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Abstract 
Using accurate quantum energy computations in nanotechnologic applications is usually very 
computationally intensive. That makes it difficult to apply in subsequent quantum simulation. In 
this paper, we present some preliminary results pertaining to stochastic methods for alleviating 
the numerical expense of quantum estimations. The initial information about the quantum energy 
originates from the Density Functional Theory. The determination of the parameters is performed 
by using methods stemming from machine learning. We survey the covariance method using mar-
ginal likelihood for the statistical simulation. More emphasis is put at the position of equilibrium 
where the total atomic energy attains its minimum. The originally intensive data can be repro-
duced efficiently without losing accuracy. A significant acceleration gain is perceived by using the 
proposed method. 
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1. Introduction 
Nanotechnology tends to be the technology of focus in this century [1]. Many of the macroscopically visible 
continuum applications seem to have attained nearly optimal state in computer implementation as well as in 
theoretical analysis. Not only the analytical and numerical treatments of nanotechnology are interesting but it 
has real-world applications in various disciplines including aircraft, automobile, electronic and medical engi-
neering. This work is partially a continuation of our former studies in [2]-[4] but we consider here electronic 
structures instead of solute-solvent interactions. In this paper, we would like to concentrate on the efficient 
treatment of quantum information. We present a method which is efficient for noisy data that contain measure-
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ment imperfection because quantum data measurements are not completely ab-initio. Among other methods, 
DFT (Density Functional Theory) contains some parameters which are obtained from fitting procedures. Our 
motivation is to generate a system which is both accurate and fairly inexpensive to evaluate. Our method applies 
to all sorts of quantum information but we focus on the atomic energy in this paper. The availability of efficient 
and accurate evaluations can be used for subsequent applications. The region where the system admits its equi-
librium is examined more carefully than the remaining region during the approximation. That is, a geometry op-
timization must be performed initially in order to determine the position where the energy attains its minimum. 
The most general setup enables an estimation of an unknown function in arbitrary dimension such that noisy 
sample functions together with their higher derivatives are provided. In this document, we treat the simplified 
version where only the sample values are provided. Depending on the desired accuracy and the size of the 
atomic system, the determination of the energy can last several minutes till several hours by using direct DFT 
computations. The molecular configurations consist of germanium, silicon or composites of them using several 
space group symmetries. The function to be reconstructed is the energy surface of a configuration when some 
tensor transformations are applied to DFT. The possible transformations include isotropic stretching, anisotropic 
stretchings and Voigt tensor. Our numerical experiments reveal that the proposed statistical pre-fitting process 
seems to be a reasonable approach to obtain a good accuracy in an affordable computing time. The preparation 
overhead lasts very long but it needs only to be performed once for all and its output can be stored. The accele-
ration factor between the direct DFT and the kernel based approximation is approximately of order 105. Due to 
this significant acceleration gain, the preparation process shows to be worth calculating. 

2. Theoretical Methodology 
2.1. Ground State Energy 
For a configuration of nuclei { }ja  of number uN , the main problem in electronic structure computation in-
volves the general Hamiltonian operator. We denote the coordinates of the i-th electron by ( ),1 ,2 ,3, ,i i i ix x x=x   
and 3 2 2

,1:
i i jj x

=
∆ = ∂ ∂∑x . For the Born-Oppenheimer or adiabatic approximation, one assumes that the mass  

and the volume of the atoms are very large in comparison to those of the electrons. Thus, the atoms move com-
paratively slower than the electrons. As a consequence, one treats the time-independent Hamiltonian operator 
with respect to a set of nuclei ia  which are supposed to be stationary. That is, the electronic structure is go-
verned by the expression  

22 1

1 1 1 1 1

1 .
2 2

e u e

i

N N N N je e j e

i i j j ie i j i j

q Z q
m

−

= = = = =

= − ∆ + +
− −

∑ ∑∑ ∑∑BO x x a x x


                     (1) 

