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Abstract 
The quantum field theory approach has been proposed for the description of graphene electronic 
properties. It generalizes massless Dirac fermion model and is based on the Dirac-Hartree-Fock 
self-consistent field approximation and assumption on antiferromagnetic ordering of graphene 
lattice. The developed approach allows asymmetric charged carriers in single layer graphene with 
partially degenerated Dirac cones. 
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1. Introduction 
The ongoing boom in experimental researches of graphene is not accompanied, however, by substantial devel-
opment of nanoelectronic components using its unique properties. The one of the possible reasons of this situa-
tion could be the absence of satisfactory description of its electrophysical properties on the basis of quantum 
field theory. 

The ab initio calculations by muffin-tin orbital method and usage of random phase approximation (RPA) for 
polarization operator to investigate the balance of exchange and correlation interactions on band structure of 
loosely-packed crystals have shown that strong exchange leads to appearance of an energy gap in the spectrum 
[1]. Conversely, strong correlation interaction leads to tightening the gap in the band spectrum. The spin non- 
polarized ab initio simulations of partial electron densities of two-dimensional graphite have shown that the ma-
terial is a semiconductor. Interlayer correlations tighten energy gap that results in semi-metal behaviour of three- 
dimensional graphite [1]. The presence of a gap in band spectrum of graphene (at Dirac points ,K K ′ ) would 
increase theoretical estimation of its conductivity to 2πe h  that is to value approaching optical (high frequency) 
conductivity of graphene [1]. But there is a significant discrepancy of theoretical estimates of low-frequency 
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(minimal) conductivity of monolayer graphene [3]-[5] with its experimental value 24e h  [6]-[12]. 
Energy gap ~10 meV can be in spectra of nanostructures with photon-dressed ground state [13]. With mea-

surement accuracy ~1 meV, permissible at the present level of technological development, the gap is not regis-
tered [14], though a sharp change of the Fermi velocity Fv  in Dirac point ( )K K ′ , described in Hartree-Fock 
and RPA [14], as well as when using the ab initio simulations [15] is the experimental fact [14]. 

Quantum field theory [16] of pseudo-Dirac quasiparticles [17]-[20] in RPA gives a strong screening which 
destroys the excitonic pairing instability if dynamic fermion mass qm  is small in comparison with chemical 
potential µ : qm µ≤ . The existence of dynamic screening for this system with physical flavor 2N = , calcu-
lated by Eliashberg self-consistent technique, makes the value of qm  non-zero for momentums 610q −<  [16]. 
Unfortunately, such a range of values of q  also gives practically vanishing mass 1210

Fk Fm q v −<  for the 
Fermi momentum Fk  and Fermi velocity 610 m/sFv  . Additional possible lack of this approach is that 
though pseudo-Dirac fermions act in 2 + 1 dimensional space-time, an electromagnetic field is defined as usual 
in 3 + 1 dimensions [2] [16] [21] (otherwise Coulomb interaction in 2D space would be log r rather than needed 
1/r). 

In papers [22]-[24] one uses a known analogy between the mass of a particle in the kinetic energy and a factor 
entered as the mass tensor ijm  in a quadratic term in the energy expansion of a single-particle state; the mag-
neto-transport term for which there is no such an analogy is discarded. Such description of particles collisions in 
impurity-free (pure) graphene as electron-phonon scattering gives an estimate of the dynamic conductivity 

( )2π 2e h  at low temperature 0T →  [22]-[24]. 
In the reference frame where a fermion with nonzero rest mass moves with a velocity v , its bispinor wave  

function ( ) ( ) ( ){ },up downt t tσ σΨ = Ψ Ψ  in addition to non-zero upper components ( )up tσΨ  acquires non-zero lower 

(“positron”) components ( )down tσΨ  [25] [26] 

( ) ( ) ( ) ( )1 2 1 2 2 21
1 1

1 1cosh 1 e , cosh 1 e , 1 .cosh
2 2

up i t down i t
p pt t v c

p
ε ε

σ σχ ψ χ ψ χ− − −⋅
Ψ = + Ψ = − = −

pσ  (1) 

Changing the light speed Fc v→  in (1), the pseudo-spinor wave function ( )p tΨ  of quasiparticles in gra-
phene can be written as a sum of electron wave functions (1): 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
†1 1 e 1 e 1

2 2
p pi t i tup down up down

p pt t t t t p pε ε
σ σ σ σ

−
− −

   Ψ = Ψ +Ψ + Ψ +Ψ + ⋅ + − ⋅ Ψ   
p p σ σ  (2) 

where p Fv pε =  . Due to the process of electron-hole pairs’ production, the current j  [27] oscillates [28] 

( ) ( ) ( ) 2† † †
0 1 1 0 12 2, , e

2
pi tF

F p p p p
p p

p ev it ev
pp p

ε⋅ ⋅ 
= + + = Ψ Ψ = Ψ − + × Ψ 

 
∑ ∑

p p p
j j j j j j p

σ σ
σ σ  (3) 

where oscillating summands †
1 1,j j  are called “Zitterbewegung” terms. Drawback of pseudo-electrodynamics 

of graphene [28] is the divergence of the expression (2) at Fv v→ . 
Weak localization of states can be introduced through non-zero spin-orbit interaction. A possibility of the ab-

sence of inversion center for spin-polarized electron density of monolayer grapheme, related with this fact pos-
sibility of non-zero spin-orbit contribution ,G I

