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Abstract 
Mathematical model describing the processes of mechanical stress development in response to 
strain of heterogeneous muscle fiber is created. The numerical algorithm to calculate viscoelastic 
properties of muscle fiber of arbitrary length is developed. In numerical experiments by the 
model it is shown that the local heterogeneity of geometrical and mechanical parameters of 
structural units of the model significantly influences in resulting mechanical response of whole 
fiber. Also it is established the close connection between parameters of mechanical and geometri-
cal heterogeneity compensating each other. It is supposed that the mechanism may modulate the 
myocardial remodeling under changing load. 
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1. Introduction 
Viscoelastic properties of the myocardium play an important role in the mechanisms ensuring heart function by 
modulating mechanical parameters of heart wall during diastole. The modulation substantially defines the stroke 
volume [1] [2]. Passive tension provided by various morphological myocardial structures is one of the factors 
defining the rate of cardiomyocyte contraction [3]. The heterogeneity of functional parameters including viscoe-
lastic properties was established to be observed at different levels of myocardial tissue organization from cell to 
organ in health and especially in pathology [4]-[7]. For example during myocardial infarction the ventricular wall 
stiffness firstly increases in consequence of hypoxia and then it considerably decreases and finally increases 

 

 

*Corresponding author. 

http://www.scirp.org/journal/jbise
http://dx.doi.org/10.4236/jbise.2014.77042
http://dx.doi.org/10.4236/jbise.2014.77042
http://www.scirp.org/
mailto:fusion_lab@pisem.net
http://creativecommons.org/licenses/by/4.0/


A. T. Smoluk et al. 
 

 
398 

(postinfarction scar) [8]. This local process significantly changes mechanical properties of the whole myocardial 
tissue. Moreover the influence of local heterogeneity of viscoelastic properties of ventricular wall segments to the 
forming of myocardial mechanical response is poorly understood today. It is largely conditional on complexity of 
experimental study of the interaction of heterogeneous segments in myocardium. Previously to solve such prob-
lems a method of muscle duplex was developed. It is an experimental approach to studying biomechanical and 
bioelectrical properties of heterogeneous system consisting of two different units [9]. By the muscle duplex me- 
thod it obtained some important features of the contractile function of interacting segments in heterogeneous 
myocardium [10]-[12]. Though the experimental study of heterogeneous systems consists of greater number of 
units, it is an awkward task to date. Thus to analyze influence spatial-temporal heterogeneity of the same systems, 
the using mathematical models become virtually the only possible solution. The aim of this study is to present the 
development of a model approach describing the viscoelastic behavior of the myocardial tissue as a heterogeneous 
biological system. Previously we have developed three-dimensional structural model describing viscoelastic 
behavior of myocardial morphological unit [13]. It has been shown that the model could be applied at different 
organization levels of myocardial tissue [14]. Also we have obtained new data about influence of heterogeneity of 
local geometrical and mechanical properties of model structural units to the mechanical response of the simple 
heterogeneous system consisting of two structural three-dimensional units to the stretching [15]. In present work 
the model approach has been developed to describe more complex systems consisting of an arbitrary number of 
units. 

2. Materials and Methods 
The simple block model of heterogeneous system consisting of two series connected models of myocardial 
morphological unit is in detail described in our previous work [15]. Behavior of this heterogeneous system is 
described by the following system of nonlinear differential Equations (1): 
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where: ( )
0

j
il  are initial lengths of (j)-block the model elements; 

( )j
il  are current lengths of (j)-block the model elements; 
( )j

ih  are spatial sizes of (j)-inextensible block of the model; 
( )jL  are length of entire (j)-block of the model; 

L  is length of entire model; 
( )j

ik  are elastic coefficients of corresponding elements; 
( )

1
jη  are viscous coefficients of (j)-block; 
( )j

iF  are forces developing by corresponding elements; 
( )j

WLCF  are forces developed by (j)-block in accordance with Worm-like chain model of titin. 
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The first three equations describe the viscoelastic behavior of the first unit. The following three equations de-
scribe the viscoelastic behavior of the second unit. The last two equations are the coupling equations. They show 
that sum of the lengths of the first and second units is equal to the length of the entire model and forces applied to 
the first and second blocks are the same in the case series connection. Generally the system (1) can not be solved 
analytically. The numerical solution of the system (1) is rather dependent on the choice of initial approximation of 
the parameter values of structural elements. Four nonlinear differential equations are added to the system (1) when 
increasing unit count to each unit. It is practically impossible to solve the system of equation without precise se-
lection of initial approximation for the three-unit model. That makes the approach not usable to describe the 
systems consisting of more than two elements. Therefore to solve the problem the algorithm of model equation 
linearization is developed. It is used the following difference scheme: 

( ) ( ) ( ) ( ) ( )x t x t t
x t x t t x x t

t
− − ∆

′= − ∆ + ∆ =
∆

; ,                       (2) 

where ( )x t  is unknown value of variable x at time moment t; 
( )x t t− ∆  is established value of variable x at time moment ( )t t− ∆ , where t∆  is a time step of the differ-

ence scheme; 
x∆  is unknown increment of variable x; 
( )x t′  is unknown value of derivative of the function ( )x t  at time moment t. 

