


 


 















 

where , 1, 2, ,tX t n   
m  is the number o

is the observed value of the se- 
ries, f periods/years, s  is the perio-

le

d seasonal indices from the chosen de-
sc

dicity, he total number of observations 
/samp  size. 

Finally, Buys-Ballot table is used to estimate the trend 
component an

and n ms  is t

riptive time series model. This method, called Buys- 
Ballot estimation procedure uses the periodic means 
 . ,iX i 1,2, ,m   and the overall mean  ..X  to es-
timate the trend component. Seasonal means  . ,jX  

 the overall mean are used stimate 
the seasonal indices. The advantages of the Buys- t 

cedure are that 1) it computes trend easily, 
2) gets over the problem of de-trending a series before 
computing the estimates of the seasonal effects and 3) 
estimates the error variance without necessarily decom-
posing the series. For further details on the Buys-Ballot 
estimation procedure, see [10-14]. 
 
3. Choice of Appropriate Tr

2, ,j m  and1,  to e
Ballo

estimation pro

ansformation 

es 
e measurement scale of a variable. Reasons for trans-

 
Transformation is a mathematical operation that chang
th
formation include stabilizing variance, normalizing, re-
ducing the effect of outliers, making a measurement 
scale more meaningful, and to linearize a relationship. 
For further details on reasons for transformation, see 
[3,14]. Many time series analyst assume no rmality and it 
is well known that variance stabilization implies normal-
ity of the series. The most popular and common are the 
powers of transformations such as log ,e tX  log ,e tX  
1 ,tX  1 ,tX  2 ,tX  21 tX . Selecting the best trans- 

required model for the transformed tX  at the same time 
[15]. 

[16] have shown how to apply Bartlett transformation 
technique [17] to time series data using the Buys-Ballot 
ta

hms of the group 
sta

ble and without considering the time series model struc- 
ture. The relation between variance and mean over sev-
eral groups is what is needed. If we take random sam- 
ples from a population, the means and standard devia-
tions of these samples will be independent (and thus un-
correlated) if the population has a normal distribution 
[18]. Furthermore, if the mean and standard deviation are 
independent, the distribution is normal. 

[16] showed that Bartlett’s transformation for time se-
ries data is to regress the natural logarit

ndard deviations  .ˆ , 1, 2, ,i i m    against the natu-
ral logarithms of the group means  . , 1, 2, ,iX i m   
and determine the slope,  , of the relationship. 

. .ˆlog log errore i e iX         )     (7

For non-seasonal data that require transf
split the observed time series 

ormation, we 
,, 1, 2,tX t   n  chrono-

logically into m fairly equal different parts and compute 
 . , 1, 2, ,iX i m   and  .ˆi  for the 
parts. For seasonal data with the length of the periodic 

itions the 
observed data into m periods or rows for easy application. 
[16] showed that Bartlett’s transformation may also be 
regarded as the power transformation 

 1

log , 1e t

t

X
Y 

m

interval, s, the Buys-Ballot table naturally part

, 1, 2, ,i  

, 1tX



 
 



             (8) 

Summary of transformations for various values of   
is given in Table 2. However, [16] concluded that it is 
better to use the estimated value of the slope,  , 
rectly in the power transformation (Equation (8)) than to 
approximate to the known and popular logarithmic, uare 
root, inverse, inverse of the square root, squares and in-
verse of the squares transformations. 

An example that requires logarithmic transformation is 
the Nigerian Stock Exchange (NSE) All

di-

sq

 Shares Index 
(1985 – 2005) that is listed as Appendix A [19]. Sum-
mary of the regression analysis of  ˆloge I  on 

 log ,e iX  1, 2, , 21i    is given in Table 3. 

 
mation for some values of β. 

S/No 1

Table 2. Bartlett’s transfor

 2 3 4 5 6 7 

β 0 1/2 1 3/2 2 3 –1 

Transformation No transformation tX  loge tX  1 tX  1 tX  21 tX  2

tX  

Copyright © 2011 SciRes.                                                                                  AM 
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Table 3. R ession analysis of  on egr ˆge i.σlo log ,.X 1,2,L,e i i   for various transformations of the Nigerian Stock Ex-

change (NSE) All Shares Index (1985-2005). 