The above three terms are related to the kinetic energy, the atom-electron interaction and the inter-electron 
interaction while em , eq , jZ ,   are quantum parameters. The domain of computation is 3⊂Ω   which is 

supposed to be sufficiently larger than the nuclei cloud { } 1

uN
j j=

a  such that the above operator has neglecting in-

fluence beyond Ω . By considering the electron spins which take values 1 2+  or 1 2− , we are searching for 
the electronic wave function  

{ }( ): 1 2, 1 2 verifying the eigenproblemeN
Ψ × − + →Ω   

( ) ( ) ( ) { }1 1, , , , where , 1 2, 1 2
e eN N i i iEγ γ γ γ γ σΨ = Ψ = ∈ × − + BO x Ω            (2) 

such that Ψ  is antisymmetric ( ) ( ), , , , , , , ,i j j iγ γ γ γΨ = −Ψ       for all distinct , 1, , ei j N=  . The 
ground state energy corresponds to the smallest eigenvalue minE  of (2). The anti-symmetrization operator   
applied to any eN -variate function f  is defined by  

( ) ( )1: sgn
! NePe

f P f P
N ∈

= ∑ 

Π
                             (3) 

in which 
eNΠ  is the set of permutations over { }1, , eN  and ( )sgn P  designates the signature of a permu-
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tation P . If f  is a tensor product function as =1
eN

i if f= ⊗ , then the anti-symmetrizer coincides with the Slater 
determinant or wedge product  

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1
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   



               (4) 

The anti-symmetrization operator   has the properties that it commutes with the Hamiltonian operator and 
that for an e eN N×  matrix M  one has ( ) ( ) ( )detΦ = ΦM M  . The Hartree-Fock approach is the varia-
tional formulation on the Hamiltonian operator (1) where the trial functions are antisymmetric functions. The 
main difficulty is that the problem is of 3 eN -dimension without taking the electronic spins into account. In ad-
dition, on account of the antisymmetric property, a direct use of the Slater determinant often produces computa-
tions having orders of ( )!eN  which are very expensive. Counting the electronic spins leads usually to a factor 
of 2 eN  which makes the computation even more intractable. Some simplifications of the stationary Hamilton 
operators have already been proposed. For the DFT, one solves a set of equations for each electron. The similar-
ity of the solutions is then derived from the theory of Kohn-Sham [5] which consists in replacing the compli-
cated initial problem into several ones. For each 1, , ei N=    

( ) ( ) ( )eff
1
2 i i iV Eψ ψ − ∆ + = 

 
x x x                          (5) 

where effV  is the effective potential energy which depends implicitly on the total electron density  

( ) ( ) 2

1
eN

iiρ ψ
=

= ∑x x  such that ( ) ( ) ( )eff effV V ρ=   x x x . The problem (2) is then reduced from dimensions  

3 eN  to eN  sets of 3D  smaller problems (5). The influence of one electron with respect to the other electrons 
is measured by the total electron density. These approaches enable the treatment of Hamiltonian problem even 
for an electronic structure having a large number of particles on a single desktop. The effective potential is con-
stituted of the Hartree potential HV , the exchange correlation potential XCV  and the external electrostatic field 
such as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )eff H XC extV V V Vρ ρ ρ ρ= + +              x x x x x x x x                (6) 

in which the Hartree potential is the inverse of the Poisson operator such as ( ) ( )H x 4πV ρ∆ = − x . For its evalu-
ation, either a Poisson problem is solved or one convolves with the Green fundamental solution such as 

( ) ( ) dHV ρ= −∫   x x x x x . The exchange-correlation potential is some correction term [6] which is usually 
done by LDA (Local Density Approximation) or GGA (Generalized Gradient Approximation). Analytic expres-
sions of the correlation energy are only known in a few special cases which mainly consist of the high and low 
density limits. The exchange-correlation potential is related to the exchange-correlation energy by  

XC XCV Eδ δρ=  where one expresses XC X CE E E= +  as the exchange and the correlation parts. In term of the 
exchange-correlation energy density XCε  one has  

[ ] [ ]( ) ( )XC XC XC X Cd where .E ρ ε ρ ρ ε ε ε= = +∫ x x x                  (7) 