In this approach, dynamic state of the model, consisted of N-series connected units, is described by the fol-
lowing system of linear equations at various time moments: 
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with 1i N=  , 1 1j N= −  
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with 1i N=  , 1 4j =  , 1 .m N=   
According to the Rouché-Capelli theorem solution of this linear system at each time step of the iterative process 
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exists and is unique. This approach has a significant advantage over the numeric solution of non-linearized system 
of equations, in which convergence of this method to a particular solution is determined by the accuracy of the 
initial conditions, thus complicating the algorithm for finding the correct decision. To analyze the system behavior 
the following task has been solved. Is it possible to compensate geometrical or mechanical heterogeneity by the 
change of local mechanical or geometrical model parameters respectively? To answer this question we carried out 
the series of numerical experiments. The results are described in the next section. 

3. Results 
To verify developed algorithm of equation linearization, the system describing heterogeneous model consisted of 
2 units, was considered. Solutions obtained using the initial and linearized equations were shown to be similar. 
The approximation accuracy was R2 = 0.9999. Figure 1 shows the step deformation response of the two-unit 
heterogeneous model for both approaches. On this chart one can see a good agreement between different nu-
merical algorithms. Thus, the proposed algorithm for solving system of equations in N-units model is suitable to 
solve assigned task. 

To study the features of heterogeneity of viscoelastic characteristics in extended muscle fiber, the system of 5 
series connected units was considered (Figure 2). At first, the length of longitudinal element of the first unit was 
decreased by 2% and the effect of the first unit geometrical heterogeneity on the total response due to step de-
formation (with constant increment of 2% of initial entire model length) of whole fiber was investigated (marked 
by an arrow on Figure 2). 
Then this heterogeneity was compensated by changing the local mechanical parameters (such as ( )j

ik , ( )
1

jη ) of 
the units (changed parameters are marked with blue color in Table 1). As a result the mechanical response of 
heterogeneous system almost completely coincided with mechanical response of the initial system (Figure 3). The 
approximation accuracy was R2 = 0.9997. The detail information about values of each structural parameters of the 
model is presented in Table 1 (the first block of the model contains the information about initial model; the second 
—about geometrically heterogeneous model and third—about compensated heterogeneous model). 
 

 
Figure 1. Example stress relaxation curve (bottom) in response 
to stepwise stretching (above). Application of the linearized 
algorithm for model composed of two heterogeneous structural 
units: response of the model, obtained by solving the system of 
Equations (1)—grey curve; response of the model, obtained by 
solving the system of Equations (3)—red curve. The panel on 
the right shows the geometrical and mechanical parameters of 
the two-unit model.                                     
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Figure 2. Scheme of the model heterogeneity system, compo- 
sed of 5 units. Heterogeneity is introduced by unit 1 (marked by 
an arrow).                                             

 

 
Figure 3. Stress relaxation curves (below) in heterogeneous 
system, composed of 5 units during stepwise stretching (above) 
with constant increment of 2% of initial entire model length. 
Homogeneous model—grey curve; geometrically heterogene- 
ous model—red curve; compensated heterogeneous model— 
blue curve.                                              

 
Table 1. Values of the structural and mechanical parameters of the model. Changed parameters are marked by cyan color.    

 Homogeneous model Geometrically heterogeneous model Compensated heterogeneous model 
# 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
k1 1 1 1 1 1 1 1 1 1 1 0.87 0.85 0.8 0.9 0.9 
k2 5 5 5 5 5 5 5 5 5 5 4.82 4.8 4.95 4.95 4.95 
k3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.095 0.09 0.091 0.091 0.093 
η, 1 1 1 1 1 1 1 1 1 1 0.9 1 1 0.9 0.9 
L0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
l20 0.955 0.955 0.955 0.955 0.955 0.90725 0.955 0.955 0.955 0.955 0.90725 0.955 0.955 0.955 0.955 
l30 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

4. Discussion 
On the basis of model of myocardial morphofunctional unit, numeric algorithm for calculating the system com-
posed of arbitrary number of structural units was developed. This algorithm allows describing nonlinear viscoe-
lastic properties of heterogeneous (geometrically and mechanically) muscle fiber of arbitrary length in stationary 
and dynamic modes. Universality of the method is that it can be applied to describe viscoelastic behavior of 
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various biological tissues. Numerical experiments have shown significant effect of local heterogeneity of geo-
metrical and mechanical parameters of distinct structural units on the total mechanical response. The stress re-
laxation in the response to stepwise stretching was used as one of the main characteristics of the response of the 
system. We have previously shown that such a generalized characteristic gives integrated information about the 
elasticity and viscosity of the object of biological tissue under investigation [13]. 

When analyzing the data obtained in the developed model, it was found that the local geometric heterogeneity 
has a significant impact on the global viscoelastic properties of the entire system. 

In addition, geometrical or mechanical local heterogeneity in the model can be compensated by introducing 
heterogeneity into mechanical or geometrical parameters of structural model units respectively. After the com-
pensation the mechanical response of the entire model is almost identical in comparison with the response of the 
model prior to the introduction of heterogeneity (approximation accuracy is more than 99.9%). This confirms the 
viability of the developed algorithm. Besides it should be noted that proposed approach shows the influence of 
compensated geometrical and mechanical heterogeneity to active mechanical properties of myocardial fiber via 
Frank-Starling mechanism. 

It is also known that the myocardial fibers of ventricular wall consist of chain-like connected cardiomyocytes 
either sequentially or in parallel (via intercalary discs) [16]. In turn, the fibers connected in parallel are combined 
into bundles that form segments of the ventricular wall. Therefore, further elaboration of the represented approach 
supposes the development of a spatial model to take into account not only longitudinal but transverse deforma-
tions and interaction each other unit. In the future, that will allow investigating the effect of local defects on the 
total mechanical properties in various biological tissues. 
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