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Abstract 
We consider the one-dimensional bio-heat transfer equation with quadratic temperature-depen- 
dent blood perfusion, which governs the temperature distribution inside biological tissues. Using 
an extended mapping method with symbolic computation, we obtain the exact analytical thermal 
traveling wave solution, which describes the non-uniform temperature distribution inside the 
bodies. The found exact solution is used to investigate the temperature distribution in the tissues. 
It is found that the surrounding medium with higher temperature does not necessarily imply that 
the tissue will quickly (after a short duration of heating process) reach the desired temperature. It 
is also found that increased perfusion causes a decline in local temperature. 
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1. Introduction 
Using the Pennes bio-heat transfer (BHT) equation [1] which accounts for the ability of tissue to remove heat by 
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both passive conduction and perfusion of tissue by blood, many of the bio-heat transfer problems have been 
modelled. The BHT equation defines the thermal behavior of tissue and includes four terms that influence the 
heat transfer at the tissue surface: the heat exchange between the tissue surface and the environment, the 
conduction through the tissue, the energy transfer by blood circulation in the tissue, and the heat generation due 
to local metabolism. The contributions of heat conduction and perfusion are combined in the Pennes bio-heat 
equation [1] [2], that we use in a form that employs mω  [3]  

( ) ( )[ ] ,   ,  0.b b m a m r
Tc k T c T T T Q Q x t
t

ρ ρ ω∂
= ∇ ⋅ ∇ − − + + ∈Ω >

∂
                 (1.1) 

Here, ρ , c  and k  are the density, specific heat, and thermal conductivity of tissue, respectively, bc  is 
the specific heat of blood, bρ  is the density of blood, T  is local tissue temperature, aT  is the arterial blood 
temperature, t  is the time, mQ  is the metabolic heat generation rate per unit volume, rQ  is the heat depo- 
sited per volume due to spatially distributed heating, and mω  is the blood perfusion rate. The BHT model (1.1) 
can be used for the quantitative diagnostics of physiological conditions on biological bodies, as for example, for 
simulations of regional hyperthermia for cancer therapy [3]-[5]. For thermal problems, Equation (1.1) is subject  
to the usual boundary conditions 1) temperature prescribed, ( )boundaryT T=  , where (boundary) is either the  

whole or a part of the boundary of domain Ω ; or 2) heat flux prescribed, q q=  ; or 3) convection,  

( )( )surrboundaryfq h T T= − − , where fh  is the heat transfer coefficient and surrT  is the temperature of the  

surrounding medium; or radiation, 
( )( )4 4

am boundary
q T Tσε= − − , where σ  is the Stefan-Boltzman constant, ε   

is the radiative interchange factor between the surface and the exterior ambient temperature amT . 
The parameters considered in Equation (1.1) are usually assumed to be constant except for the blood 

perfusion, which varies with temperature T  to include the specific case of temperature-dependent perfusion 
[3]-[5]. Perfusion is defined as the nonvectorial volumetric blood flow per tissue volume in a region that 
contains sufficient capillaries that an average flow description is considered reasonable. Therefore it is expected 
that the heat dissipation should vary with the blood perfusion rate. Most tissues, including much of the skin and 
brain, are highly perfused, with a perfusion coefficient denoted by ω , can be replaced, as in Equation (1.1), by 

mω , the nondirectional mass flow associated with perfusion. One of the most important applications of blood 
perfusion effects and measurements is tumour detection. Tumours are known to have a different perfusion rate 
than normal healthy tissue. They are generally highly vascular and so blood flows through them more quickly. 
Therefore the ability to know the effects and the measurements of this abnormal perfusion rate could help 
evaluate the size and severity of a tumour. By varying some parameters of the blood perfusion ( )m Tω , it is 
possible to examine the effect that different volume flow rates of blood have on the heat transfer inside the 
biological bodies. 

