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Abstract 
 
Bayesian predictive probability density function is obtained when the underlying pop-ulation distribution is 
exponentiated and subjective prior is used. The corresponding predictive survival function is then obtained 
and used in constructing 100(1 – )% predictive interval, using one- and two- sample schemes when the size 
of the future sample is fixed and random. In the random case, the size of the future sample is assumed to fol-
low the truncated Poisson distribution with parameter λ. Special attention is paid to the exponentiated Burr 
type XII population, from which the data are drawn. Two illustrative examples are given, one of which uses 
simulated data and the other uses data that represent the breaking strength of 64 single carbon fibers of 
length 10, found in Lawless [40]. 
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1. Introduction 
 
The general problem of prediction may be described as 
that of inferring the values of unknown observables (fu-
ture observations, known as future sample), or functions 
of such variables, from current available observations, 
known as informative sample. the problem of prediction 
can be solved fully within Bayes framework (Geisser 
[33] ). Bernardo and Smith [22] stated that: “inference 
about parameters is thus seen to be a limiting form of 
predictive inference about observables”. 

Bayesian prediction bounds for order statistics of fu-
ture observables from certain distributions, such as the 
exponential, Rayleigh, Weibull, Pareto and Lomax dis-
tributions, have been studied by several authors. See, for 
example, Dunsmore [27], Lingappaiah [44], Evans and 
Nigm [28]-[30], Sinha and Howlader [58], Howlader 
[36], Sinha [56], Raqab [54], Malik [46], Zellner [64], 
Lwin [43], Sinha and Howlader [57], Arnold and Press 
[20], Geisser [32], Nigm and Hamdy [50], AL-Hussaini 
and Jaheen [16], AL-Hussaini [5] and Nigm et al [51]. 
Prediction bounds for certain order statistics of samples 
from Burr type XII population, were obtained by Nigm 
[49], AL-Hussaini and Jaheen [14,15] and Ali Mousa 

and Jaheen [19]. Prediction bounds, based on heteroge-
neous populations that can be represented by finite mix-
tures were developed by Jaheen [37], AL-Hussaini [3], 
[6] among others. 

Prediction was reviewed by Patel [52], Nagaraja [48], 
Kaminsky and Nelson [38] and AL-Hussaini [4]. 

Adding one, or more, parameters to a distribution 
makes it richer and more flexible for modeling data. 
There are several ways of adding one or more parameters 
to a distribution. A positive parameter was added to a 
general survival function (SF) by Marshall and Olkin 
[47]. In their consideration of a countable mixture of a 
Pascal(r,p) mixing proportion and positive integer pow-
ers of SFs, a SF with two extra parameters was obtained 
by AL-Hussaini and Ghitany [10]. A new family of dis-
tributions as a countable mixture with Poisson added 
parameter was constructed by AL-Hussaini and Gharib 
[9]. A simple way of adding a parameter to a distribution 
is by exponentiation. This goes back to Verhulst [62], 
who raised his 1838 [61] logistic cumulative distribution 
function (CDF) to a positive power. Ahuja and Nash [1] 
seemed to have been the first to raise Verhulst [63] ex-
ponential CDF to a positive power. 

The exponentiated model is also known as propor-
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tional reversed hazard rate model, see Gupta and Gupta 
[35] or Lehman alternatives, when  is a positive integer, 
see Lehmann [41]. 

     H x H x; G x; ,


             (1.1) 

where G x;   is a CDF and  is a positive parameter, 
  may be a vector and  ,  ,where   is the 
parameter space. In this paper, we shall assume that G(x) 
is an absolutely continuous CDF defined on the positive 
half of the real line. So that, its corresponding probability 
density function (PDF) is   0g x , x . . If  is the 
PDF corresponding to H(x), then  

 h x

     1
0h x G x g x , x .





           (1.2) 

AL-Hussaini [7] studied some of the properties of the 
exponentiated distributions where the baseline distribu-
tion G is a general CDF. AL-Hussaini [8] estimated the 
parameters, SF and hazard rate function (HRF) under the 
general exponentiated model, using maximum likelihood 
and Bayes methods. He also obtained prediction bounds 
of future observables based on the two-sample scheme 
under the exponentiated model.  

