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Abstract 
In this paper, we consider the buckling of an Euler-Bernoulli graphene beam due to an axial com-
pressive load. We formulate the problem as a non-linear (eigenvalue) two-point boundary value 
problem, prove some properties of the eigenpairs and introduce a suitable numerical shooting 
method scheme for approximating them. We present the perturbation and the numerical appro- 
ximations of the first and second buckling loads and the corresponding shapes. 
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1. Introduction 
It is well-known from materials science, physics, and chemistry perspective, that intense interest in graphene 
material is developing at an accelerating pace and has recently generated numerous publications and research. 
Applications and the potential for graphene made structures are abundant. For instance, numerous engineering 
nanoscale devices that use graphene as basic components, like nanoscale resonators, switches, and valves, are 
being developed by many industries. Understanding the response of individual graphene structure elements to 
applied loads is crucially important (see [1]-[9] and the reference there in for a comprehensive list of appli- 
cations). 

The Euler buckling load of simply supported straight elastics beam subject to an end axial compressive load 
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can be modeled by the equation: 
0, 0EIv Pv x L′′′′ ′′+ = < <                                  (1.1) 

with boundary conditions  

( ) ( ) ( ) ( )0 0 0v v L v v L′′ ′′= = = =                              (1.2) 

where L  is the length of the beam, E  the Young’s modulus, and I  the area moment of inertia.  
Integrating (1.1) twice gives: 

1 2EIv Pv c c x′′ + = +  

and applying boundary conditions (1.2), we get: 1 2 0c c= = . 
The boundary value problem (1.1), (1.2), then reduces to: 

( ) ( )
0

0
EIv Pv
v v L

′′ + =
 =

                                      (1.3) 

The general solution of Equation (1.3) is  

( ) cos sinP Pv x A x B x
EI EI

   
= +      

   
, 

where A  and B  are arbitrary constants to be determined so that the boundary conditions are satisfied. This 
gives a sequence of non-zero (Eigenvalues/functions) solutions:  

( )
2

, sin , 1, 2,3,k k
k k xP EI v x k
L L
π π   = = =   

   
                  (1.4) 

Furthermore, each eigenvalue of (1.3) is positive and simple, and satisfy limn kP→∞ = ∞ . The first eigen- 
function ( )1v x  is called the first buckling mode and the load corresponding to the first eigenvalue is called the 
critical buckling load. This buckling load is known as Euler’s Buckling load and is widely used in engineering 
applications. 

The buckling analysis presented above is based on the Hooke’s law, relating the stress by: xσ  and strain x  
by: x xEσ =  , and the assumption that during the deformation, the cross-sections of the beam column remains 
perpendicular to its center line. These classical results are generalized for material that follow the Hollomon’s 
law 1n

x x xKσ −=   , 0 1n< ≤ , with 1n =  corresponding to Hook’s law. In this case the boundary value pro- 
blem (1.1), (1.2) is replaced by: 

( )
( ) ( ) ( ) ( )

1 0, 0

0 0 0

nv v v x L

v v L v v L

λ− ′′ ′′ ′′+ = < <


′′ ′′= = = =
                          (1.5) 

The first eigenvalue of (1.5) is found in [10], and is given by: 
2

2,1 1
1

2
1

n
n

n
n L

π
λ + 
=  +  

 

which leads to the critical load: 

( )2

2,1 12

1
n

cr n

n
P KI

n

π +
=

+
 

where K  is a material constant, 
1 d dn

n A
I y y z+= ∫∫  

is the generalized area moment of inertia, and 

( )( ) ( )
2

1 1
2,1 1

0

2 cos dn n
n

π

π θ θ− +
+ = ∫  
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The first eigenfunction is defined in terms the of the generalized sine function ( )2,1 1sin n x+ , using the no- 
tation of the two parameter sine function developed in [11]. It is well known that the eigenvalues of (1.5) are all 
positive, simple and form an increasing sequence to infinity. These facts follow from some well-known results 
about the eigenvalue problem corresponding to the p-Laplace operator [12]. 