The analytical study of Equation (1.1) as a nonlinear evolution equation is of great interest. As in the study of 
nonlinear physical phenomena, the investigations of the travelling wave solution of Equation (1.1) play an im- 
portant role in the analytical study of the nonuniform thermal distribution in biological tissues. The importance 
of obtaining the analytical solutions, if available, of Equation facilitates 1) the investigation of temperature 
distribution inside the biological bodies, 2) the verification of numerical solvers, and aids in the stability analysis 
of solutions. In the present work, we aim to find analytical thermal traveling wave solution of one-dimensional 
(1D) BHT equation  

( )[ ]
2

2 ,   ,  0,b b m a m r
T Tc k c T T T Q Q x t
t x

ρ ρ ω∂ ∂
= − − + + ∈Ω >

∂ ∂
                  (1.2) 

with a quadratic temperature-dependent blood perfusion [6]-[8] 
2

0 0 0 0,   0,m T Tω ω γ δ δ= + + ≠                               (1.3) 

where 0 0ω >  is the baseline perfusion, 0 0γ >  and 0 0δ >  are respectively the linear and quadratic coeffi- 
cients of temperature-dependence. Here, we assume that the skin surface is defined at 0x =  while the body 
core at x L=  so that [ ]0, LΩ = . For the simplicity, we will limit ourselves to the special case of constant 
spatial heating. This reflects the situation where the human skin was heated by a laser [9] [10]. The analytical 
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solutions will allow us to investigate the effect of the blood perfusion on heat transfer in the tissues. The 
analytical solutions are obtained with the help of the extended mapping method [11] [12]. The rest of the work is 
organized as follows. In Section 2, we present analytical thermal traveling wave solution of Equation (1.2) with 
blood perfusion (1.3). The results are discussed in Section 3. In Section 4, we conclude our work by summa- 
rizing the main results. 

2. Thermal Traveling Wave Solutions of the 1D BHT Model with Quadratic  
Temperature-Dependent Blood Perfusion 

In this section, we aim to apply the extended mapping method to find analytical solutions of Equation (1.1) with 
quadratic temperature-dependent blood perfusion (1.3). For the traveling wave solutions of Equations (1.2), 
(1.3), we introduce the ansatz  

( ) ( ), ,T x t u z ax tυ= = −                                (1.4) 

where a  and υ  are two real parameters be determined later. Inserting ansatz (1.4) into Equations (1.2), (1.3) 
yields the ordinary differential equation (ODE) 

( ) ( )
2

2 3 2
0 0 0 0 0 02

d d 0.
dd b b b b a b b a m b b a

u ua k c c u c T u c T u Q c T
zz

υρ δ ρ ρ γ δ ρ ω γ ρ ω+ − − − − − + + =      (1.5) 

Then, we seek for the solutions of Equation (1.5) in the form [11] [12] 

( ) ( ) ,
m

i
i

i m
u z g f z

=−

= ∑                                  (1.6) 

where ig  ( ), 1, ,i m m m= − − +   are real constants to be determined later, m  is a positive integer to be  
determined by balancing the second order derivative and the cubic terms in Equation (1.5), and ( )f z  is any  
solution (satisfying condition ( ) 0f z ax tυ= − ≠  for all [ ]0,x L∈  and 0t ≥ ) of equation 

2
2 4 2 2d 2 ,

d
f R f PRf P
z

  = + + 
 

                              (1.7) 

where 0P ≠  and 0R ≠  are real are parameters to be determined. It is easily seen that the second hand side of  

Equation (1.7) is a perfect square so that (1.7) can be solved in the derivative: 2d
d
f Rf P
z

 = ± +  . Each of  

equations 2d
d
f Rf P
z

 = ± +   is a Riccati equation and its general solution is known. In what follows, we limit  

ourselves to only one of these equation (the case of the second equation can be done similarly). Without loss of 
generality, we consider the equation with sign “ + ”, 

2d .
d
f Rf P
z
= +                                     (1.8) 

Because we are interesting in the solutions ( ) 0f z ax tυ= − ≠  for all [ ]0,x L∈  and 0t ≥ , parameters P  
and R  must satisfy condition 0PR <  Under the condition 0PR < , the general solution of (1.8) is 

( ); ,

exp 2

PC
R

f z C
PC R z
R

=
 

+  
  

                             (1.9) 

where C  is a constant of integration to be particularized from condition either 0C >  or  

( )exp 2 PC R ax t
R

υ
 

≠ − 
  

, 0 x L≤ ≤ , and 0 pt T≤ ≤ , pT  being the duration of the heating process. 