AL-Hussaini and Hussein [11] estimated the parame-
ters of the exponentiated Burr XII(, β, ) population 
when the data are subjected to type II censoring. Maxi-
mum likelihood (ML) and Bayes methods were used for 
estimation. The ML and Bayes estimates were compared 
when the Bayes estimates are based on square error and 
linear-exponential loss functions. 

In Section 2, the one-sample scheme is used to predict 
future observables from exponentiated populations. In 
Section 3, future observables from exponentiated popu-
lations are predicted, using two-sample scheme, when 
the size of the future sample is fixed and when it is ran-
dom. In Section 4 the results obtained in Sections 2 and 3 
are applied to the exponentiated Burr type XII population. 
In Section 5, Numerical examples are given to illustrate 
our results. 
 
2. One-Sample Prediction 
 
Suppose that 1 rX X   are the first r ordered life 
times in a random sample of n components whose failure 
times are identically distributed as a random variable X 
having the exponentiated distribution, given by (1.1). 
Bayesian one-sample prediction is made for some order 
statistics of the remaining n-r life times. For such re-
maining n-r components, let s r s ,  denote the life 
time of the sth component to fail, where1

Y X
s n r   . 

Write r s

     

       

1

1

s

r s s r

n r s n r

s H r s

f y | H y | H x |

H y | R x | h y | ,

  

  



   

   

     

 

The binomial expansion of each of the first three terms 
on the right hand side then yields  

   

       

1

1 2 3
1 2 3

21 3

1 1

0 0 0

s n r s s j

r s j j j s
j j j

jj j

r s r

f y | C H y |

sH x | H y | H x | h y | ,

 

  

     

  

   

        

  



 

where 

  1 2

1 2 3 3
1 2

1
1

j j

j j j j

s n r s
C C

j j
     

    
  

     (2.1) 

    
3

3

3

1 1

!j

n r n r n r j
C

j

     



.     (2.2) 

Substituting    s sH y | G y |      and  sh y |   

   1
sG y | g y |

s   
    we then have  

   
       1 31 2

1 2 3

r s G s

* j js j j
j j j s r

f y | y

C G y | G x | 

   

   



   
    ,

 

where  

   
  1 2 3

1

0 0 0

s n r s
s *

G s
j j js

g y |
y , .  (2.3) 

G y |


 



   

  

 
  
  

   

We shall rewrite  r sf y |  in the form  

     1 2 3 1 2 3
exp

*

r s G s j j j j j j sf y | y C T y ; ,          

                 (2.4) 
where  

 
       

1 2 3

1 2 1 3ln ln

j j j s

s r

T y ;

s j j G y | j j G x |



.        
 

(2.5) 

The predictive PDF of sY  is defined by 

      d*
r s r s s rf y | x f y | | x , y x       (2.6) 

where  | x  is the posterior PDF of  1 k, ,    , 
given  1 2 rx x ,x , ,x  . The posterior PDF is such that  

     | x L ; x ,             (2.7) 

where  L ; x  is the likelihood function and    is 
a prior PDF of  . 

Substitution of (2.4) and (2.7) in (2.6), then yields the 
pred ic t ive  PDF of  the  fu ture  order  s ta t i s t ic  

f y |  to denote the conditional PDF of the 
sth component to fail, given that r components had al-
ready failed. Then  1sY , s , ,n r.   
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Suppose that the CDF depends on an unknown 
k-dimensional vector of parameters 

 G x
 1 k, ,    , ,    4

4
4

1
j

j

n r
C ,

j

 
   

 
  

so that      H x H x; G x;


     
  depends on the  

     4 4
1

ln ln
r

j i
i

T G x | j G x 


r | ,     
      (2.9) (k + 1) unknown parameters  , ,  . Suppose that   

and  are independent so that the prior belief of the 
experimenter is given by     0

1 1

ln ln
r r

i
i i

T G x | g x i | .  
 

      (2.10) 
       1 2,                (2.8) 

The posterior PDF of  ,     given the data, is 
then given by  where  1   is gamma  1 2b ,b  distribution and 

 2   is a k-variate PDF.  

           0 01 4

4
4

1
2

0

j
n r

T Tr b
j

j

| x L ; x C e
     


  



    The likelihood function is given by:    

     
1

1
r n r

i r
i

L ; x h x | H x |  




      
            (2.11) 

where  
Substitution of (1.1) and (1.2) then yields  

   40 2jT b T
4j

               (2.12) 
     04

4
4 0

j
n r

T Tr
j

j

L ; x C e ,
   


 



  .  
Therefore, the predictive PDF of sY is given by 

where  
 

          
 

 

1

4 1 2 30 01 0

1

exp d d
s* r b* *

s j j j j s

s

* *
s s r

g y |
f y | x C T T y ; T

G y |

A C I y , y x .