21

testt  for ˆ 1.0   
Transformations  2Regression equation R  

df  valuet   

: OriginaltX  ˆlog 2.5797 1.0260 loge i e iX     0.94 19 0.44 

logt eY X  t
ˆlog 2.8857 0.2490loge i e iY     0.02 19 N/A 

 ˆ1 ˆ, 1.0260t tW X
    ˆlog 6.2186 0.0794loge i e iW     0.00 19 N/A 

 
It is clear from Table 3 that we can approximate the 

value of and the suitable trans-

rm . Regression 

an

 ˆ ˆ1.0260 to 1.0    

ation using Table 2 is 

t

fo logY Xt e t

alysis summaries for loge tY X  and  ˆ1
,t tW X


  

ˆ 1.0260  able 3. The transforma-

tion  ˆ1 ˆ, 1.0260t tW X
 

   s rela-

tionships between the stan ions an  

/yearly roupings. 
 
4. Assessment of Trend 
 

 are also given in T

u

dard 

rely rem

deviat

oves the 

d the means

for the row  g

he time plot of a time series, according to [1] reveals 
 describe the pattern in 

es, the time plot of the pe- 

d additive model) 
ulation of 100 values from the ad-

T
the nature of the trend which can

e series. Among other featurth
riodic means follows the same pattern as the plot of the 
entire series with respect to the trend. Therefore, instead 
of looking at the plot of the entire series, one may look at 
only the plot of the period/annual means in order to 
choose the appropriate trend. We use the following ex-
amples to illustrate this. 
 
4.1. Linear Trend 
 

he data of Table 4 (linear trend anT
and Figure 1 is a sim
itive model d

t t tX a bt S e                  (9) 

with 5.0,a   0.2,b   1 1.5,S    2 2.5,S   3 3.5,S   

4 4.5S    an
. The dat

d te  b
a of Tabl

eing Gau
e 4 (linear 

ssian 
tr

 0,1N  white 
end and multiplica-noise

tive m ulat  
from ultiplicative model 

 t t t

odel) and Figure 2 is a sim ion of 100 values
 the m

X a bt S e                (10) 

with 5.0,a   0.2,b   1 0.6,S     2 1.1,S 3 0.9,S   
S   and 4

noise
1.4
. Listed 

te  being
in Table 4

 Gaussian
 are the 

  1.0,0.01  white 
eriodic/row means 
N

p
 . ,i 1,2, ,X i m  of 

 a
 

 plot
t ted data, while the 

s of the ctual series and peri ans are 
Figures 1 2

he simula
time odic/row me
shown in  and , respectively. It is clear that 

the tim  plot ofe  .iX  for a with linear trend curve 
mimics the time plot of the e tire series a row av-
erages 

dat
n nd the 

 .iX  can therefore, be used to estimate trend. 

tire series can be d

 

n p

The estimate of the parameters of the trend of the en-
etermined from the estimate of the 

trend of the periodic means by recognizing that periodic 
averages are centred at the midpoints of the periodic in-
tervals. Thus, while successive values in the actual series 
are one unit of time apart starting from 1t  , successive 
values i eriodic average series  .iX  are s units of
tim

 
e apart starting from  1 2t s  . Thus, periodic 

averages are derived from the original series by transla-
tion of the original series by a factor   1 2s   and 
dilation by a factor s. That is, periodic averages, 

. , 1, 2, ,iX i m   may be looked at as the values of the 
original series at times , 1, 2, ,it i m  . t is,  Tha

.
i

i t i.X X a bt            (11) 

where 

     

 2 1 11 3 1 5 1
, , , ,

2 2 2i

m ss s s
t

   
 

1,2,3, ,i m
2

, for 

  , Hence, 

.

1) 1
i

s
X




(2

1
( )

2

' '

it

i
X a b

s
a b bs i

a b i

    
 

    
 

 

    (12) 

where 

2

1
'

2

s
a a b

    
 

, 'b bs  or 'b b s , 

1
'

2

s
a a b

    
 

. 