For the local density approximation (LDA), the exchange energy density is expressed as  

( ) ( )( )1 3LDA
X 0.75 3 πε ρ ρ= − x  so that [ ] ( )

1 3
4 3

X
30.75 d
π

E ρ ρ = −  
  ∫ x x . Analytic values of the correlation  

energy density are only known for some extreme cases. The external electrostatic field potential Vext  is pro-
vided by the kernel 1

uN
i ii z

=
−∑ x x . Once the solution iE  to (5) for all 1, , ei N=   becomes known, the 

Khon-Sham approach uses the approximation to E  of (2) by  

( ) ( ) ( ) ( ) ( )( )XC XC
1

1 d .
2

eN

i H
i

E E V E Vρ ρ ρ ρ
=

= − + −      ∑ ∫ ∫KS x x x x x x              (8) 
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The main improvement from LDA to GGA is that the exchange-correlation energy does not depend only on 
the total electron density but also on its gradient such as [ ]( )GGA GGA

XC XC ,E E ρ ρ= ∇ x . Because of the imperfec-
tions resulting from the estimation of parameters from experimental measurements, the DFT approach is not 
ab-initio as in the initial equations. But the statistical fitting approach proposed in this paper can deal with noisy 
data. The eigenvalue problem in (5) is nonlinear because its variational operator  

( ) ( )2
eff

1 ,
2

kV ρ − ∇ +  Ψ x Ψ                             (9) 

depends on ρ  which in turn depends on iψ . It is solved by using a sequence of the linear eigenvalue prob-
lems SCF (Self Consistent Field). After assembling the operator (9), the linear eigenvalue problem is solved for 
the smallest eigenvalue ( )

min
kλ . Then, the new iterate ( ) ( )k

iψ x  is determined as the eigenfunction corresponding 
to ( )

min
kλ . In practice, one represents Ψ  as a set of basis [7] which are usually plane waves, Finite Element Me-

thod, or wavelets. 

2.2. Kernel-Based Approximation 
In this section, we will survey the main points about kernel-based approximation which are relevant in the 
quantum approximation. The most general setup of that approximation in any dimension D  consists in ac-
cepting some inputs which are D

i ∈x  , iy ∈ , D
i ∈g   and D D

i
×∈h   such that  

( ) , ,D
i i i iy f iε= + ∈ ∈x x                            (10) 

( ) ,i i if i= ∇ + ∈g x κ                             (11) 

( )
, 1

,
D

i i i
p q p q

f i
x x

=

 ∂
= + ∈ 

∂ ∂  
h x λ                        (12) 

in which   and   are some subsets of   while iε , iκ , iλ  are measurement imperfections. In general, 
using the gradients is computationally very expensive so that the set   is much smaller than the set   
while the Hessians are even more restrictively used. In this paper, we use only data measurements such that 

= ∅  and = ∅ . The correlation [8] function to be used is the Matern function  

( ) ( )
1

MATERN
2 2 2: r rk r K

νν

ν
ν ν

ν

−    
=       Γ     

                     (13) 

where ( ),ν   are positive hyper-parameters and Kν  is the modified Bessel function. In dimension D , the 
spectral density of the Matern function is  

( ) ( )( )
( )

( )22
2 2

2 2

2 π 2 2 2 4π .
DD D D

S s s
ν ν

ν

ν ν ν
ν

− +Γ +  = + Γ   

                (14) 

If ν  tends to infinity, one obtains the squared exponential case. For the special case of half-integers such as 
1 2pν = + , one obtains a product of an exponential and a polynomial of order p  such that (13) becomes  

( ) ( )
( )

( )
( )0

1 !2 8exp .
2 1 ! !

p i
p

i

p p ir rk r
p i p iν

ν ν
−

=

   Γ + +
= −      Γ + −   

∑
 

               (15) 

For the most applied cases where 3 2ν =  and 5 2ν = , one has  

( )3 2
3 31 exp ,r rk r

   
= + −      
    

                        (16) 