The purpose of this paper is to consider the buckling of an Euler-Bernoulli beam made of graphene material 
acted upon by an axial compressive load, formulate the equilibrium equations and introduce a suitable numerical 
technique for solving them. We are also interested in examining the dependence of the critical buckling load on 
the graphene’s quadratic term parameter. 

Graphene materialis are shown to be modeled by the following quadratic stress-strain constitutive law (see [2] 
and [7]): 

x x x xE Dσ ε ε ε= +                                  (1.6) 

where D  is related to the Young’s modulus by the relation: 
2

max4
ED
σ

= −  

where maxσ  is the material’s ultimate maximal axial stress. We notice that for small strain, the elastic stress 
xEσ  dominates in (1.6), while the plastic stress, x xD ε ε , becomes prominent with large deformation. The 

ratio:  

max4
D E
E

δ
σ

= ≡  

is known as the elastoplastic parameter. When this parameter is small the material’s ultimate maximal shear 
stress maxσ  is very large, and the elastic behavior dominates. 

The eigenvalue problem corresponding to (1.5) for a beam made of graphene is given by: 

( )
( ) ( ) ( ) ( )

4 2

4 2

d d 0, 0 1
d d

0 1 0 1 0

w w w w z
z z

w w w w

α λ
 ′′′′ ′′ ′′− + = < <

 ′′ ′′= = = =

                    (1.7) 

where we used the following non-dimensional variables and parameters: 
2

21 1, , , ,
D I PLz xL w vL
EIL EI

α λ− −= = = =  

and 
32

2d d , d d
A A

I y y z I y y z= =∫∫ ∫∫  

Note that in the above formulas the z-axis being in the off-plane direction and A is the cross sectional area.  
In [13], it was shown that the eigenvalues of (1.7) form a sequence of positive real numbers which tends to in- 

finity and that each eigenvalue is simple. In this paper we are concerned with perturbation and numerical ap- 
proximations of the eigenvalues and the eigen modes and in their dependence on the parameter α . 

In Section 2, we provide an asymptotic expansion of the first eigenpairs of (1.7) in terms of a perturbation 
parameter. In Section 3 we verify some properties of the solutions of (1.7). In Section 4 we present the nu- 
merical approximation of the first two eigen pairs for the grapheme Euler beam.  

2. Buckling Analysis of the Graphene Beam 
Integrating (1.7) twice, and applying the boundary conditions we obtain the nonlinear eigenvalue problem: 

( ) ( )
0

0 1 0

w w w w

w w

α λ′′ ′′ ′′ − + =


= =
                                 (2.1) 

When 0=α , (2.1) is reduced to the eigenvalue problem for the Euler elastic beam: 

( ) ( )
0

0 1 0
w w
w w

λ′′ + =
 = =

                                      (2.2) 
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whose first eigenpairs are given by: 

( )2
1 1, sinw xλ = π = π                                   (2.3) 

We consider the expansions of the solutions of (2.1), w  and λ , in terms of α  in the forms: 

( ) ( )
( ) ( )

2
1 2

2
1 2

w w w O

O

α α α

λ α λ λ α α

 = + +


= + +
                              (2.4) 

We substitute (2.4) in (2.1) and compare the powers of α . The zero’s order BVP is (2.2) whose solution is 
given by (2.3). The first order equation then reads: 

( ) ( )

2
22

1 2 1 2 12

2 2

d
d

0 1 0

w w w w
x

w w

λ λ


′′+ = − −

 = =

                             (2.5) 

whose solvability condition gives 
1 12 2 3

2 1 1 10 0

8d d
3

w w x w xλ ′′= − = − π∫ ∫  

This way we obtain an asymptotic expansion: 

( ) ( ) ( ) ( )
( )

2
1 2

2
1 2

w x w x w x O

O

α α

λ λ λ α α

 = + +


= + +
                         (2.6) 

valid for small enough α , where 2w  is the unique solution of the boundary value problem (2.5) given by: 

( ) ( ) ( )
2 2 2 2

2
2 4cos cos 2 cos

3 6 3 2
w x x x xπ π π π

= π − π − π −  

3. Properties of the Eigenvalues and Eigenfunctions 
In this section we examine some properties of the solutions of the eigenvalue problem: 

( )
( ) ( ) ( ) ( )

0

0 1 0 1 0

w w w w

w w w w

α λ
 ′′′′′′′′ ′′ ′′− + =

 ′′ ′′= = = =

                            (3.1) 

We observe that if ( ), wλ  is an eigenpair of (3.1) for some 0α > , then ( ), wλ −  is also an eigenpair of 
(3.1) corresponding to the same α , while ( ), wλ β  is an eigenpair of (3.1) corresponding to βα , for 0β ≠ . 