E. Kengne et al. 
 

 
724 

We now turn to the search of different parameters appearing in Equations (1.6), (1.7), and (1.8). Inserting 
( ) m mu z z z−+  into Equation (1.5) and balancing the second order derivative and the cubic terms yields 

1m = , which in Equation (1.6) leads to 

( ) ( ) ( )1
0 1 .

gu z g g f z
f z

−= + +                                (1.10) 

Inserting expression (1.10) for ( )u z  into Equation (1.6) and equating to zero the coefficients of different 
powers of f  leads to the following nonlinear algebraic system 

( )
( )

( ) ( ) ( )
( ) ( )

2 2 2
0 1

2 2 2
0 1

0 0 1 0 0 1

0 0 1 0 0 1

2 2
0 0 0 0 0 0 1 1 0

2
0 0 0 0 0 0

2 0,
2 0,

3 0,
3 0,

12 2 3 0,

12 2 3

b b

b b

b b b b a

b b b b a

b b a b b a b b

b b a b b a b

ka R c g
ka P c g

c R c g g c T g
cP c g g c T g

ka PR c T c T g c g h g

ka RP c T c T g c

δ ρ
δ ρ

ρυ δ ρ ρ γ δ
υρ δ ρ ρ γ δ

ρ ω γ ρ γ δ δ ρ

ρ ω γ ρ γ δ δ

−

− −

− =
− =

− − − =
+ + − =

− − − − − + =

− − − − − ( )
( ) ( ) ( )

( )

2
0 1 1

3 2
0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1

0,

     2 3 0

b

m r b b a b b a b b b b a

b b a

g g g

Q Q c T c T g c g c T g c Pg Rg
c g T g g

ρ

ρ ω ρ ω γ δ ρ ρ γ δ ρυ
ρ δ γ δ

−

−

−









 + =
 + + − − − − − + −


− + − =

  (1.11) 

for 1 0 1, , , , ,R P g g g a− , and υ . Solving system (1.11) yield 

( ) ( ) ( )

( )( ) ( ) ( )

0 0
0 2

0 0

0
1 2

2 22
0 0 0 0 0 0

1 2 2
0 1

0
1 2

2 2 2 2
0 0 0 0 0 0 0 0 0 0

0 2 2
0 0

,
3 3 2

,
2

2 3
,

54

,
2

5 9 2 2

27 54

a b b

b b

b b

b b a a

b b

b b

b b a a a a
m r b b a

T ccg
c ka

c
P g

ka

ka c T T c
g

ka c g

c
R g

ka
c T T T c T

Q Q c T
ka

δ γ ρρυ
δ ρ δ

δ ρ

ρ δ γ ω δ γ δ ρυ

δ ρ

δ ρ

ρ δ γ γ δ δ ω γ δ ρυ γ δ
ρ ω

δ δ

−

−

−
= ±

=

 − + − − =

= ±

− − + + −
+ + + +

±



( )22 2 2
0 0 0 0 0 0

2 2
00

33 2 2
0.

27 2 2
b b a a

b b

cc T Tc
k a ka c

ρυρ δ ω γ δ γ δρυ
δδ ρ


















  + − − + =     

  (1.12) 

It should be noted that  

( )
( )( )

( ) ( )

( )

0

2 2 2
0 0 0 0 0 0 0 0

2
0

2
0 0 2

0

22 2 2
30 0 0 0 0 0

0 0

5 9 2 2

27

54

33 2 2
                       

27 2 2

m r b b a

b b a a a

a

b b a a

b b

Q a Q Q c T

c T T T

c T
k

cc T Tc
k kc

ζ υ ρ ω

ρ δ γ γ δ δ ω γ δ

δ

ρ γ δ
ζ

δ

ρρ δ ω γ δ γ δρ ζ ζ
δ δ ρ

= = + +

− − + +
+

−
+

 + − −
± + 

  

 

is a third degree polynomial with respect to ζ , so that the last equation in system (1.12) always admits at least 
one real solution in aυ ζ= . It is important to point out that solutions (1.12) contain two arbitrary real 
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parameters, 0a ≠  and 1 0g− ≠ . Inserting the expressions for P  and Q  into Equation (1.9) yields  

( )

1

1

01
1 2

1

; ,

exp 2
2

b b

gC
g

f z C
cgC g z

g ka
δ ρ

−

−

=
 
 + ±
  

                        (1.13) 

and condition 0PR <  becomes 

( ) ( ) ( )2 2 2
1 1 0 0 0 0 0 00 2 3 0,b b a ag g kc T T cρ δ γ ω δ γ δ ρ ζ−

 > ⇔ − + − − >                 (1.14) 

0ζ ≠  being any real zero of polynomial ( )Q ζ . Therefore, solution (1.13) is associated with only those zeros 
ζ  of polynomial ( )Q ζ  satisfying condition (1.14). As it has been mentioned above, parameter C  of  

solution (1.13) must be particularized from condition either 0C >  or ( )1exp 2 PC R ax t
R