( )
2

5 2 2

5 5 51 exp .
3

r r rk r
   

= + + −      
    



                      (17) 
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Suppose N  is the number of observations such that ( )Card N=  in (10). For noise-free observations, 
one has the covariance  

( ) ( )( ) ( )Cov , , .p q p qf f K=x x x x                         (18) 

For a noisy data ( )i iy f ε= +x  where the additional noise follows the Gaussian distribution ( )20, nε σ  , 
the covariance becomes  

( ) ( ) 2Cov , , .p q p q n pqK σ δ= +y y x x                          (19) 

Let us denote the sampling points by [ ]T1, , NX = x x  which is a matrix having the size N D×  where D  
is the dimension of the trial variables ix . The latent function and the set of observations are defined in a similar 

fashion such that [ ]T1, , Nf f= f  and [ ]T1, , Ny y= y . The marginal likelihood is the integral of the likelih-
ood and the prior such as  

( ) ( ) ( )d .p X p p X= ∫y y f f f                           (20) 

We denote by ( ),K K X X=  the covariance matrix whose entries are ( ) ( )MATERN,p qK k r=x x  where r  
will be defined below as a generalized distance between px  and qx . We will use also K  to denote the de-
terminant of K . If Xf  follows the Gaussian distribution ( ), K0  and one has no noise, then the marginal 
likelihood is  

( ) ( ) 1 22 T 112π exp .
2

Np X K K−− − = −  
f f f                       (21) 

By taking the logarithm, the computation of the marginal likelihood is as follows  

( ) ( )1 2 2 T 112π exp
2

Np X K K − = −  
f f f                        (22) 

( ) ( ) T 11 1log log log 2π
2 2 2

Np X K K −  + + = − f f f                   (23) 

from which one obtains the log marginal likelihood  

( ) ( )T 11 1log log log 2π .
2 2 2

Np X K K−  = − − − f f f                  (24) 

In the presence of noise ( )20, nε σ   by using (19), the negative log marginal likelihood becomes  

( ) ( ) ( )
1T 2 2

, ,
1 1log log log 2π .
2 2 2n N N n N N

Np X K I K Iσ σ
−

 − = + + + + y y y          (25) 

The first term ( ) 1T 2
,

1
2 n N NK Iσ

−
+y y  is the data-fit term while the second term 2

,
1 log
2 n N NK Iσ+  and the 

last term ( )log 2π
2
N  are respectively the complexity term and the normalization term. For a set of test points  

* D
i ∈x  , the expressions *X , ( )*,K X X  and ( )* *,K X X  are defined in a similar way as X  and 
( ),K X X . The predicted estimation follows the Gaussian distribution  

( ) ( )
( ) ( )

2 *
,

* * * *

, ,
, .

, ,

n N NK X X I K X X

K X X K X X

σ  +             



y
0

f
                 (26) 

That is to say, for given X  and y , the predictive distribution for a covariate vector *X  is a Gaussian ad-
mitting the following mean and variance  

( ) ( )
1* * * 2

,, , , n N NX X K X X K X X Iσ
−   = +  f y                 (27) 
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( ) ( ) ( ) ( )1* * * * * 2 *
,, , , , , ,n N NX X K X X K X X K X X I K X Xσ

−   = − +  f y        (28) 

where those expressions are dependent on some set of hyper-parameters which we discuss below. The value of 
the generalized distance r  for given D

p ∈x   and D
q ∈x   is  

( ) ( )
2

1
T2

2

1

1
p q p q

D

r
λ

λ

 
 

= − − 
 
 

x x x x                     (29) 

in which 1, , Dλ λ  are related to hyper-parameters. In general, the set of hyperparameters include ( )logθ =   
where   is from (16) and (17) as well as ( )log iθ λ=  where 1, ,i D=  . The main objective is to determine 
the hyperparameters by optimizing the marginal likelihood. In practice, using the log marginal likelihood is 
more efficient to implement. In order to accelerate the speed of the nonlinear optimization, we need the gra-
dients of the functional (25) with respect to the hyperparameters. For a hyper-parameter θ , one has the partial 
derivative  