In order to prove some properties that ( ), wλ  satisfy, we write (3.1) in the equivalent form: 

( )
( ) ( )

0,

0 1 0,

u u u u

u u

α λ ′′′′ − + =

 = =

                                  (3.2) 

where u w′′= . We prove the following results. 
Theorem 3.1: For every 0α > , any eigenpair of ( ),uλ  of (3.2) satisfies 0λ > . 

Proof: Multiplying both sides of (3.2) by ( )u u uα ′−  and integrating, we get: 

( )
2

321 1 2
2 2 3

u u u u u Aαα λ   ′− + − =     
                      (3.3) 

where A  is a constant of integration. We consider two cases: 

Case 1: Assume there is ( )0,1c∈  such that ( ) 1
2

w c
α

= . In this case evaluating (3.3) at 0x =  and x c=   

gives: 
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( )( )2

2

1 10 ,
2 24

u λ
α

′ =  

which implies that 0λ ≥ . However, 0λ =  implies that 0u = . Therefore, 0λ > . 

Case 2: Assume that ( ) 1
2

u x
α

<  for [ ]0,1x∈ . Multiplying (3.2) by u′  and integrating by parts, we get: 

( )
1 1

2 2

0 0

1 2 d du u x u xα λ′ − =∫ ∫  

which in turn implies that 0λ > . 

Theorem 3.2: For any 0α > , any eigenpair ( ),uλ  of (3.2) must satisfy 
1

2
u

α
<  on [ ]0,1 . 

Proof: Assume that the conclusion of the theorem is false. Then, without loss of generality we can assume that  

u has a local maximum at ( )0,1c∈  with ( ) 1
2

u c
α

≥ . Then ( )0 0u′ = , and ( ) 0u c′′ ≤ . However, (3.2) gives 

( )
2

1 2 2 0,uuu u u
u

α α λ
′

′′ − − + =  

which upon evaluation at x c=  gives: 

( ) ( )( ) ( )1 2 0u c u c u cα λ′′ − + =  

which is a contradiction. 
Using Theorem 3.2, we will obtain an equivalent boundary value problem to (3.1) which we will use in the 

next section to construct the numerical solution. Integrating the differential equation in (3.1) two times, and us- 
ing the boundary conditions, we obtain the boundary value problem: 

( ) ( )
0,

0 1 0,

w w w w

w w

α λ′′ ′′ ′′ − + =


= =
                                 (3.4) 

which we can write as: 

( )
( ) ( )

0,

0 1 0,

w w

w w

φ λ′′ + =


= =
                                      (3.5) 

where ( )x x x xφ α= − . Since ( )xφ  is invertible for 
1

2
x

α
≤ , and since any eigenpair ( ), wλ  of (3.1) 

satisfies 
1

2
w

α
′′ ≤ , 0λ > , it follows that the eigenvalue problems, (3.1) and (3.4) are equivalent. Furthermore,  

by differentiating (3.4) we obtain: 

( ) ( ) ( ) ( )
1 2

0 1 0 1 0

ww
w

w w w w

λ
α

′− ′′′ = ′′−
 ′′ ′′= = = =

                          (3.6) 

Once again, using Theorem (3.2), it follows that the eigenvalue problem (3.6) is equivalent to (3.4) (and 
hence to (3.1)). In the next section we use the boundary value problem (3.6) to develop the numerical solutions 
of (3.1) that satisfy the additional constraint: 

( )0 1,w′ =                                          (3.7) 

which in turn ensures that ( )w x  is non-zero. 
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4. The Numerical Solution 
In this section we use the eigenvalue problem  