As an illustration, we observe from Figure 1 that 
4,s   0.8003,b   4.6971.a   Hence, ' 0.8003b b s   4

0.2001,       'a a  1 4.6971 1 4 1 2b s   2 0.200  
4.9972 . 
The estimate of the parameters of the trend of the en-

tire series can be determined from the estimate of the 
trend of the periodic means in quadratic [12] and expo-
nential [13] trend curves as shown below. 
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able 4. Periodic means of

Linear Equations (9) and (10) Quadra q (16) and (17) 

T

tic E

 the simulated series. 

uations (13) and (14) Exponential Equations Period/Year 

 i  
Add.  i.X  Mult.  i.X  Add.  i.X  Mult.  i.X  Add.  i.X  Mult.  i.X  

1 5.631 10.647 11.260 5.950 56.900 8.180 

2 6.106 6.396 67.800 19.830 11.197 11.580 

3 6. 200 760 187 710 

4 8.260 9.288 124.300 90.800 13.728 15.680 

168. 101.

10. 224. 190.

10. 292. 264.

10.

11 13.

13 14.

1232. 1319.

1580. 1720.

947 6.147 90. 33. 12. 10.

5 8.320 7.340 400 000 14.101 12.210 

6 9.568 060 800 000 15.755 16.580 

7 10.359 911 000 000 17.053 18.020 

8 11.267 11.881 370.500 347.200 18.576 19.670 

9 11.519 417 459.600 365.000 19.562 17.450 

10 13.019 14.206 561.100 577.000 21.922 24.230 

396 14.125 672.600 667.000 23.299 24.700 

12 13.937 12.031 795.600 629.000 24.989 21.380 

520 13.255 929.800 785.000 26.883 24.280 

14 16.377 18.476 1076.400 1203.000 30.227 34.800 

15 16.880 18.418 900 000 32.408 35.700 

16 17.583 17.168 1400.800 1324.000 34.995 34.100 

17 18.712 20.478 400 000 38.232 42.460 

18 19.977 24.094 1771.200 2168.000 41.850 51.580 

19 20.258 20.132 1972.300 1940.000 44.740 44.800 

20 19.843 14.640 2183.900 1517.000 47.222 34.110 

21 21.522 23.094 2408.800 2558.000 52.110 56.400 

22 21.978 20.834 2643.600 2448.000 56.098 53.200 

23 22.310 16.033 2889.600 1958.000 60.330 42.130 

24 24.741 30.636 3148.800 3983.000 67.052 85.100 

25 24.467 23.045 3416.500 3156.000 71.492 67.200 

..X  15.100 15.162 1221.600 1174.900 32.266 32.373 

Note: Add = Additive; Mult = plicative 

 

 Multi

  
(a) Actual series (b) Periodic means 

Figure 1. Time plot of actual series and periodic means of simulated series using Equation (9). 
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(a) Actual series (b) Periodic means 

Figure  simulated seri  (10). 

 
.2. Quadratic Trend 

 

The data of Table 4 (quadratic trend and additive model) 
and Figure 3 is a simulation of 100 values from the ad-
ditive model 

t

2. Time plot of actual series and periodic means of es using Equation

4

 2 t tX a bt ct S e              (13) 

with 4,s   5.0,a   0.35,b    0.35,c   1 = 50,  S   

2 = 3S 0,  3S 80,  S4 60   and  0,  1 . The 
plicative mo- 

te N
ultidata of Table 4 (quadratic trend and m

del) and Figure 4 is a simulation of 100 values from the 
multiplicative model 

t 2 t tX a bt ct S   e           (1 ) 4

with 4,s   5.0,a   0.35,b    0.35,c   1 0.6,S   

2 1.1,  SS 3 0.9,  4 1.4S   and 
le 4 are th

21,0.333 )  
ow means 

 (te N
e periodic/rwhite noise. Listed in Tab

 .i , 1,2, ,X i m   of the simulated data, while the 
time plots of the actual series and periodic/row means are 
shown in Figure 3 and Figure 4, respectively. 