ε υ
 

≠ − 
  

,  

0 x L≤ ≤  and 0 pt T≤ ≤ , pT  being the duration of the heating process. Inserting Equation (1.13) into 
Equation (1.10) and going back to variables x  and t  lead to the following analytical solution of Equations 
(1.2), (1.3)  

( ) ( )

( )

01 1 1
0 1 2

1 1

1
1

1

01
1 2

1

, exp 2
2

.

exp 2
2

b b

b b

cg g gT x t g C g ax t
C g g ka

gCg
g

cgC g ax t
g ka

δ ρ
υ

δ ρ
υ

− −

−

−

−

  
  = + + ± −
    

+
 
 + ± −
  

               (1.15) 

From what have being saying above, it is clear that solution (1.15) contains three parameters, a , 1g− , and 
C  That may be determined using boundary conditions associated with Equations (1.2), (1.3). For example, if 
the biological tissue is exposed to the environment then the transfer of heat between the skin surface and 
environment is due to conduction, convection, radiation and evaporation. In this situation, the mixed boundary 
condition at the initial time 0t =  is given by 

( ) ( ) ( )0

0,0
,0 ,   0,0 ,c f

T
T L T k h T T LE

x
∂

 = − = − + ∂
                  (1.16) 

where cT  denotes the body core temperature which is often regarded as a constant, 0h  is the apparent heat 
convection coefficient between the skin surface and the surrounding medium under physiologically basal state 
and is an overall contribution from natural convection and radiation, and fT  is the surrounding medium 
temperature (atmospheric temperature), L  is the latent heat of evaporation, and E  is the rate of sweat 
evaporation. Then inserting Equation (1.16) into solution (1.15) leads to the system that allows us to determine 
two of the three parameters 1g− , a , and C . 

3. Results and Discussions 
In the present section, we use the analytical solution (1.15) with sign “ − ” to investigate the nonuniform 
temperature distribution inside the biological bodies. For numerical simulations, we use the tissue parameters 
shown in Table 1 [3] [12]-[15]. 

The maximal value of 0ω , 0γ , and 0δ  are 47 10−× , 41.9 10−×  and 67 10−× , respectively [6]. The the 
arterial blood temperature 37 CaT =   is used. The distance between skin surface and the body core is taken to 
be 0.03 mL =  [16]. The apparent heat convection coefficient due to natural convection and radiation is taken  
as 2

0 10 W/m Ch = ⋅  while the surrounding fluid temperature is chosen as [ ]25 C,45 CfT ∈    [17], that is,  



E. Kengne et al. 
 

 
726 

fT  is comprised between 25˚C and 45˚C. For all our computations, we use 20 kg/m /sE =  and 62.4 10  J/kgL = ×  
[13] [14] so that the effect of the sweat evaporation is neglected. It should be noted that the values for the 
metabolic level shown in Table 1 are associated with dermal parts of the biological tissues. 

Using tissues’ properties given in Table 1, the various temperature profiles have been studied. Figure 1 
shows temperature-dependent perfusion distributions inside the four tissues with properties shown in Table 1. 
To generate the plots of this figure, we have used a constant spatial heating with power 2250 W/mrQ =  and 
the solution parameters 45 10a = ×  and Fat: 0.012664υ = , 1 246748g− = −  and 2.28521C = − ; Kidney: 

0.018613 m/sυ = ,  1 164384g− = −  and 1.45393C = − ; Bladder: 0.018980 m/sυ = ,  1 163424g− = −  and 
1.42764C = − ; Tumor: 0.019633 m/sυ = ,  1 161847g− = −  and 1.38325C = − . The plots of Figure 1 show 

that the tissue temperature increases with the thermal conductivity k  near the skin surface, and decreases near 
the body core when the thermal conductivity k  increases. Therefore, 1) the temperature of the fat tissue near 
the skin surface is lower than that of other tissues, and is higher near the body core than that of other tissues; 2) 
the temperature of the tumor tissue near the skin surface is higher than that of other tissues, and lower than that  

 
Table 1. Tissue parameters.                                                                                