1 1 1 1and log trace .K KK K K K K
θ θ θ θ

− − − −∂ ∂ ∂ ∂ = − =  ∂ ∂ ∂ ∂ 
               (30) 

From the chain rule, one obtains  

( )( ) ( ) ( ) ( ) ( )2
, ,

=1

1, , , where , .
D

p q p q p q p i q i
i i

k r k r r r x xθ θ λ
   ′∂ = ∂ = −   ∑x x x x x x         (31) 

This is singular when p q=x x  which occurs on the diagonal entries of the covariance matrix. In fact, one 
has  

( ) ( )

2
, ,1, for 1, , .

,
p q

p q
p q

x x
r D

rµ

µ µ
λ

µ

µ
λ

 −
∂ = − =  

 
x x

x x
               (32) 

Working with 2:R r=  provides a regularization everywhere as ( ),p qR
µλ

∂ x x  is regular. In addition, 

( ) ( )MATERN:k R k r=  is smooth at the origin because one has indeed ( ) ( )MATERN 2k R p rν= 
 such that  

( ) ( ) ( )MATERN MATERN: expp t f t t= −                                 (33) 

( ) ( ) ( ) ( )MATERN MATERN MATERN expp t f t f t t′ ′= − −                       (34) 

where MATERNf  is a polynomial. In particular, for the cases where 3 2ν =  and 5 2ν =  in (16) and (17), one 
has 3 2 1f t= +  and ( ) 2

5 2 1 1 3f t t= + + . In fact, one obtains the relation  

( ) ( ) ( )MATERN MATERN MATERNf t f t tq t′ − =                         (35) 

where MATERNq  is a polynomial. Therefore, one deduces from (35)  

MATERN MATERN
d 2 2 2 2exp
d 2

k R R Rf f
R R

ν ν ν ν      
′= − −                  



  



         (36) 

MATERN
2 2 2exp

2
R Rqν ν ν   

= −      
     

                     (37) 

which is regular for all values of ( ),p qr x x . 

3. Simulation Results 
In this section, we would like to report some results from computer simulation of the formerly described ap-
proach. First, we will present some results pertaining to general real valued multi-variate functions. That will be 
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followed by some application in quantum simulation. 
The former theoretical approach was implemented by using C/C++, BLAS/LAPACK and NLOPT. The 

BLAS packet is used for the fast vector operations. We use LAPACK for the linear operations such as Cholesky 
factorization and dense matrix solvers. We use NLOPT for the nonlinear operations for both the geometry opti-
mization and the optimal hyper-parameters in the log marginal likelihood (25). NLOPT supports diverse nonli-
near optimization operations [9] in which local optimizers are involved. A local one searches only inside a 
neighborhood of a certain provided starting initial guess. The optimizers are performed by using derivative free 
or gradient based algorithm which are available in NLOPT. Derivative free algorithms include BOBYQA (Bond 
Optimization BY Quadratic Approximation), COBYLA (Constrained Optimization BY Linear Approximation), 
NEWUOA (NEW Unconstrained Optimization Algorithm). Gradient-based methods include MMA (Method of 
Moving Asymptotes) and LBFGB (Limited memory Broyden-Fletcher-Goldfarb-Shanno). The code is a very 
developed version of the matlab implementation provided in [8]. The new additional enhancements from the 
matlab version consist of the following features. First, using NLOPT provides a lot of improvements as com-
pared to the original matlab nonlinear conjugate gradients. That can be observed when both the number of points 
and the dimension become large in the nonlinear optimization of the hyper-parameters. In addition, we can also 
accept higher derivatives in the input apart from the functional values. One can use the entire gradient or only 
some components of it. Furthermore, the gradient of the kernel-based approximation can be evaluated. That can 
be done analytically instead of using finite difference. In addition, our C/C++ code admits some python interface 
enabling direct application to ATK which is the quantum package we use. 