Figures 3 and 4 show that the graphs of the periodic 
means follow the same pattern as the plot of the actual 
series with respect to quadratic trend in b

ultiplicative m , as in the 
ay ook at only the plo  periodic me

means by recognizing that periodic 
averages are centred at the midpoints of 
tervals. That is, periodic averages,

oth the additive 
and m odels. Thus linear trend, 
one m  l t of the ans in 
order to choose the appropriate trend. As in linear trend 
also, the estimate of the parameters of the trend of the 
entire series can be determined from the estimate of the 
trend of the periodic 

the periodic in-
 . , 1, 2, ,iX i    m

e exp ssed in terms of the original series at times
 as 

may b re  
, 1, 2, ,it m 

2
. 1i t i

 

2

2

2 2

2

(2 1) 1 (2 1) 1

2 2

1 1

2 2

( 1) ( )

' ' '

i s i s
a b c

s s
a b c

bs cs s i c s i

a b i c i

           
   

         
   

   

  

    (15) 

where 
2

1 1
' ,

2 2

s s
a a b c

         
   

   ' 1b bs cs s    

, the length of the pe-

and 

 Figure 4
riodic interval s = 4, the parameters of the trend of the 
periodic averag

 2
'c c s  

As an illustration, from

es are ' 6.65a

i
X X a bt ct                

41, ' 5.5799b   and 'c  
5.5992 . Hence, the parameters of the actual series are: 

 
2

5.5992c
c

s

   

2
0.3500,

4

1b cs s
b

s



2

2

5.5799 0.3500 4 4 1
0.3451

4

1 1

2 2

4 1 4 1
6.6541 0.3451 0.3500

2 2

5.3490

s s
a a b c

 

The data of T  (exponential trend and additive mo- 
del) and Figure 5 is a simulation of 100 v
additive model 
 



  


  
  

         
   

         
   



 

 
4.3. Exponential Trend 
 

able 4
alues from the 
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(a) Actual series 

 
(

Figure 3. Plot of actual series and periodic means of simulated series using Equation (13). 

 

b) Periodic means 

 
(a) Actual series 

 
(b) Periodic means 

eans of simulated series using Equation (14). Figure 4. Plot of actual series and periodic m

 

  
(a) Actual series (b) Periodic means 

Figure 5. Actual series and periodic means of simulated series from Equation (16). 
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t ct
t tX be S e             (16) 

with 4,s   10,b   0.02,c   1 1.5,S    2 2.5,S   
e data of 
odel) and 

3S 
Ta

3.5,  S
ble 4 (expon

4 4.5 
ential tr

 and te N
end and m

 0,  1 . Th
ltiplicative mu

Figure 6 is a simulation of 100 values from the multi-
plicative model 

t ct
t tX be S e               (17) 

with 4,s   10,b   0.02,c   1 0.6,S   2 1.1,S  3S  
noise. 0.9 ,  4S 

Listed in Ta
1.4  and 
ble 4 a

 2,0.333
odic/row 

 1te N
re the peri

 white 
means  . ,iX  

1,
of the act

2, ,i m
ual se

 of the sim
ries and pe

ulate
riodic/row m

d data, while the time
eans are shown in 

 plots 

Figures 5 and 6, respectively. 
The corresponding graphs of the actual series and th

periodic means, sho  5 and 6, indicat
clearly that the pattern in the he periodic means 
is similar to that
nd multiplicative models. 

As in linear and quadratic trend curves, the estimate of 
the parameters of the exponential trend of the entire se-
ries can be determined from the estimate of the trend of 
the periodic means. That is, periodic averages, 

e 
e wn in Figures

 plot of t
 of the actual series in both the additive 

a

. ,iX i   
inal 1, 2, , m  

series at tim
may be expressed in terms of the orig
es  as , 1, 2, ,it i m 

(2 1) 1

2
.

1
( )2

i

i

i s
c

ct
i t

s
c

cs i c i

X X be be

be e b e

  
  

     

  

 
  

 
 

         (18) 

where 
1

2'
s

c

b be
   

   and 'c cs . 
As an illustration, from Figure 6 the length of the pe-

riodic interval s = 4, the parameters of the trend of the 
periodic averages are  and 0.0780c 

 

9.9323,b  . 
Hence, the parameters of the actual series are: 

1 4 1
0.0195

2 2

0.0780
0.0195,

4

9.9323 10.2273
s

c

c
c

s

b b e e
    

   
   


  

   

 

 
5. Assessment of Seasonal Component 
 
The seasonal component consists of effects that are rea-
sonably stable with respect to timing, direction and mag-
nitude. Seasonality in a time series can be identified from 
the time plot of the entire series by regularly spaced 
peaks and troughs which have a consistent direction and 
approximately the same magnitude every period/year, r  
lative to the trend. 