SOH , which depends upon z -component of Pauli matrices vector 
(spin) and pseudo-Pauli matrices vector (pseudo-spin) and stipulates magnetoelectric effects, has been men-
tioned in papers [29]-[31]. The phenomenon of spin dependent scattering in non-magnetic graphene can be 
viewed as an experimentally proven charged carrier asymmetry in graphene [32] [33]. Intrinsic and extrinsic 
(Rashba) spin-orbit couplings in single layer graphene manifest themselves via the Elliot-Yafet and Dyako-
nov-Perel disorder-scattering spin-relaxation mechanisms, respectively [34]. The development of quantum spin-
tronic devices is based on spin-dependent bands simulations. These simulations demonstrate that intrinsic 
spin-orbital interaction is very small, less than 100 µeV [35]. Resonant mechanism of the skew scattering, stipu-
lated by increase of the strength of spin-orbital coupling up to ~10 meV in the presence of a metal cluster, has 
been proposed in [36]. Despite the fact that the non-equilibrium spin can occur in a resonantly acting field 
(plasmons) of metal cluster near the surface of graphene (the Hanle effect), the presence of such an impurity is 
also accompanied by the removal of degeneracy of the Dirac cone. The last one leads to the appearance of a 
hexagon of mini-zones in the vicinity of Dirac cone; respectively, electron-hole asymmetry has another origin 
which is not related with spin-orbital interaction. In [2] [3] [13] [37], the conductivity of graphene has been de-
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scribed via the appearance of a gap stipulated by excitonic pairing mechanism and with a value of the same or-
der of magnitude as the aforementioned (induced) one. Besides, the Hall effect is accompanied by intensive 
process of electron-hole symmetric pair production in the form of “Zitterbewegung” for wave functions [3] [27] 
[37]. This demonstrates that the “Zitterbewegung” phenomena and the gap of nanostructures with photon- 
dressed ground states are capable to neutralize resonant mechanism of the induced skew symmetry. 

Electromagnetic interaction between N  Dirac particles leads to a renormalization of their masses [38]. On 
the one hand, this dynamic (renormalized) mass qm  of charged carriers in graphene should be sufficiently 
small: qm µ≤ , to be an agreement with experimental data. On the other hand, the value of qm  should be finite 
that allows at least getting a match with the experimental value of the dynamic conductivity of graphene [2] 
[22]. 

The most promising is the use of Dirac-Hartree-Fock self-consistent field approximation for the description of 
spin-dependent electrical properties of graphene, since the estimate of dynamic mass of the quasiparticles in  
graphene in this approximation is given by  810AB BA c −Σ Σ   [39]. 

Charged carrier asymmetry in graphene transport experimentally found in [40] [41] by a method [42], allows 
assuming non-coincidence of Dirac cone with its replica except for ( )K K ′ -point. In the paper [43], it has been 
shown that in the flavor model 2N =  charged carriers are symmetric as well as the graphene band structure. 

The goal of this paper is to construct a pseudo-bispinor description of graphene, which is based on the Dirac- 
Hartree-Fock self-consistent field approximation, and to propose a flavor model 3N =  for the graphene with 
spin-polarized sublattices. Coulomb interaction in the model is dynamically screened not due to self-consistent 
motion of an electron with respect to a hole as in flavor models 2N = , but due to self-consistent motion of 
negatively charged three-particle exciton state relative to positively charged three-particle exciton ( )3N = . 

The paper is organized as follows. In Sections 2 and 3 we shortly introduce the approach [39] and use it in a 
simple tight-binding approximation of the problem and massless case. Section 4 gives explicit expressions for 
exchange interaction matrices allowing further simulating quantities of interest, which are performed and dis-
cussed in Sections 5 and 6; in Section 7 we summarize our findings. 

2. The Equations of Self-Consistent Charged Carriers Motion in Graphene 
In papers [39] [44]-[46] a new approach has been proposed to describe graphene electronic properties. It utilizes 
a quasi-relativistic Dirac-Hartree-Fock self-consistent field approximation and assumption on ferromagnetic or-
dering of the sublattices ,A B  (with anti-ferromagnetic ordering of the lattice as a whole). In this approach the 
graphene is described by the following stationary equation for the second-quantized fermion field †ˆ

Aσχ− :  

( )( ) ( ){ } ( ) ( ) ( )† †ˆ ˆˆ 1 0, 0, .
A A

qu x x
F rel rel quAB BA

v c i i E pσ σχ σ χ σ− −⋅ − Σ Σ − = −p r rσ   (4) 

Here points ( )K K ′  in the Brillouin zone of monolayer graphene are designated as ( )A BK K , p  is the 
momentum operator, operator ˆqu

Fv  is defined as  

( ) ( )ˆ .qu x
F rel A BBA

v c = Σ + ⋅ + K Kσ        (5) 

( ), ,x y zσ σ σ=σ  is the vector of Pauli matrices, 2D transformation matrices ( ) ( ),x x
rel relBA AB

Σ Σ  are determined 
by an exchange interaction term x

relΣ  

( )
( )

( )
( )

( )
( )

† †

† †

0ˆ ˆ
0, 0, 0, 0, ,

ˆ ˆ0
A A

B B

x
rel ABx

rel x
rel BA

σ σ

σ σ

χ χ
σ σ σ σ

χ χ
− −

− −

 Σ       Σ − = −
    Σ    

r r

r r
   (6) 