As a first test, we consider the reconstruction of the function ( ) ( )1 1, , sinD
D iif x x x

=
= ∑  by using the ker- 

nel-based approximation. Since that function does not present any special feature such as cusp or boundary layer 
or any special interesting region, we use only randomly generated points. The initial guess of the hy-
per-parameters is provided by the users. One considers the determination of the final hyper-parameters as an 
unconstrained nonlinear optimization. The results of the computations are collected in Table 1 where the errors 
are computed for the function values as well as for the gradient values. The results exhibit the performance for 
different numbers of data for each dimension. In addition, we examine the effect of increasing the dimension 
D . In Figure 1(c), we display the error plots in function of the number of data. We consider dimensions 

3,4,5,6D =  by analyzing the errors in the function evaluation. We observe that the increase of the dimension 
does not really deteriorate the accuracy too much. One needs certainly more points for higher dimensions but the 
increase of the number of additional points is not too significant. 

For the application to nano-simulation, we consider the unit cell generated by three vectors 3, ,A B C ∈u u u  .  

After a transformation ( )1 , , D
T λ λ

, they become ( ):A AT=u u , ( ):B BT=u u , ( ) 3:C CT= ∈u u  . For a bulk  

configuration   inside the unit cell, we denote by ( )T   the transformed configuration where the fractional 
coordinates belonging to the transformed unit cell ( )T   remain the same as in the original configuration  . 
Their values are within [ ]0,1  before and after the transformations. That is, the fractional coordinates of the ref-
erence configuration   remain unchanged from beginning till the end of the computation. We are interested in 
the impact of the DFT energy by applying the transformation to the unit cell vectors. The transformation 
( )1 , , D

T λ λ

 depends on D  parameters so that the D -variate function to be approximated maps  
( )1, , D

Dλ λ= ∈ λ  to the energy such as  

( ) ( ) ( )
11 , ,, , .

DD E DFT T λ λλ λ  =  

    

The first transformation consists of an isotropic one that corresponds to a unidimensional function which is a 
scaling. That transformation amounts to stretching and confining the unit cell equally in all x , y , z  direc-
tions. Thus, the function to be approximated maps λ  into ( )DFT Tλ    where one has :A Aλ=u u ,

:B Bλ=u u , :C Cλ=u u . The next transformations are anisotropic in the sense that the unit cell is scaled diffe-
rently in the x , y , z  directions. The first anisotropic transformation scales in a way that 1:A Aλ=u u , 

2:B Bλ=u u , 3:C Cλ=u u . That transformation corresponds to the case where the dimension is 3D =  and
( )1 2 3, ,T λ λ λ  can be represented as a diagonal matrix having ( )1 2 3, ,λ λ λ  as entries. For the 2D anisotropic case, 

the transformation is given by ( )1 2,T λ λ  which has diagonal entries ( )1 2 2 2, ,λ λ λ λ . For the most general trans- 
formation, one utilizes a strain tensor  
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Table 1. Comparison w.r.t. ( ) ( )1
sinD

ii
f x

=
= ∑x . Error of the function and gradient values on [ ]0,π D  for dimension 

4,5,6D = .                                                                                             

Dimension Error in 
Number of data 

10 20 30 40 50 

4 
Function 1.4727e-01 2.4419e-02 2.3565e-02 1.6221e-02 1.4906e-02 

Gradient 4.7896e-01 1.1478e-01 1.0937e-01 8.6681e-02 7.7206e-02 

5 
Function 9.0570e-02 3.1160e-02 2.7457e-02 2.6331e-02 1.8296e-02 

Gradient 3.8708e-01 1.3668e-01 1.2931e-01 1.2187e-01 9.8637e-02 

6 
Function 1.0068e-01 3.5685e-02 2.7100e-02 2.0901e-02 1.8697e-02 

Gradient 3.8986e-01 1.5762e-01 1.2739e-01 1.1043e-01 1.0545e-01 

 

( ) ( )1 6, , , , , , ,

1 0.5 0.5
0.5 1 0.5 .
0.5 0.5 1

xx xy xz yy yz zz

xx xy xz

yx yy yz

zx zy zz

T Tλ λ ε ε ε ε ε ε

ε ε ε
ε ε ε
ε ε ε

 +
 = = + 
 + 



                   (38) 