onal effect, the 

overall average 

e-

For time series which contain a seas

 ..X  and the seasonal average  . ,jX  

1,2, ,j s   

the effects either as a

of the Buys-Ballot table are used to assess 

 difference  . ..jX X  or as a ratio 

 . ..jX X
sonal averages a

. That is, the deviations of the differences sea-  
nd the overall average (additive model) 

from zero or the ratios of the seasonal averages to the 
overall average from unity (multiplicative model) is used 
to assess the presence of seasonal effect. The wider the 
deviations, the greater the seasonal effect. 

This is illustrated below with stimulated time series 
data for the additive and multiplicative models when 
trend-cycle components are assumed 1) linear (Equations 
(9) and (10), respectively) 2) quadratic (Equations (13) 
and (14), respectively) and 3) exponential (Equations (16) 
and (17), respectively). The assessed values of the se   

 

a-

 
(a) Actual series 

 
(b) Periodic means 

ns of simulated series from Equation (17). Figure 6. Actual series and periodic mea
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sonal effects from these series are given in Table 5 while 
rresponding  in Figures 7, 8 and their co graphs enare giv

respectively. As Table 5 and Figures 7, 8 and 9 show, 9 
the patterns of the deviations . ..jX X  (additive model) 
of the seasonal averages ( . jX ) from the overa e 
(

ll averag

..X ) and ratios . .j .X X  (multiplicative model) mim-
ics/follow those of the actual seasonal indices jS  used 
in the simulation in all series. Thus, an analyst interested 
in studying the seasonal effect in any study series only  
eeds to look at either n . .j .X X  or . .j .X X  to deter-

ive test 
 

mine if there is seasonal effect or not. 
However, this should not be used as a conclus

for the presence of or otherwise of seasonal effect in a
study series. The use of seasonal averages to measure 
seasonal effect is most appropriate in a series with no 
trend. When trend dominates other components in any 
series, the true seasonal effect may be visible from 

. ..jX X  or . ..jX X . Therefore, this assessment pro-
cedure should be used with great caution. 

6. Choice of Appropriate Model 
 

t e

multiplicative
ular varia

change as

hen the origi-
na

parameters of the Buys-Ballot table? The relationship 
between the seasonal means

 

Traditionally, the ime plot of the entire series is us d to 
make the appropriate choice between the additive and 

 models. In some time series, the amplitude 
of both the seasonal and irreg tions do not 

 the level of the trend rises or falls. In such 
cases, an additive model is appropriate. In many time 
series, the amplitude of both the seasonal and irregular 
variations increases as the level of the trend rises. In this 
situation, a multiplicative model is usually appropriate. 
The multiplicative model cannot be used w

l time series contains very small or zero values. This is 
because it is not possible to divide a number by zero. In 
these cases, a pseudo-additive model combining the ele-
ments of both the additive and multiplicative models is 
used. 

How can an appropriate model be obtained from the 

 . , 1, 2, ,jX j s   and the 

Table 5. Actual values of seasonal effects  jS , deviations of seasonal averages from the overall averages  .j ..X X  and 
ratios of seasonal averages to the overall averages  .j ..X X  for the simulated series. 

Linear Quadratic Exponential 

Additive  
Equation (9) 

Multiplicative  
Equation (10) 

 Additive  
Equation (13) 

Multiplicative
Equation (14) 

 
 

Additive 
Equation (16) 

Multiplicative 
Equation (17) 

Season j 

jS  . .jX X  . jS  . .jX X  . jS . .jX X . jS . .jX X .  jS  . .j .X X  
jS  . .jX X .

1 –1.5 –1.71 0.61 0.62 –50 –103.0 0.6 0.60  –0.6 –1.47 0.6 0.61 

2 2.5 2.24 1.08 1.01 30 12.00 1.1 0.99  1.1 0.62 1.1 1.01 

3 3.5 3.47 0.93 0.90 80 97.00 0.9 0.90  0.9 1.09 0.9 0.89 

4 –4.5 –4.01 1.38 1.47 –60 –7.00 1.4 1.51  –1.4 –0.24 1.4 1.50 

 

   
                 (b) Multiplicative model 

 effects when trend is linear.