( ) ( ) ( ) ( ) ( ) ( )† † †

1

ˆ ˆ ˆ ˆ0, d 0, 0, 0, ,
v

B AB Bi i

NN
x
rel i i i i i iAB i

Vσ σσ σ
χ σ χ σ σ χ χ σ ′−−

=

Σ = − − −∑∫r r r r r r r   (7) 

( ) ( ) ( ) ( ) ( )† † †

1

ˆ ˆ ˆ ˆ0, d 0, 0, ( ) 0, .
v

BA A Aii

NN
x
rel i i i i i iBA i

V r rσ σ σσ
χ σ χ σ σ χ χ σ

′′
′ ′ ′ ′ ′−

−′=

Σ − = − −∑∫r r r r r 

 (8) 

Now, we perform the following non-unitary transformation of the wave function for graphene  
 ( ) 

† 0, 0, .
A A

x
rel BAσ σχ σ χ σ− −− = Σ −       (9) 

In the limit of 1q   we can neglect the mixing of the states for the Dirac points AK  and BK , and get 
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pure two-dimensional case. After this transformation, Equation (4) takes the form similar to a pseudo-Dirac ap-
proximation of two-dimensional graphene:  

{ } ( ) ( ) ( )† †
2

ˆ ˆ0, 0, , 1
A A

AB
D BA BA AB quc cE p qσ σχ σ χ σ− −⋅ − Σ Σ − = −p r r

 

σ    (10) 

where  ( ) ( )x x
BA AB rel relBA AB

Σ Σ = − Σ Σ , ( ) ( ) 1

2 2
AB x x
D rel D relBA BA

−
= Σ Σσ σ , ( )2 ,D x yσ σ=σ ,  

( ) ( ) 1† †ˆ ˆ
A A

x x
BA rel relBA BAσ σχ χ

−

− −= Σ Σp p  , 1ˆqu qu FE E v−= . 

In a similar way we can write down the following stationary equation for the second quantized fermion field 
†ˆ

Bσ
χ+  on the sublattice B :  

 ( ) ( ) ( ) ( )† †
2

ˆ ˆ0, 0,
B B

BA
D AB AB BA quc cE pσ σχ σ χ σ+ +

 ⋅ − Σ Σ = p p r r

 σ     (11) 

where  ( ) ( )x x
AB BA rel relAB BA

Σ Σ = − Σ Σ , ( ) ( ) 1x x
AB rel relAB AB

−
= Σ Σp p , ( ) ( ) ( )† †ˆ ˆ0, 0,

B B

x
rel ABσ σχ σ χ σ+ += Σr r . 

Due to the fact that ( ) ( )x x
rel relBA AB

Σ ≠ Σ , the vector BAp  of the Dirac cone is somehow rotated and stretched  

in respect to the vector ABp  of its replica. 

3. The Equation of Motion of Massless Charged Carriers in Graphene 
Massless approximation of Equation (10) reads  

( ) ( ) ( )† †
2

ˆ ˆ0, 0, .
B B

BA
D AB quE pσ σχ σ χ σ+ +⋅ − = −p r r σ     (12) 

Let wave functions φ↑  and φ↓  with spin up and down respectively has the form  

1

2

01 1, .
02 2
φ

φ φ
φ↑ ↓

  
= =   

   
       (13) 

Bispinor wave functions of quasiparticles moving on the Dirac cones and its replicas can be represented as the 
free Dirac field of π  (pz)-electrons:  

( )
( )

( )
( )

( ) ( )( )

( ){ }
( ){ }
( ){ }

( ){ }

( )

( )

1

†
2

†
2

1

exp

ˆ exp0, e ,
ˆ 20, exp

exp

A B

A B A B
A BA B A B

B AB A B A

B A

k

i
k

k

k

i

i

i

i

σ σ

σσ

θ φ

θ φχ σ χ

χχ σ θ φ

θ φ

− − ⋅
− −

++

 − 
 

  − −  
     = ≡      −     

 
 
 

K q rr

r





   (14) 

( )
 ( )

( )
 ( )

( ) ( )( )

( ){ }
( ){ }
( ){ }
( ){ }

( )

( )

2

†
1

†
1

2

exp

exp0, e
20, exp

exp

A B

A B A B
A BA B A B

B A
B A B A

B A

k

i
k

k

k

i

i

i

i

σ σ

σ
σ

θ φ

θ φχ σ χ

χχ σ θ φ

θ φ

− − ⋅
+ +

−
−

 − 
 

          = ≡     − −    
 

− 
 

K q rr

r
    (15) 

where  

( ) ( )
( ) ( )

( ){ } { }
( )( )3 2

1 exp
2π 2 i

A B
l

A B A B
i l lA B A B ni

N
φ ψ   = − − −   ∑

R

K q R r r R    (16) 

is a Bloch function. 
In approximation of free π  (pz)-electrons all wave functions entering into the expressions (7), (8) are de-



H. V. Grushevskaya, G. Krylov 

 
988 

scribed by the Formulae (14), (15):  

( )  ( ) ( )  ( )† † † †ˆ ˆ, for , .A BA Bii
i iσ σσ σ

χ χ χ χ
′

−−
′≡ ≡ ∀r r r r       (17) 