     


 

 
          

 

  




 

where 

 

4 1 2 3 4

1 2 4

1 2 3 4 3

1

1
0 0 0 0 0

1 2 4

1
1

n r s n r s n r
* *

j j j j j

j j j*
j j j j j

,

s n r s n r
C C C C ,

j j j

     

    

 

  

                  

      
                   (2.13) 

 

3j
C is given by (2.2), and by 

 
   

   
 
 1

4 1 2 3

0 2

1

0

exp
d

s

s r b
sj j j j s

T g y |
I y

G y |T T y ;


  


 
 

       
     

         1
1

d
* *

s s s r

A
P Y | x A C I y y S , x

r b
 


   

  .  

where  
It then follows that the predictive SF of sY  is given  

 

 
         

    
1 1

4 4 1 2 3

0 21
1 2

0 1 3 0

1 1 1
exp d

ln

* *
r b r b

j r j j j j s

S C T ,
s j j T j j G x | T T y ;


   

   
 

  
                   

     

 

 
1 2 3j j j sT y ; ,  ,  0T   and  40 jT   are given, re- A two sided 100(1- predictive interval for 　 sY is 

given by sL Y U  , where L and U are the solution of 
the equations spectively, by (2.5) , (2.10) and (2.12). 

Notice that: 
   1

2 rS L S x ,
 

       
1

1

1 s r r
r

r bA
P Y x | x S x A .

r b S x


    


 0  

 
         (2.15)  

    0
2 rS U S x .
   
 

         (2.16) So that 

   
 s r

r

S
P Y | x , x .

S x


           (2.14) 

REMARKS 
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1) A one-sided 100(1- predictive interval of the form 　

s  is such that L is the solution of (2.15) after re-
placing 
Y L

2  by  . Similarly, a one-sided 100(1 – τ)% 
predictive interval of the form s  is such that U is 
the solution of (2.16) after replacing 

Y U
2  by  . 

2) Equations (2.15) and (2.16) are generally not ob-
tainable analytically and some iteration scheme is used 
for their solution. 
 
3. Two-Samples Prediction 
 
Suppose that 1 rX X 

l

 are the first r ordered life 
times in a random sample of n components (type II cen-
soring) whose failure times are identically distributed as 
a random variable X having the exponentiated distribu-
tion, given by (1.1). Bayesian prediction is made for , 
the l th ordered lifetime in a future sample of size m 
(two-sample prediction), . The sample size 
m is assumed to be fixed or random. 

Yl

1 2, , ,m

4.1. Fixed Sample Size 
 
Suppose that the CDF  G x depends on an unknown 
k-dimensional vector of parameters  1 k, ,    , so 

that      H x H x; G x; ,


     depends on the   
(k + 1) unknown parameters  ,   . Suppose that   
and  are independent so that the prior belief of the 
experimenter is given by (2.8). Then the predictive PDF 
and SF of the future  are given, respec-
tively, by 

1Y , , ,m l l

   1
1

02

*
k* r b S

f y | x
S


l

4           (3.1) 

   5

02

*
kS

P Y | x
S


  l ,          (3.2) 

where  
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   

 
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 

 
 

 
      

 

   

 

l l

l

l 4 5
,

                  (3.3) 

4j
C is given by (2.9) , 
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5
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1
j

j

m
C
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 
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 

l
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    
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4
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0

0
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j

T
I

T


 





 
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 
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 
     

   


l
  

       4 5 40 5 lnj , j jT T j G y |     ll                            (3.4) 

 

 4j
T  ,  0T   and  40 jT  are given, respectively,  

by (2.9), (2.10) and (2.12). 
It follows, from (3.2), that a two-sided predictive in-

terval for is given by , where L and U are 
the solution of the two equations 
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l 

 

       (3.5) 

For proof, see AL-Hussaini [8]. 