This is the Voigt strain tensor which is usually encountered in anisotropic transformations such as elasticity. 
This general transformation corresponds to a six-variate function since the Voigt strain matrix is supposed to be 
symmetric. The isotropic and 2D/3D anisotropic transformations are ensured to be non-singular, provided that 
the diagonal parameters are strictly positive. The tensor transformation in (38) is non-singular as long as the pa-
rameters [ ]ε  are not too large as the Voigt tensor approaches the identity transformation. Although we are in-
terested in the general approximation of the quantum energy, we put more emphasis on the neighborhood of the 
position where the energy attains its minimal value because it defines the equilibrium of the system. The main 
objective is to obtain a good approximation next to the optimal point ( )opt opt

1 , , Dλ λ  corresponding to  

( ) ( ) ( )
1 1, , , ,argmin Energy

D D
Tλ λ λ λ
 
  

                           (39) 

for a molecular or bulk configuration  . We have built a function that performs the geometry optimization us-
ing unpolarized single ζ  DFT calculators for any given molecular configuration. This is the first instance in 
the program where the optimizer NLOPT is applied. The Gaussian approximation are applied on a set of points  

( )1, ,, ,i i D iλ λ= λ  together with their images ( ) ( )
1, ,, ,i D i

E DFT T
λ λ

 =   

 . In our applications, we accumulate  

very dense points in the neighborhood of the optimal value optλ  while only few points are used elsewhere. An 
illustration of this situation is displayed in Figure 1(a) for the unidimensional case where the energy curve is 
traced together with the samples accumulating at the equilibrium. A typical sampling point distribution for the 
spatial case is depicted in Figure 1(b). The implementation of the quantum application was realized by using 
ATK (Atomistix ToolKit) [10] [11] which consisted of python scripts. The ATK has some GUI extension well  
known as VNL (Virtual NanoLab). For given nuclei coordinates { }1, ,

uNa a
, that quantum packet can provide  

the energy ( )min 1, ,
uNE a a

 such that minEΨ = Ψ . As an example of using the ATK simulation, we observe  

the isosurface of the electron density function in Figure 2 for a composite system of germanium/silicon in which 
only the atoms inside the unit cell are displayed. The displayed figure corresponds to 1G Sx xe i −  where 

50%x =  in a germanium-silicon combination obtained from a diamond structure. After applying the approach 
described in the previous sections to several atomic configurations, we collect the major results on Table 2. It 
mainly summarizes the elapsed time for the preparation and the performance of the new method. In the tabulated 
outcomes, we consider first Body Centered Cubic of germanium. In addition, we use composites which are la-
beled 1G Sx xe i −  where [ ]0,1x∈  controls the amounts of germanium and silicon. More precisely, we consider  
the composites which are 0.75 0.25G Se i , 0.50 0.50G Se i  and 0.25 0.75G Se i . All those composites are structured by us- 
ing Face Centered Cubic as space group symmetry. The appropriate parameter values are obtained from the 
American Mineralogist Crystal Structure Database [12].  
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(a)                                    (b)                                    (c) 

Figure 1. Accumulated sampling points at the geometric optimum: (a) Unidimensional; (b)Tridimensional; (c) Increasing the 
dimensions.                                                                                            
 

         
(a)                                               (b) 

Figure 2. Electronic density for the DFT simulation of composite germanium/silicon.               
 