Then, in this approximation we can write matrices ( )x
rel ABAB

Σ ≈ Σ  and ( )x
rel BABA

Σ ≈ Σ  without self-action as   

( )  ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1
† *

1

* *1
1 1 1 2 2

3 2 * *1 2 1 2 2

0, d

e e e e e1 d
2 e e e e e

v

B B A B B

A A kk k k k BA B A Bv

k k k kA B A B

N N
x
rel AB i i i iAB i

ii i i iN N
i i i i

i i i i i i
i i i i i

V

V

σ σ σ σ σ

θθ θ θ θ

θ θ θ θ

χ σ χ χ χ χ

φ φ φ φ φ

φ φ φ φ

−

+ − − +
=

 − − ⋅ −− −  −

− − −=

 Σ ≈ Σ = − ⋅ 

  −
 = −
  

∑ ∫

∑ ∫
K q r

r r r r r r r

r r r r r
r r r

r r r r ( ) ( )1

,
A A kBi θ φ

 − ⋅ − 

 
 
 
 

K q r r

 (18) 

( )  ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( )

1
† *

1

* *1
2 2 2 1

3 2 * *1 1 2 1 1

0, d

e 1 e e e e1 d
2 e 1 e e e

v

A A B A A

A A kk k k k AB A B Av

k k k kB A B A

N N
x
rel BA i i i iBA i

ii i i iN N
i i i i

i i i i i i
i i i i i

V

V

σ σ σ σ σ

θθ θ θ θ

θ θ θ θ

χ σ χ χ χ χ

φ φ φ φ

φ φ φ φ

−

− − + + −
=

− − ⋅ −− − −

− −
=

 Σ − ≈ Σ = − ⋅ 

 − − −
 = −
 − 

∑ ∫

∑ ∫
K q r

r r r r r r r

r r r r
r r r

r r r r

( )
( ) ( )

1

2

.
e A A kAi θ

φ

φ




 − − ⋅ + 

 
 
 
 

K q r

r

r

 (19) 

It follows from the expressions (18), (19) that the matrices ABΣ  and BAΣ  have the form   

( ){ } ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *1
1 1 1 2

* *
1 2 1 2 2

1 e d ,
2

v
k kA B

N Ni i i i i
AB i i

i i i i i

V
θ θ φ φ φ φ

φ φ φ φ

−
− −

=

 
Σ = −  

  
∑ ∫

r r r r
r r r

r r r r
    (20) 

( ){ } ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *1
2 2 2 1

* *
1 1 2 1 1

1 e d .
2

v
k kA B

N Ni i i i i
BA i i

i i i i i

V
θ θ φ φ φ φ

φ φ φ φ

−
− −

=

 −
Σ = −  

−  
∑ ∫

r r r r
r r r

r r r r
    (21) 

Let us find the matrices ABΣ  and BAΣ  in tight-binding approximation. To do it, we substitute the expres-
sion (16) into matrices (20), (21) and calculate integrals entered in elements of these matrices, for example   

( ) ( ) ( )
( )

( ) { } ( ) { } { }( )1 2

* *
2 1 13

,

2d d e .
2π

i i
A A l lA A

A A
A A

i
i i i i i i i l ln n i

l l
V V n

N
φ φ ψ ψ′

′
′

   − ⋅ −  − = − − −∑∫ ∫
K q R R

r r r r r r r r r R R  (22) 

Taking into account that the vector difference i −r r  lays in i -th primitive cell: 2D
i i− =r r r , we transform 

(22) as   

( ) ( ) ( )

( )
( ) { } { } ( ) { } ( )1 2

*
2 1

2 2 * 2 2
3

,

d

2 d exp
2π A A A A

A A

i i i i

D D i i D D
i i A A l l i l i ln n

l l

V

V i
N

φ φ

ψ ψ
′ ′

′

−

  = − ⋅ − − −   

∫

∑∫

r r r r r

r r K q R R r R r R   

 (23) 

where i -th primitive cell is obtained from the base one by a rotation on an angle ( )2 1 60 , 1,2,3i i± = ; 

( ) ( )A A A Al l′ ′
= −R R r . Let us account for nearest neighbors only in (23):   

( ) ( ) ( )
( )

{ } ( ) { } ( ) { } ( )1 2

* 2 * 2 2 2
2 1 3

1d exp d .
2π

i D D D D
i i i i A i i i i i i in nV i Vφ φ ψ ψ − = − ⋅ − ∫ ∫r r r r r K q r r r rδ δ   (24) 

As a basic set we choose { } { }2 1
,n nψ ψ  orbitals of π -electrons: { } ( ) ( )

2 1 p 2 p ,
z zin c cψ ψ ψ= ± +r rδ 2 2

1 1;ii c
=

=∑   

{ } ( )
1 pn z

ψ ψ= r . Energy of an electron is not changed with rotation on a lattice vector. Therefore, we can use the 
symmetry of the problem for simulation simplification by choosing e.g., 1δ  and q , as iδ , iq . 

4. Partially Broken Symmetry of Model N = 3 
Substituting the expression (23) into the matrixes (20), (21) and choosing basic set with 1 2 1 2c c= = , we get 
in the approximation (24):  
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( )
( )

( ) { } ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

3

2 2 23
1

* * *
p 2 p , 2 p 2 p 2 p , 2

* * *
p , 2 p , 2 p 2 p , 2 p 2 p 2 p , 2

3

1 e exp d d d
2 2π

2

2

1 e
2 2π

k kA B

z z i z z z i

z i z i z i z z z i

i i
AB i i A i i D D D

i

D D D D D

D D D D D D Dz

q i z V x yθ θδ

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ

− −

=

− −

− −

−

 Σ = − ⋅ 

  +  ×
      + + +     

=

∑ ∫ ∫K q r

r r r r r

r r r r r r r

δ δ

δ δ δ δ

δ

( ) { }
3

1
exp ,k kA Bi i nd

A i i AB
i

iθ θ−

=

 − ⋅ Σ ∑ K q δ

  (25) 
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( ) { } ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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2 2 23
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p , 2 p 2 p 2 p , 2 p , 2 p , 2 p 2