3.2. Random Sample Size 

If the sample size m of the future sample is random, 
Gupta and Gupta (1984) suggested the use of the predic-
tive PDF of to be given in the form Yl

      2 1

1* *

m

f y | x p m f y | x
p m






 l l

ll
   (3.6) 

where p(m)  is the probability mass function (PMF) of 
the random variable m and 1

* f y | xl  is the predictive 
PDF of  when m is fixed. Yl

Consider the case when m has a truncated Poisson ( ), 
with PMF 

   
1 2 3

! 1

m e
p m , m , , ,

m e





 


 


       (3.7) 
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The predictive PDF and SF of  when m is random 
can be written as 

Yl
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(3.8) 
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,    (3.9) 

where  p m is given by (3.7), 02 and  (which 
are functions of m), are given by (3.3). 

S  5
*
kS .

 
4. Application To Exponentiated Burr Type 

Xii Population 
 
Burr [23] suggested a differential equation of a CDF of a 
random variable X, whose solution depends on a ‘gen-
eral’ function of x. Burr chose twelve specific forms for 
this function to obtain the well-known twelve types of 
Burr distributions. See Burr [23]. In a different direction, 
Takahasi [60], compounded the Weibull distribution with 
the gamma distribution to obtain a 3-parameter Burr XII 
distribution. Baharith [21], studied the 4-parameter Burr 
XII (β,,,) whose CDF, for 0 0x , , , ,     , is of 
the form 

   1 1G x x .
 


       

The two-parameter Burr XII (β,) distribution has 
CDF and PDF of the form  

   1 1G x x ,
 

             (4.1) 

    11 1g x x x
  

   .        (4.2) 

Among the 12 distributions of Burr, the 2-parameter 
Burr XII (β,) has found numerous applications. It was 
proposed as a life time model and its properties were 
studied by Burr and Cislak [24], Dubey [25,26], Tadi-
kamalla [59] and Lewis [42], among others. Inferences, 
based on the Burr XII (β,) distribution and some of its 
testing measures were made by Papadopoulos [53], Ev-
ans and Ragab [31], Lingappaiah [45], Shah and Gekhale 
[55], AL-Hussaini and Jaheen [12,13]. Khan and Khan 
[39] and AL-Hussaini [3] characterized the Burr XII (β,) 
distribution. Nigm [49] and AL-Hussaini and Jaheen [14] 
predicted observables based on the Burr XII (β,) model. 

An exponentiated Burr type XII distribution with pa-
rameters ,β,, denoted by EBurr XII(,β,), has CDF 
and PDF of the forms (1.1) and (1.2), where G and g are 
given by (4.1) and (4.2), respectively. We shall obtain 
the predictive PDF, and hence predictive bounds of sY  
when the unknown parameters are ,β and . 

Suppose that the baseline distribution G is Burr XII 
with two unknown parameters β and . It is assumed that 
 is independent of (β,) and that  1 2gamma~ b , b , 

 3gamma| ~ b ,    and , so that 
the prior PDF of 

 4 5mma~ b ,bga
 , ,     is given by 

             1 2 1 3 4π π π π π π π, , , |              

2 53 4 31 1 11 b bb b bb e                   (4.3) 

 
4.1. One-Sample Prediction 
 
The predictive PDF and SF of sY  are given, respec-
tively, by 
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    5 0
*T , b T ,                (4.4) 

 
1 2 3j j j sT y ; ,  ,  0T ,  , 

40 jT ,    and are 

given, respectively, by (2.5), (2.10), (2.12) and (2.13). 

*C

 
4.2. Two-Sample Prediction 
 
In the following two subsections, it is assumed that the 
two independent samples of sizes n and m are drawn 
from an exponentiated population. The size m of the fu-

ture sample is assumed to be fixed, in subsection 4.2.1 
and random in subsection 4.2.2.  
 
4.2.1. Fixed Sample Size 
The predictive PDF and SF of the future 1Y , , ,m l l  
are given by 
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4j

T ,  ,  0T ,  , 
40 jT ,    and *T ,    are  

given by (2.9), (2.10), (2.12) and (4.4). 
A two-sided predictive interval for is given by 

, where L and U are the solution of (3.5). For 
proof, see [8]. 

Yl

L Y U l

4.2.2. Random Sample Size 
The predictive PDF and SF of the future 1Y , , ,m l l , 
when m is random, are given by (3.8) and (3.9), using 

1
* f y | xl  and  P Y | xl  defined in section 4.2.1. 