Tissue 
Thermal conductivity 

k [ ]W/m/℃  
Density 

3,  kg/mbρ ρ     
Specific heat 

3,  Ws/kg/mbc c     
Metabolic level 

3 W/mmQ     
Blood perfusion 

3 kg/s/mmω     

Fat 0.210 900 3500 33800 2
0 0 0T Tω γ δ+ +  

Kidney 0.577 1000 3500 33800 2
0 0 0T Tω γ δ+ +  

Bladder 0.600 1000 3500 33800 2
0 0 0T Tω γ δ+ +  

Tumor 0.642 1000 3500 33800 2
0 0 0T Tω γ δ+ +  

 

 

Figure 1. (Color online) Temperature-dependent perfusion distributions at the metabolic level 333800 W/mmQ =  at 
15 CfT =   for four types of biological tissues fat (solid line), kidney (dashed line), bladder (dotted line), and tumor 

(dash-dotted line) with tissue properties shown in Table 1. All the four figures have been obtained with the same blood 
perfusion parameters, 4

0 7 10ω −= × , 4
0 1 10γ −= × , and 6

0 7 10δ −= × . Top: Temperature of the tissues as a function of depth 
integrated over time 0 st =  (a) and 3600 st =  (b). Bottom: Temperature of the skin surface (c) and body core (d) as a 
function of time. Other parameters are given in the text.                                                            
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of other tissues near the body core. 
In what follows, we concentrate ourselves to the temperature distribution in tumor tissue. Figure 2 gives the 

temperature profile in the tumor tissue under different kinds of surrounding medium characterized by their 
temperature. Obviously, the larger surrounding medium temperature, the higher temperature at the skin surface. 
Such information is valuable for thermal comfort evaluation. In practice, the values of the surrounding medium 
temperature and the duration of the process are to chosen so on considering that they should be in the safe range 
for the biological skin. Indeed, a long durable and high temperature of the surrounding medium will cause pain 
even burning to the skin tissues. The plots of Figure 2 show that the temperature of each point of the tissue 
increases with time t  (see plots (a), (b), and (c)). It is seen from plots (d) and (f) that near the skin surface, the 
temperature increases as a function of time t , while close to the body core, the temperature decreases with time 
t . Far from the skin surface and from the body core, the temperature of the tissue at the early stage of heating 
process decreases, and then will gradually be improved (this is easily seen from plot (e)); moreover, as the time 
passes on, the temperature associated with the lower surrounding medium temperature increases more rapidly 
than that associated with higher temperature of the surrounding medium. In other words, a much longer time is 
needed to the tissue located far from the skin surface and the body core to reach the desired temperature when 
using a surrounding medium with higher temperature. It is also seen from plots (d) and (f) that the higher 
temperature of the tissue near the skin surface corresponds to the higher temperature of the surrounding medium; 
the situation is more different near the body core: surrounding medium with smallest temperature gives the 
highest temperature near the body core. 

Figure 3 and Figure 4 show the effect of parameters 0γ  and 0δ  of the temperature-dependent blood 
 

 

Figure 2. (Color online) Effect of the surrounding medium on the temperature response for tumor tissue for 4
0 7 10ω −= × , 

4
0 10γ −= , 6

0 7 10δ −= × , and 3250 W/mrQ =  with 0.0196331 m/sυ = . Solid lines: Temperature distribution associated 
with the surrounding medium temperature 20 CfT =   and the solution parameters 1.39097C = −  and 1 = 158293g− − ; 

Dashed lines: Temperature distribution associated with the surrounding medium temperature 25 CfT =   and the solution 

parameters 1.39743C = −  and 1 155650g− = − ; Dotted lines: Temperature distribution associated with the surrounding 
medium temperature 30 CfT =   and the solution parameters 1.4029C = −  and 1 153601g− = − ; dash-dotted lines: 

Temperature distribution associated with the surrounding medium temperature 37.5 CfT =   and the solution parameters 

1.40966C = −  and 1 151261g− = − . Top: Profile of the temperature distribution at given time as a function depth x , (a) 
initial temperature distribution, (b) temperature profiles at 1800 st = , and (c) temperature profile at time 3600 st = . 
Bottom plots: Temperature profiles at given depths as a function of time (d) at 0.005 mx = , (e) at 0.013 mx = , and (f) at 

0.025 mx = . Other parameters are given in the text.                                                                  
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(a)                                                         (b) 

Figure 3. (Color online) Temperature-dependent perfusion distributions for tumor tissue with properties given in Table 1. 
The temperature of the surrounding medium is maintained constant at 25 CfT =  . The perfusion level was dependent on 

local temperature with three values of the linear coefficient of temperature dependence 4
0 10γ −=  (solid line), 4