* * *
p 2 p 2 p , 2 p 2 p , 2

1 e exp d d d
2 2π

1
2

2

1
2

k kA B

z i z z z i z i z i

z z z i z z i

i i
BA i i A i i D D D

i

D D D D D D Dz

D D D D D

q i z V x yθ θδ

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

− −

=

− −

− −

 Σ = − ⋅ 

     + + − +      × 
  − +  

=

∑ ∫ ∫K q r

r r r r r r r

r r r r r

δ δ δ δ

δ δ

δ

( )
( ) { }

3

3
1

e exp .
2π

k kA Bi i nd
A i i BA

i
iθ θ− −

=

 − ⋅ Σ ∑ K q δ

  (26) 

Here it was chosen the upper sign for π -orbital { }2nψ  and was introduced the following notion  
( ) ( )p , 2 p 2z i zD D iψ ψ± = ±r rδ δ . Secular equation with this basic orthogonal set { }i  has the form  

1
2

1ˆ .
ˆ

BA
D AB F

j F

i i v j j E i E
i v i

ψ ψ ψ−⋅ = =∑pσ    (27) 

Due to the fact that ˆF Fi v i v∝  and the wave function is defined up to a phase multiplier, then Equation 
(27) is reduced to  

2 .BA
D AB

F

E
v

χ χ⋅ =pσ         (28) 

Let us rewrite Equation (28) in momentum representation as  

( ) ( )1
2

,

p
p i AB i i D AB j j j AB p p p

i j F

E
q q q q

v
χ δ δ χ χ χ−Σ Σ =∑ pσ   (29) 

where 0i j+ =q q  owing to momentum conservation law. Then one can obtain 2
BA
Dσ  in an explicit form   

( ) ( ) ( )
( ) ( )

( ) ( )

3 2

11 1
2 2 2 3 2

1

1
.

1

k k
BA nd nd k
D AB i i D AB j j AB D AB

k k
k

i
q q

i
δ δ

−− =

=

 − ⋅ − ⋅ − 
≡ Σ Σ = −Σ Σ

 + ⋅ − ⋅ + 

∑

∑

q q

q q





δ δ
σ σ σ

δ δ
   (30) 

Substituting known expressions for eigenfunctions of hydrogen-like atom [47] and evaluating integrals, we 
obtain rather lengthy ( )q -dependent invertible matrices, for 0q =  they are pure numeric and up to a common 
scalar prefactor read  

( ) ( )
0.062 0.54 0.42 0.045

, .
0.045 0.42 0.54 0.062AB A BA A

−   
Σ = Σ =   −   

K K     (31) 

The most interesting thing is that eigenvalue problem (28) gives precisely the known dispersion laws  

( ) 2 2
x yE q q= ± +q , that is problem is persistent up to 3q  variations. 

Now, we take into account higher order in q  terms when evaluating ,AB BAΣ Σ . Dependence of the Fermi 
energy ( )FE n  on the surface carriers concentration n  is the replacement of  
( ) ( ) ( )πA F F FE q K E q k E q n→ =  so that 2 2 2πx y Fq q n k+ = = . The Fermi energies ( )e

FE n  and  
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( )h
FE n  for electrons and holes, respectively, are represented in Figure 1. One can see that the hole and electron 

bands are symmetric. Six mini-zones around points ,K K ′  of Brillouin zone are also observable in Figure 1. 

5. Asymmetrical Charged Carriers at Large Fermion Density 
Now, let us show that the spectrum ( )E q  corresponding to Equation (12) can deviate from the conic form at 
large concentration n . According to Figure 1, for 14 210 mn −

  the Fermi level is in the region with unbroken 
symmetry of the Dirac cone. When 15 210 mn −

 , the Fermi level enters the region with broken symmetry of 
the Dirac cone. In this region, there is a Fermi energy curve ( )e h

FE  which has local hyperbolic points of a “sad-
dle” type. Fermi curves passing through or near these hyperbolic points are local maxima and minima. Since in 
these points “trajectories” of quasi-particle motion (i.e., the configuration space of the system) are unstable, not 
all holes (electrons) can reach the Dirac cone (replicas) and annihilate. We demonstrate ( )E q  surface sections 
for few xq  in Figure 2. 

Figure 2(a) emphasizes that in the vicinity of Dirac point the cone is persistent due to symmetry (section 
crosses original cone and its replicas simultaneously), at higher values of q , higher order corrections start to 
contribute. An energy dispersion law for 2D graphene is linear near Dirac cone corner at 0µ =  (see Figure 
2(a)). When section crosses original cone only (Figure 2(b)), we find symmetrical section of the Dirac cone.  

 

  
(a)                                                       (b) 

Figure 1. Fermi energy ( )FE n  curves at different carriers concentrations n  for electrons (a) and holes (b).      

 

   
(a)                                  (b)                                   (c) 

Figure 2. The dependence ( ),x yE q q  for several different values of xq : (a) 0x Aq K = ; (b) 0.05x Aq K = ; (c)

0.1x Aq K = .                                                                                   
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Comparing Figure 2(c) with Figure 1 we can conclude that the section of Dirac cone and its replicas at  
0.1x Aq K =  is placed in one of six mini-zones of the Brillouin zone. It leads to electron-hole asymmetry. 