It follows, from (3.9), that a two-sided predictive interval 
for  is given by , where L and U are the 
solution of the two equations 
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5. Numerical Computations 

The numerical examples given here are to illustrate the 
use of the results obtained. 

5.1. Example 1 

Twenty observations are generated from the EBurr XII 
( = 2.5, β = 1.5,  = 2) according to the expression:  

 
1111

/// 1X U ,
      

 where  0 1U ~ Unif , .  

The observations are ordered and only the first 15 out of 
the 20 observations are assumed to be known. The ob-
servations are given as 

 

0.31631 0.37028 0.46877 0.53664 0.54401 0.64687 0.66259 

0.80129 0.82068 0.84947 0.90148 1.0728 1.2344 1.2932 

1.351 1.7918 1.8123 2.6583 2.7362 5.0043  
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Table 1. Lower and Upper Limits of Some Predicted Values. 

Two-Sample 
 One-Sample 

m fixed m random 

 1Y  2Y  n rY   1Y  2Y  10Y  1Y  2Y  10Y  

L 1.56 1.62 1.88 0.13 0.25 0.37 0.14 0.29 0.38 
U 2.59 3.18 6.99 0.82 0.94 1.64 0.89 1.24 1.87 

 
Table 2. Lower and Upper Limits of Some Predicted Values. 

Two-Sample 
 One-Sample 

m fixed m random 

 1Y  2Y  n rY   1Y  2Y  10Y  1Y  2Y  10Y  

L 3.63 3.66 4.41 0.69 1.15 1.63 0.57 1.26 1.59 
U 4.14 4.20 5.03 2.32 3.12 3.52 2.41 2.98 3.18 

 
When the hyper-parameters are 1 , 20 6b . 0 6b . , 

3 , 4 , 5 , the lower and upper limits for 
the 95% predictive intervals of 1 1r

2b  2b  3b 
X Y  , 2 2rX Y   

and n n rX Y  , based on the one-sample scheme, are 
given in Table 1. On the other hand, when predicti-on is 
based on the two-sample scheme, Table 1 also shows the 
lower and upper limits for the 95% predictive intervals of 
three failure times of a future sample of size m,  , Y  1 2

and 10 , of size m, when m is fixed (=10) and when m 
has a truncated Poisson with

Y
Y

10  . 
 

5.2. Example 2 (Real Life Data) 
 
The following data (Lawless 2003, p.573, [40]) represent 
the breaking strength of n = 64 single carbon fibers of 
length 10, given as ordered, 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 
2.397, 2.445, 2.454, 2.454, 2.474, 2.518, 2.522, 2.525, 
2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 
2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 
2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 
3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 
3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 
3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

It is assumed that only 55 (= r) observations are 
known. AL-Hussaini and Hussein [11], showed that the 
vector of hyper-parameters ( 1 2 3180b , 0 6b . , 2b ,  

4 5 ) are appropriate for the prior density of , 
β,  so that the EBurr XII distribution fits the set of data 
using Kolmogorov Smirnov test. 

2b , 3b 

The lower and upper limits for the 95% predictive in-
tervals of 1 1rX Y  , 2 2rX Y   and n n rX Y  , are 
given in Table 2, when based on the one-sample scheme, 
where n = 64 and r = 55. On the other hand, when pre-
diction is based on the two-sample scheme, with n = 64, 
r = 55 and m = 10, the lower and upper limits for the 
95% predictive intervals of three failure times of a future 
sample of size m, 1 , 2  and 10Y , when m is fixed (= 
10) and when m has a truncated Poisson with 

Y Y
10  , 

are displayed in Table 2. 
 
6. Concluding Remarks 
 
Bayes 100(1 –  )% predictive interval for future ob-
servables is obtained when data are order statistics of a 
random sample drawn from a population having the ex-
ponentiated distribution and only the first r observations 
are known. The one- and two-sample schem- 

es are used in prediction and a subjective prior is used 
as the prior belief of the experimenter. In the two-sample 
case, the Bayes intervals are obtained when the size of 
the future sample is assumed to be fixed and to be ran-
dom. In the random case, the size of the future sample 
follows the Poisson distribution with parameter λ. Re-
sults are applied to the exponentiated Burr type XII 
population. Two examples are given: one uses simulated 
data and the other uses data representing the breaking 
strength of 64 single carbon fibers of length 10, found in 
Lawless [40]. 
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