(a) Additive model                   

Figure 7. Assessment of seaso

   

nal
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(a) Ad

 
diti del ve mo (  M cati l 

re 8 ssment o ason  w n tr  q dratic. 

 

b) ultipli ve mode

Figu . Asse f se al effect he end is ua

 
(a) Additive model 

 

(b) Multiplicative model 

Fi l. 

 
seasonal standard deviations 

gure 9. Assessment of seasonal effect when trend is exponentia

 .ˆ , 1,2, ,j j s  
odel. An additive m
l standard deviations
ase relative to any increase 
eans. On the other ha
 appropriate when th

ow appreciable increa
se/decrease in the seasonal
strated in Table 6 for 

odels. Time plots of 

 gives 
an indication of the desired m odel is 
appropriate when the seasona  show 
no appreciable increase/decre
or decrease in the seasonal m nd, a 
multiplicative model is usually e sea- 
sonal standard deviations sh se/de- 
crease relative to any increa  
means. This is vividly demon addi-
tive and multiplicative m . jX  and 

.ˆ , ( 1,2, , )j j s  
for values of Table 6

 are given in Figures 10 th  12 
. 

As Tables 6 and Figures 10 through 12 show, the o
servations are true f urves and for both 

additive and multiplicative models. For the multiplicative 
model, the plot of standard deviation, 

rough

b-
or all trending c

( .ˆ j ) clearly show 
appreciable increase or decrease as the seasonal averages 

) change. For the additive model, the plot of ( .ˆ j ) 
 of sea-

( . jX
show no appreciable change relative to the plot
sonal averages ( . jX ) in all the series. However, as 
earlier, when trend dominates other components, the sea  
sonal standard deviations may not follow the observed 
pattern and therefore, may not be used effectively for 
choice of appropriate model for decomposition. Therefore, 
the use of the plot of the seasonal averages and standard 
deviations as basis for the choice of appropriate model 
should be done wi

noted 
-

th great care. 
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Tab ies. 

Linear Quadratic Exponential 

le 6. Seasonal means and standard deviations for the simulated ser

Additive 
Equation (9) 

Multiplicative 
Equation (10) 

 Additive 
Equation (13)

Multiplicative
Equation (14)

 Additive  
Equation (16) 

Multiplicative 
Equation (17)

Season j 

. jX  ˆ
j  . jX  ˆ

j  . jX ˆ
j  . jX ˆ

j . jX  ˆ
j  . jX  ˆ

j

1 13.40 6.05 9.41 5.13 1119 1034 708 707 30.8 17.95 19.61 13.28

2 17.34 5.94 15.25 7.89 1234 1054 1161 1068 32.88 18.14 32.56 20.08

3 18.57 6.07 13.7 7.83 1319 1074 1058 1113 c 18.72 28.68 21.11

4 11.09 5.84 22.29 10.55 1215 1094 1772 1740 32.03 18.88 48.64 31.8

 

 
(a) Additive model 

 
b) Multiplicative model (

Figure 10. Line plot of .jX  and ˆ .jσ  for simula

 

ted data when trend is linear (Equations 9 and 10). 

 
(a) Additive m

 
odel (b) Multiplicative odel

Figure 11. Seasonal means 

 m  

 .jX  ˆ jσ   and standar viations d de of simulated series from quadr e  

14). 

atic tr nd (Equations 13 and
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(a) Additive model 

 
(b) Multiplicative model 

Figure 12. Seasonal means  .jX  and standard deviations  ˆ jσ  of simulated series from exponential trend. 

7. Conclusions 
 
This paper has examined four uses of the Buys-Ballot 
table. Uses examined in detail include 1) data transfor-
mation 2) assessment of trend 3) assessment of seasonal-
ity and 4) choice of model for decomposition. Use of 
Buys-Ballot table for the estimation of trend and compu-
tation of seasonal indices was not discussed in details. 
For data transformation, the relationship between period 
/annual averages and standard deviations was used. As-
sessment of trend is based on the period/annual averages 
while the assessment of the seasonal effect is based on 
the seasonal and overall averages. The choice of appro-
priate model for decomposition is based on the seasonal 
averages and standard deviations. 
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Appendix 

All Shares Index of the Nigerian Stock Exchange (1985-2005) 

Month 

.iX  .
ˆ

i  Year 
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

1985 111.3 112.2 113.4 115.6 116.5 116.3 117.2 117.0 116.9 119.1 124.6 127.3 117.3 4.7 

1986 134.6 139.7 140.8 146.2 144.2 147.4 150.9 151.0 155.0 160.9 163.3 163.8 149.8 9.5 

1987 166.9 166.2 154.2 196.1 193.4 193.0 194.9 176.9 17.9 

1988 .1 6 15.9 

256.9 257.5 257.1 259.2 269.