Such type of charged carrier asymmetry has been observed in [32] [33] as the resistivity dependence upon direct 
current at positive and negative values of the gate voltage. We can compare an energy distance between “upper” 
and “lower” Dirac cones with an energy distance between replicas in section given by the relation 0.1x Aq K = . 
In such a section the extremum takes place at 0.05y Aq K =  (Figure 2(c)). The distance RE∆  between ex-
trema at 0.05y Aq K =  is the distance between nearest upper and lower replicas. 0.02 ,R A FE K v∆ ≈  due to 
rotation of Dirac cone in respect to replicas at 0q ≠ . 

Thus, the six fold rotational symmetry of graphene energy surface near the Dirac point partially breaks, ex-
cept of Dirac cone’s corner, and, respectively the Dirac cone does not coincide with its replicas. 

6. Electron-Hole Localization in the Model N = 3 at Low Carrier Concentration 
The displacement of replicas points in the graphene Brillouin zone on respect to the primary Dirac cone points 
occurs at a distance 

.AB AB BA∆ = −q q q                               (32) 

Since in the neighborhood of the Dirac cone’s corner 0q → , and (as was shown above) the cone persists 
then, in accord with (32) in the graphene Brillouin zone all points of the Dirac cone replicas shift, except of their 
corners. To understand what value of the rotation angle it could correspond to, we choose 0.1 A∝k K  and find 

AB∆k  based on (32) and expressions (31) for ,BA ABΣ Σ . The rotation angle ( )( )1 2 1 2arccos 1.57076⋅ =w w w w  
so it turns out to be a practically right angle π 2  where 1

1 AB AB
−= Σ Σw k , 1

2 .BA BA
−= Σ Σw k  The last means that 

the rotation could be large enough for some points in momentum space. 
Let us find localization regions of non-annihilated quasiparticles. Since momenta hq  of holes are rotated 

with respect to the electron momenta eq  at angle π 2 , the hole Fermi curve h
FE  is also rotated. Because of 

the symmetry, the curve h
FE  is effectively rotated at angle π 6 , as shown in Figure 1. Adding e

FE  and the 
corresponding to it a hole Fermi surface h

FE− , we find the surface ( ) e h
F FS n E E≡ − , which demonstrates 

charge density distribution at the Fermi level 0µ →  at low charged carriers concentrations 1n  and is 
shown in Figure 3. ( )S n  takes nonzero values outside of Dirac cone’s corner (non-zero values of the chemical 
potential µ ). 

By virtue of turn of the holes valence band (conduction band electrons) at π 6 , the hole liquid is localized so 
that the electron liquid from its valence band could flow into the vacancies of the hole valence band. Similarly,  

 

 
Figure 3. Scheme of localization in flavor model 3N = .    
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the hole liquid flows into the vacancies of the valence band electrons at some value , 1µ δ δ= ±  . Since the an-
nihilation processes are absent, the hole and electron Fermi levels are not at 0µ = , and stabilized at some value

=µ δ±  and, respectively, the Fermi level is dynamic. Therefore, there is a dynamic overlapping of valence and 
conduction bands, and, respectively, clear graphene turns out to be a metal. The neighborhood with 0µ →  is a 
region where trapped quasiparticles could annihilate; therefore the charged carriers there, are practically absent. 
This actually is the prohibition for charge carriers to be in the Dirac cone’s corner. 

The formed dynamic equilibrium can be disturbed by injection of carriers nδ  from outside into a forbidden 
neighborhood 0µ → . Then, to restore the balance, the charge carriers will move into the forbidden region with 
subsequent annihilation 2e h γ+ →  and, consequently, having opposite sign free carriers appears in the re-
gions of localization. The energy Eδ  of the free carriers is equal to energy of both quanta: 2E nγδ ω δ  . 
Since nδ  is small, the “sea” of free quasiparticles is a shallow one. According to Figure 3, due to hyperbolic 
points, between basins of electrons and holes there are unstable regions, which leads to disintegration of the 
large “see” into separate small “puddles”. Such “puddles” are experimentally observed at 15 210 mnδ −<  [48]. 

7. Conclusion 
The physical flavors approach 3N =  to a quantum field description of graphene electronic properties has been 
developed. It is based on the Dirac-Hartree-Fock self-consistent field approximation and assumption on antifer-
romagnetic ordering of graphene lattice. The approach is a generalization of the known model 2N =  of mass-
less Dirac fermions in graphene. Its first advantage is that the model 3N =  gives symmetric electron and hole 
band structures, which differ from the band structure model 2N =  only by a partial violation of the order of 

4q  of the six-fold rotational symmetry of primary Dirac cone and its replicas. In the cone’s corner 0→q  
the Dirac cone is degenerated. The second advantage is the possibility to account for charged carriers asymmetry 
stipulated by exchange interaction potential for different sublattices. The third flavor, given by transformations 

ABΣ , BAΣ , gives charged carriers asymmetry and is expressed in dynamical location of the Fermi level and dy-
namical localization of electrons and holes. 