0 1.2 10γ −= ×  

(dashed line), and 4
0 1.4 10γ −= ×  (dotted line). The basal perfusion rate was 4

0 7 10ω −= × , while the quadratic coefficient 

of temperature dependence was 6
0 7 10δ −= × . All the plots are obtained with the traveling wave parameters 

45 10a = ×  and 

0.019633 m/sυ =  for 4
0 10γ −= , 0.020989 m/sυ =  for 4

0 1.2 10γ −= × , and 0.023040 m/sυ =  for 4
0 1.4 10γ −= × . The 

solution parameters are defined by system (1.12) with 6
1 1.58987 10g− = − ×  and 4.47392C = −  for 4

0 10γ −= , 
6

1 1.84006 10g− = − ×  and 4.98115C = −  for 4
0 1.4 10γ −= × , and 6

1 2.10605 10g− = − ×  and 5.49675C = −  for 
4

0 1.8 10γ −= × . (a): Temporal distribution of temperature close to skin surface for different values of 0γ ; (b) Temporal 
distribution of temperature close to core body for different values of 0γ . Other parameters are given in the text.                  
 

 
(a)                                   (b)                                (c) 

Figure 4. (Color online) Temperature-dependent perfusion distributions for tumor tissue with properties given in Table 1. 
The temperature of the surrounding medium is maintained constant at 25 CfT =  . The perfusion level was dependent on 

local temperature with three values of the quadratic coefficient of temperature dependence 6
0 10δ −=  (solid line), 6

0 1.1 10δ −= ×  

(dashed line), and 6
0 1.3 10γ −= ×  (dotted line). The basal perfusion rate was 4

0 7 10ω −= × , while the linear coefficient of 

temperature dependence was 6
0 1.9 10γ −= × . All the plots are obtained with the traveling wave parameters 45 10a = ×  and 

0.001674 m/sυ =  for 6
0 10δ −= , 0.005359 m/sυ =  for 6

0 2 10δ −= × , and 0.012671 m/sυ =  for 6
0 3 10δ −= × . The 

solution parameters are defined by system (1.12) with 6
1 6.66992 10g− = − ×  and 4.34247C = −  for 6

0 10δ −=  
6

1 1.54889 10g− = − ×  and 2.68148C = −  for 6
0 2 10δ −= × , and 1 753442g− = −  and 2.19307C = −  for 4

0 3 10δ −= × . 

(a): Spatial distribution of temperature at the initial time 0 st =  for different values of 0δ ; (b) Spatial distribution of 
temperature at the initial time 1800 st =  for different values of 0δ ; (c) Spatial distribution of temperature at the initial 
time 3600 st =  for different values of 0δ .                                                                  
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perfusion on the nonlinear temperature distribution in tumor tissue with properties given in Table 1. The layer 
of air farthest from the skin was set at 25 CfT =   and the core was set to 37 CcT =  . Figure 3 shows the 
temporal distribution of temperature close to skin surface (Figure 3(a)) and close to the body core (Figure 3(b)) 
for different values of the linear coefficient of temperature dependence 0γ . The two plots show that the tissue 
temperature decreases when parameter 0γ  of the temperature-dependent blood perfusion increases. Thus, the 
temperature of the tissue is lower if the blood perfusion has a higher linear coefficient of temperature 
dependence. Figure 4 shows the spatial distribution of temperature at different times. The plots of this figure 
show that the temperature of the tissue decreases when the quadratic coefficient 0δ  of the temperature- 
dependent blood perfusion increases. As expected, Figure 3 and Figure 4 thus show that increased perfusion 
causes a decline in local temperature. As a consequence, the accumulated tissue damage will be lower if the 
blood perfusion has higher temperature coefficients. This means that one may manage the accumulated tissue 
damage just by manipulating parameters 0γ  and 0δ  of the temperature-dependent blood perfusion. 

4. Conclusion 
Using the extended mapping method with symbolic computation, we found exact analytical solution of the BHT 
equation with temperature-dependent blood perfusion, that describes the nonuniform temperature distribution in 
biological tissues. Using this solution, we have explicitly investigated temperature distribution in living tissues. 
The effects of the surrounding medium and the effects of the temperature-dependent blood perfusion on tem- 
perature distribution are also addressed. The exact solutions found in this work can be used to predicate the 
evolution of the detailed temperature within the tissues during thermal therapy. 
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