The preparation step consists of a geometry optimization and the determination of the kernel approximation. 
The duration of the Gaussian kernel is dominated by the DFT computations related to the point samples. The 
numbers of point samples are 70, 105, 200 and 250 for isotropic, 2D anisotropic, 3D anisotropic and Voigt ten-
sor respectively. The stochastic computation as described in section 2.2 is very fast. In fact, the application of 
stochastic simulation is at most 2 percent of the whole preparation. All the computations were performed with 
the DFT basis unpolarized single ζ  which is the least intensive basis available in the implementation. If other 
bases were used, the time for the DFT computation would last even much longer. In the case of DFT double ζ  
polarized, the scaling of the computation intensity might be doubled. In all dimensions, the preparation expense 
has long durations. Depending on the tensor transformation and the number of sample points, the preparation 
overhead can last a few minutes till several days. But the output of those preparations can be stored so that they 
need only be computed once for all. The ratio between the direct DFT-evaluation and the evaluation using ker-
nel approximation is displayed in the last column of the Table 2. It exhibits that in average, the orders of acce-
leration are respectively 2.62 06e − , 9.16 06e − , 3.00 05e −  and 4.22 05e −  for the isotropic, 2D anisotrop-
ic, 3D anisotropic and 6D tensor cases. Since the acceleration advantage is very good, investing on the prepara-
tion process is worth calculating as the results can be stored and subsequently post-processed. In order to ob-
serve the improvement of the accuracy, we consider two silicon configurations in Figure 3. As a matter of fact, 
the first configuration consists of silicon admitting a hexagonal lattice using space group P63/mmc. The second 
one admits a Face Centered Cubic lattice possessing the space group Fd3m. For both configurations, the bond 
lengths are obtained from the American Mineralogist Crystal Structure Database [12]. They are respectively 
represented by triangular and circular marks on the diagonal. That figure displays a comparison of the accuracy 
between the DFT computation and the kernel approximation. Marks which are closer to the diagonal identify 
good agreements between the two methods. We present only the case of anisotropic 3D transformation in this 
comparison because the other cases would exhibit similar results. The only difference between the two figures is 
that more sample points are used for the second one. More precisely, 45 sampling points are used in the first si-
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m u l a t i o n  

 
(a)                                              (b) 

Figure 3. DFT vs. kernel approximation for two silicon configurations: (a) 45 sampling points; (b) 225 
sampling points.                                                                          

 

Table 2. Preparation overhead and acceleration gain.                                                           

CONFIG. DIM 
PREPARATION EVALUATIONS 

Geom. opt. Kernel setup Direct DFT Kernel Ratio 

BCC Ge 

1D 4.791 mn 58.788 mn 89.116 mn 0.0238 sc 4.45e-06 

2D 8.632 mn 78.076 mn 105.952 mn 0.1257 sc 1.97e-05 

3D 13.353 mn 134.019 mn 182.194 mn 0.5181 sc 4.73e-05 

6D 58.238 mn 6.986 hr 8.346 hr 0.9142 sc 3.04e-05 

Ge0.75Si0.25 

1D 57.627 mn 128.618 mn 172.634 mn 0.0272 sc 2.62e-06 

2D 67.437 mn 176.058 mn 229.228 mn 0.0776 sc 5.64e-06 

3D 139.958 mn 276.281 mn 363.696 mn 0.7345 sc 3.36e-05 

6D 7.493 hr 107.328 hr 143.634 hr 0.8964 sc 1.73e-06 

Ge0.50Si0.50 

1D 33.119 mn 137.369 mn 205.144 mn 0.0225 sc 1.82e-06 
2D 79.887 mn 161.299 mn 212.237 mn 0.0710 sc 5.57e-06 
3D 104.440 mn 279.807 mn 377.709 mn 0.4704 sc 2.07e-05 
6D 7.896 hr 117.347 hr 133.213 hr 0.8978 sc 1.87e-06 

Ge0.25Si0.75 

1D 43.675 mn 144.608 mn 201.094 mn 0.0193 sc 1.59e-06 

2D 71.893 mn 186.089 mn 233.715 mn 0.0807 sc 5.75e-06 

3D 159.021 mn 395.511 mn 498.650 mn 0.5624 sc 1.87e-05 

6D 7.962 hr 89.853 hr 110.410 hr 0.8994 sc 1.35e-04 

 
while 225 are used for the second one. One can observe that the values on the diagonals become more precise as 
more sampling points are used. Additional sampling points can be used if a better accuracy is desired with the 
costs of having longer preparation overhead. 
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