References 
[1] Grushevskaya, G.V., Komarov, L.I. and Gurskii, L.I. (1998) Physics of Solid State, 40, 1802-1805. 

http://dx.doi.org/10.1134/1.1130660 
[2] Gusynin, V.P., Sharapov, S.G. and Carbotte, J.P. (2007) International Journal of Modern Physics B, 21, 4611.  

http://dx.doi.org/10.1142/S0217979207038022 
[3] Peres, N.M.R. (2009) Journal of Physics: Condensed Matter, 21, 323201.  

http://dx.doi.org/10.1088/0953-8984/21/32/323201 
[4] Ziegler, K. (2007) Physical Review B, 75, 233407. http://dx.doi.org/10.1103/PhysRevB.75.233407 
[5] Ando, T., Zheng, Y. and Suzuura, H. (2002) Journal of the Physical Society of Japan, 71, 1318-1324.  

http://dx.doi.org/10.1143/JPSJ.71.1318 
[6] Novoselov, K.S., Geim, A.K., Morozov, S.V., et al. (2004) Science, 306, 666. http://dx.doi.org/10.1143/JPSJ.71.1318 
[7] Dean, C.R., Young, A.F. and Meric, I. (2010) Nature Nanotechnology, 5, 722.  

http://dx.doi.org/10.1038/nnano.2010.172 
[8] Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L. and Kim, P. (2008) Physical Review Letters, 101, 096802. 

http://dx.doi.org/10.1103/PhysRevLett.101.096802 
[9] Du, X., Skachko, I., Barker, A. and Andrei, E.Y. (2008) Nature Nanotechnology, 3, 491-495. 

http://dx.doi.org/10.1038/nnano.2008.199 
[10] Geim, A.K. and Novoselov, K.S. (2007) Nature Materials, 6, 183. http://dx.doi.org/10.1038/nmat1849 
[11] Castro, E.V., Ochoa, H., Katsnelson, M.I., Gorbachev, R.V., Elias, D.C., Novoselov, K.S., Geim, A.K. and Guinea, F. 

(2010) Physical Review Letters, 105, 266601. http://dx.doi.org/10.1103/PhysRevLett.105.266601 
[12] Hancock, Y. (2011) Journal of Physics D, 44, 473001. http://dx.doi.org/10.1088/0022-3727/44/47/473001 
[13] Kibis, O.V. (2011) Physical Review Letters, 107, 106802. http://dx.doi.org/10.1103/PhysRevLett.107.106802 
[14] Elias, D.C., Gorbachev, R.V., Mayorov, A.S., Morozov, S.V., Zhukov, A.A., Blake, P., Ponomarenko, L.A., Grigorie-

va, I.V., Novoselov, K.S., Guinea, F. and Geim, A.K. (2012) Nature Physics, 8, 172.  
http://dx.doi.org/10.1038/nphys2213 

http://dx.doi.org/10.1134/1.1130660
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1088/0953-8984/21/32/323201
http://dx.doi.org/10.1103/PhysRevB.75.233407
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1038/nnano.2010.172
http://dx.doi.org/10.1103/PhysRevLett.101.096802
http://dx.doi.org/10.1038/nnano.2008.199
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/PhysRevLett.105.266601
http://dx.doi.org/10.1088/0022-3727/44/47/473001
http://dx.doi.org/10.1103/PhysRevLett.107.106802
http://dx.doi.org/10.1038/nphys2213


H. V. Grushevskaya, G. Krylov 

 
993 

[15] Rojas-Cuervo, A.M. and Rey-González, R.R. (2013) Asymmetric Dirac Cones in Monatomic Hexagonal Lattices. Ar-
Xiv:1304.4576v1 [cond-mat.mes-hall] 

[16] Wang, J.R. and Liu, G.Z. (2011) Journal of Physics: Condensed Matter, 23, 155602.  
http://dx.doi.org/10.1088/0953-8984/23/15/155602 

[17] Semenoff, G.W. (1984) Physical Review Letters, 53, 2449. http://dx.doi.org/10.1103/PhysRevLett.53.2449 
[18] Wallace, P.R. (1947) Physical Review, 71, 622-634. http://dx.doi.org/10.1103/PhysRev.71.622 
[19] Reich, S., Maultzsch, J., Thomsen, C. and Ordejón, P. (2002) Physical Review B, 66, 035412.  

http://dx.doi.org/10.1103/PhysRevB.66.035412 
[20] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. 

and Firsov, A.A. (2005) Nature, 438, 197-200. http://dx.doi.org/10.1038/nature04233 
[21] Fialkovsky, I. and Vassilevich, D.V. (2012) European Physical Journal B, 85, 384.  

http://dx.doi.org/10.1140/epjb/e2012-30685-9 
[22] Falkovsky, L.A. (2011) Low Temperature Physics, 37, 480-484. http://dx.doi.org/10.1063/1.3615524 
[23] Falkovsky, L.A. and Varlamov, A.A. (2007) European Physical Journal B, 56, 281-284.  

http://dx.doi.org/10.1140/epjb/e2007-00142-3 
[24] Falkovsky, L.A. (2008) Physics—Uspekhi, 51, 887-897. http://dx.doi.org/10.1070/PU2008v051n09ABEH006625 
[25] Gribov, V.N. (2001) Quantum Electrodynamics. Regular and Chaotic Dynamics Publisher, Izhevsk.  
[26] Kaku, M. (1994) Quantum Field Theory: A Modern Introduction. Oxford University Press, Oxford.  
[27] Abrikosov, A.A. (1998) Physical Review B, 58, 2788. http://dx.doi.org/10.1103/PhysRevB.58.2788 
[28] Katsnelson, M.I. (2006) European Physical Journal B, 51, 157-160. http://dx.doi.org/10.1140/epjb/e2006-00203-1 
[29] Kane, C.L. and Mele, E.J. (2005) Physical Review Letters, 95, 226801.  

http://dx.doi.org/10.1103/PhysRevLett.95.226801 
[30] Huertas-Hernando, D., Guinea, F. and Brataas, A. (2006) Physical Review B, 74, 155426.  