( ) ( ) ( ) ( ) ( )

,
1 2

0 1, 0 1 0 1 0,

ww
w

w w w w w

λ
α

′− ′′′ = ′′−
 ′ ′′ ′′= = = = =

                  (4.1) 

to construct the eigenpairs ( ) ( )( ), wλ α α  of (3.1) as functions of the elastoplastic parameter α . We do this by 
treating λ  and α  as unknown parameters to be determined along with the solution ( )w x . Therefore, for a 
given λ  and α  we integrate the initial value problem: 

( ) ( ) ( )
1 2

0 1, 0 0 0

ww
w

w w w

λ
α

′− ′′′ = ′′−
 ′ ′′= = =

                               (4.2) 

for ( )w x , and seek the values of λ  and α  for which 

( ) ( )1 0, and, 1 0w w′′= =                                   (4.3) 

We use Newton’s method to determine λ  and α  which satisfy the algebraic system (4.3). 
Remarks: 
For the first eigenvalue, ( )1λ α , we may assume that the corresponding eigenvector ( )w x  satisfies 
( ) 0w x′′ ≥ . This allows us to remove the absolute value from the boundary value problem (4.2). 

For the second eigenvalue, ( )2λ α , we may assume that the corresponding eigenfunction ( )w x  satisfies  

( ) 0w x′′ ≥  for 10
2

x≤ ≤ , 1 10, 0
2 2

w w   ′′= =   
   

, and ( )w x  is symmetric about the vertical line 1
2

x = .  

Therefore, in solving for ( )2λ α  and its corresponding eigenvector we will solve the systems (4.2), (4.3) over  
10,
2

 
  

 instead of [ ]0,1  and use the symmetry property of ( )w x  to obain ( )w x  on [ ]0,1 .  

5. Numerical Results 
Our numerical results for ( )1λ α  are shown in Figures 1-3, while the results for ( )2λ α  are shown in Figures 
4-6. 
 

 
Figure 1. The first eigenfunction ( )w x  for different values of α .                
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Figure 2. ( )w x′  for the first eigenfunction for different values of α .             

 

 
Figure 3. The first eigenvalue for different values of α .                         

 

 
Figure 4. The second eigenfunction ( )w x  for different values of α .             
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Figure 5. ( )w x′  for the second eigenfunction for different values of α .           

 

 
Figure 6. The second eigenvalue for different values of α .              

 
Below we present the numerical results for an example where the parameters have the units used in practice, 

[14]. We consider a beam of rectangular cross section with the dimensions: height 62.4 nmh = , width b = 62.4  

nm, and length L = 1000 nm (the corresponding 2 0.045
D I
EIL

α = = ). We take E = 1000 Gpa, D = −1923 Gpa. 

The moment inertial I1 and I2 are computed by 
22

2 2

n

n
b hI

n

+
  =   +  

, 1, 2,n =  [10]. The first eigenvalue is  

given by 6.6049λ = . The corresponding criticial buckling load is 68.9966 10  GpaP −= × . 
In this case the perturbation analysis of Section 2, gives 1 2 6.1489λ λ λ α≈ + =  and ( ) ( ) ( )1 2w x w x w x α≈ + . 

In Figures 7-9. we compare the numerical results to the results obtained from the perturbation solution.  

6. Conclusion 
We considered the buckling of an Euler-Bernoulli beam made of graphene. We used the properties of the buck- 
ling functions proved in Section 3 to develop equivalent boundary value problems which we treat numerically 
using the shooting method. We presented the numerical results for the first two eigenpairs and compared them 
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Figure 7. The first eigenfunction ( )w x  for 0.045α = . 

 

 
Figure 8. ( )w x′  for 0.045α = .                  

 

 
Figure 9. ( )w x′′  for 0.045α = .                       

 
to the solutions obtained by perturbation methods. We also presented the numerical results for an example using 
the units used in practice. Our numercial results indicate that the critical buckling load for a graphene Euler-Ber- 
noulli beam is decreased as the graphene’s qaudratic parameter is increased.  
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