0 349.3 356.0 362.0 382.3 417.4 445. 63.1 

6.2 6298.5 6113.9 6033.9 5892.1 5817.

5494.8 5376.5 5456.2 5315.7 5315.7 5977.

3 20128.9 15560.0 2502.0

161.7 157.5 154.8 193.4 190.9 

190.8 191.4 195.5 200 199.2 206.0 211.5 217. 224.1 228.5 231.4 233.6 210.8

1989 239.7 251.0 2 281.0 279.9 298.4 311.2 325.3 273.9 26.1 

4 463.6 468.2 480.3 502.6 513.8 423.71990 343.

1991 528.7 557.0 601.0 625.0 649.0 651.8 68

1992 794.0 810.7 839.1 844.0 860.5 870.8 879

1993 1113.4 1119.9 1130.5 1147.3 1186.9 1187.5 118

1994 1666.3 1715.3 1792.8 1845.6 1875.5 1919.1 192

1995 2285.3 2379.8 2551.1 2785.5 3100.8 3586.5 431

1996 5135.1 5180.4 5266.2 5412.4 5704.1 5798.7 59

1997 7268.3 7699.3 8561.4 8729.8 8592.3 8459.3 8148.

8.0 712.1 737.3 757.5 769.0 783.0 671.6 83.7 

.7 969.3 1022.0 1076.5 1098.0 1107.6 931.0 117.0

0.8 1195.5 1217.3 1310.9 1414.5 1543.8 1229.0 131.1

6.3 1914.1 1956.0 2023.4 2119.3 2205.0 1913.2 154.5

4.3 4664.6 4858.1 5068.0 5095.2 5092.2 3815.0 1149.0

19.4 6141.0 6501.9 6634.8 6775.6 6992.1 5955.0 652.0

8 7682.0 7130.8 6554.8 6395.8 6440.5 7639.0 876.0

0 5795.7 5697.7 5671.0 5688.2 5672.7 5961.9 293.61998 6435.6 642

1999 9 4964.4 4946.2 4890.8 5032.5 5133.2 5266.4 5264.2 304.3

7 7394.1 7298.9 7415.3 7164.4 8111.0 6701.0 778.02000 5752.9 5955.7 5966.2 5892.8 6095.4 6466.7 6900.

2001 8794.2 9180.5 9159.8 9591.6 10153.8 10937.3 10576.4 10329.0 10274.2 11091.4 11169.6 10963.1 10185.0 825.0

8.2 12327.9 11811.6 11451.5 11622.7 12137.7 11632.0 637.0

62.0 15426.0 16500.5 18743.5 19319.

2002 10650.0 10581.9 11214.4 11399.1 11486.7 12440.7 1245

2003 13298.8 13668.8 13531.1 13488.0 14086.3 14565.5 139

2004 22712.9 24797.4 22896.4 25793.0 27730.8 28887.4 27062.1 23774.3 22739.7 23354.8 23270.5 23844.5 24739.0 2131.0

2005 23078.3 21953.5 20682.4 21961.7 21482.1 21564.8 21911.0 22935.4 24635.9 25873.8 24635.9 24085.8 22877.0 1563.0

. jX  5533.1 5648.2 5579.6 5818.3 5981.3 6216.6 6099.8 6077.6 6129.1 6357.2 6329.4 6472.8 6020.3  

.
ˆ

j  6955.2 7116.6 6743.2 7281.1 7539.4 7782.9 7503.3 7246.9 7369.4 7761.4 7609.5 7723.7  7235.3

Source: Statistical Bulletin of the Central Bank of Nigeria (CBN, 2007) 
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