http://dx.doi.org/10.1103/PhysRevB.74.155426 
[31] Min, H., Hill, J.E., Sinitsyn, N.A., Sahu, B.R., Kleinman, L. and MacDonald, A.H. (2006) Physical Review B, 74, 

165310. http://dx.doi.org/10.1103/PhysRevB.74.165310 
[32] Han, W., McCreary, K., Bao, W., Li, Y., Miao, F., Lau, C.N. and Kawakami, R.K. (2009) Physical Review Letters, 102, 

137205. http://dx.doi.org/10.1103/PhysRevLett.102.137205 
[33] Han, W., McCreary, K., Pi, K., Wang, W.H., Li, Y., Wen, H., Chen, J.R. and Kawakami, R.K. (2012) Journal of Mag-

netism and Magnetic Materials, 324, 369-381. http://dx.doi.org/10.1016/j.jmmm.2011.08.001 
[34] Pesin, D. and MacDonald, A.H. (2012) Nature Materials, 11, 409-416. http://dx.doi.org/10.1038/nmat3305 
[35] Elias, D.C., Gorbachev, R.V., Mayorov, A.S., Morozov, S.V., Zhukov, A.A., Blake, P., Ponomarenko, L.A., Grigorie-

va, I.V., Novoselov, K.S., Guinea, F. and Geim, A.K. (2011) Nature Physics, 7, 701-704.  
http://dx.doi.org/10.1038/nphys2049 

[36] Ferreira, A., Rappoport, T.G., Cazalilla, M.A. and Neto, A.H.C. (2014) Physical Review Letters, 112, 066601.  
http://dx.doi.org/10.1103/PhysRevLett.112.066601 

[37] Neto, A.H.C., Guinea, F., Peres, N.M., Novoselov, K.S. and Geim, A.K. (2009) Reviews of Modern Physics, 81, 
109-162. http://dx.doi.org/10.1103/RevModPhys.81.109 

[38] Dirac, P.A.M. (1966) Lectures on Quantum Field Theory. Belfer Graduate School of Science, New York.  
[39] Grushevskaya, H.V. and Krylov, G.G. (2013) Int. J. Nonlin. Phen. in Comp. Sys., 16, 189-208.  
[40] Rahman, A., Guikema, J.W. and Marković, N. (2013) Asymmetric Scattering of Dirac Electrons and Holes in Gra-

phene. arXiv:1304.6318v1 [cond-mat.mes-hall] 
[41] Rahman, A., Guikema, J.W. and Marković, N. (2013) Direct Evidence of Angle-Selective Transmission of Dirac Elec-

trons in Graphene p-n Junctions. arXiv:1304.5533v1 [cond-mat.mes-hall] 
[42] Rossi, E., Bardarson, J.H., Fuhrer, M.S. and Das, S.S. (2012) Physical Review Letters, 109, 096801.  

http://dx.doi.org/10.1103/PhysRevLett.109.096801 
[43] Grushevskaya, H.V. and Krylov, G.G. (2014) Int. J. Nonlin. Phen. in Comp. Sys., 17, 86-96.  
[44] Grushevskaya, H.V. and Krylov, G.G. (2013) Electronic Structure and Transport in Graphene: Quasi-Relativistic Dirac- 

Hartree-Fock Self-Consistent Field Approximation. arXiv:1309.1847 [cond-mat.mes-hall] 
[45] Krylov, G.G., Krylova, H.V. and Belov, M.A. (2011) Electron Transport in Low-Dimensional Systems with Nontrivial 

http://dx.doi.org/10.1088/0953-8984/23/15/155602
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRevB.66.035412
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1140/epjb/e2012-30685-9
http://dx.doi.org/10.1063/1.3615524
http://dx.doi.org/10.1140/epjb/e2007-00142-3
http://dx.doi.org/10.1070/PU2008v051n09ABEH006625
http://dx.doi.org/10.1103/PhysRevB.58.2788
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevLett.102.137205
http://dx.doi.org/10.1016/j.jmmm.2011.08.001
http://dx.doi.org/10.1038/nmat3305
http://dx.doi.org/10.1038/nphys2049
http://dx.doi.org/10.1103/PhysRevLett.112.066601
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.109.096801


H. V. Grushevskaya, G. Krylov 

 
994 

Topology: Effects of Localization. In: Mokshin, A.V., et al., Eds., Dynamical Phenomena in Complex Systems, MOiN 
RT Publishing, Kazan, 161-180. (in Russian)  

[46] Krylova, H. and Hursky, L. (2013) Spin Polarization in Strong-Correlated Nanosystems. LAP LAMBERT Academic 
Publishing, Saarbrücken.  

[47] Messiah, A. (2000) Quantum Mechanics, Vol. 1. Dover Publications, Mineola.  
[48] Morozov, S.V., Novoselov, K.S. and Geim, A.K. (2008) Physics—Uspekhi, 178, 776. 


	Quantum Field Theory of Graphene with Dynamical Partial Symmetry Breaking
	Abstract
	Keywords
	1. Introduction
	2. The Equations of Self-Consistent Charged Carriers Motion in Graphene
	3. The Equation of Motion of Massless Charged Carriers in Graphene
	4. Partially Broken Symmetry of Model N = 3
	5. Asymmetrical Charged Carriers at Large Fermion Density
	6. Electron-Hole Localization in the Model N = 3 at Low Carrier Concentration
	7. Conclusion
	References

