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Abstract 
In this article, we study the phase-field model of solidification for numerical simulation of den-
dritic crystal growth that occurs during the casting of metals and alloys. Phase-field model of soli-
dification describes the physics of dendritic growth in any material during the process of under 
cooling. The numerical procedure in this work is based on finite difference scheme for space and 
the 4th-order Runge-Kutta method for time discretization. The effect of each physical parameter 
on the shape and growth of dendritic crystal is studied and visualized in detail. 
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1. Introduction 
The study of dendritic crystal growth has become an important aspect in the field of chemical processing, solid 
state physics and material sciences. The growth of these crystals is a common phenomenon in metals and alloys. 
The dendrite morphology is also very important in metallurgy. Material properties like volatility, toughness, cor- 
rosiveness and strength to resist stress depend upon the growth and morphology of these dendrite crystals. The 
growth of dendrites in any material depends upon the system temperature [1]. During the casting and formation 
of metals and alloys, these tiny microstructures grow due to the phenomenon of solidification. These tiny micro-
structures have a direct impact on the material properties like the quality of a certain material which is influenc- 
ed by the presence of these microstructures. When metals are casted, dendrites begin to grow due to the process 
of under-cooling. These dendrites keep on growing until the whole of the liquid phase transforms into solid phase 
[2]. The study of these dendrites, their size, shape and growth velocity is very important industrially because 
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they do change the quality of materials. Materials abundant in dendrites are likely to be corrosion and are vulne- 
rable [1] [3]. This work focuses on the factors responsible for the formation of these patterns and the methods to 
limit the growth of these solidification microstructures. In the visualization of dendritic structures, the branches 
and side branches are very important, since the temperature factor greatly limits the growth of these dendrites. 
We studied numerically the parameters responsible for dendritic growth and tried to explain their effects on the 
growth. We also explained the fact that, when the temperature is very low, the growth of these dendrites accele-
rates. The tip velocity of the side branches is increased by lowering the temperature, whereas the radius or thick- 
ness of these side branches is small. By increasing the temperature, the growth rate is decreased and side bran- 
ches grows with less speed while having larger radii [2]. Further increasing the temperature of the system be- 
yond melting point melts the structure. 

2. Phase-Field Model 
Phase-field model of solidification were first introduced by Fix [4] and Langer [5] for solving the interfacial 
problems and to handle the discontinuities involved with the sharp interface model. Phase-field models being 
numerically simple are very popular in the field of material sciences, solid state physics and electrochemistry in 
recent years. They are commonly used for the simulation of dendritic growth. This model was first applied for 
the numerical results of limited diffusion growth by Collins and Levine [6] and by Kobayashi [7] for the study 
and growth of dendrite. The phase-field model is a mathematical model which explains the physics of dendritic 
solidification in materials due to undercooling in a natural way. This model has been used extensively to solve 
the free boundary problems without tracking of the interface at every time step. In Phase-field model, the sharp 
interface model is replaced by two non-linear equations. The interface between both phases is considered as a 
diffusion layer with very small thickness [8]. This diffusion layer is given by the Phase-field parameter ϕ  
which is a function of space r  and time t . This phase-field or order parameter ( ), tφ r  is also called the level 
set function which varies from 0 to 1. It has value 0 in the liquid phase and 1 in the solid phase and the inter- 
mediate value between 0 and 1 gives us the phase transition. This Phase-field parameter distinguishes the solid 
phase from the liquid phase and the transition layer in between. The problem of locating the position of interface 
in sharp interface model is covered by this phase-field parameter [9]. The main idea behind the phase-field 
model is that the jump discontinuity or sharp interface is replaced by a smooth and continuous interface of very 
small width due to which the singularities involved in the sharp interface model are removed. The main purpose 
of the phase-field parameter ϕ  is to identify the phase by prescribing a value to each phase. Phase-field model 
of solidification comprises of two parabolic non-linear partial differential equations, the phase-field equation of 
motion which comprises of the dynamic variable ( ), tφ r  and the thermal diffusion equation which consists  

of the dimensionless temperature ( ),u t r  with value 
0
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In Equation (2.1), τ  is the typical relaxation time, [ ]G ϕ  is the square-gradient free energy functional 
which accounts for the mixing of energy in the interface due to the evacuation of heat and it describes the solid 
and liquid phases. The negative sign in Equation (2.1) ensures that as the total free energy of the transition layer 
is decreased followed by the minimization of the square gradient free energy functional, the phase-field para- 
meter ϕ  evolves towards the liquid phase, that is the transition layer grows and moves towards the liquid 
phase as time increases. Equation (2.1) gives us the relationship between the free energy of the transition layer 
and its front tracking and is our basic phase-field equation which gives us the location and velocity of interface. 
Since the tracking of interface is very important and difficult to handle, this problem can be overcome by Equ- 
ation (2.1) which accounts for the growth of the solidification front. The value of the square-gradient free energy 
functional is given by [10]:  
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where δ  is the interfacial width and ( )ϕV  is the bulk free energy functional. In this model, we used the dou- 
ble well free energy functional with prescribed value as: 
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This double well free energy functional ensures the growth of the solid phase at the expense of liquid phase. 
When the free energy of the liquid phase decreases then the liquid phase transforms into solid phase. This free 
energy functional has two minima, one at = 0ϕ  and the other at 1ϕ =  corresponding to the liquid and solid 
phases respectively. In Equation (2.4), n  is a function of dimensionless temperature u  with < 1 2n . > 0n  
gives the solid phase i.e. 1ϕ =  and 0<~n  gives the liquid phase 0ϕ = , 0n =  gives us the phase equili- 
brium. The prescription chosen for n  is  

( )1tan
π mn T Tβ η−  = −   

where β  and η  are the material parameters. T  is the actual temperature of the system and mT  is the 
melting temperature. This prescription of n  ensures the growth of the solid phase since it is a difference be- 
tween the actual temperature T  of the system and systems melting temperature mT . Now most of the phe- 
nomenon of dendritic growth occurring are anisotropic in nature. In order to introduce anisotropy in Phase-field 
model of solidification, we assumed the interfacial width δ  as a function of angle θ  i.e. ( )δ δ θ= , where 
θ  is the angle between the x -axis and ϕ∇ . This angle is in normal direction to the interface and it gives the 
direction of the interface [11]. For isotropic case this interfacial width δ  is constant. The function of 
interfacial width for the anisotropic case is  

( ) ( )( )( )0 01 cos aδ θ δ µ θ θ= + −  

where µ  is the modulation of interfacial width, 0θ  is the orientation of the anisotropy axis. Changing the 
value of 0θ  changes the orientation of the dendrite. 0a  is the anisotropic mode number, which gives us the 
shape of the dendrites (for octagonal dendritic structure, we choose 0 8a = ). Anisotropy in the phase-field 
model is responsible for the development of side branches of dendrites. Equation (2.2) is the basic time depen-  

dent heat equation or the thermal diffusion equation with an extra term F
t
ϕ∂
∂

 called the source term, which  

accounts for the liberation of latent heat at the interface and maintains the energy balance between both phases. 
These equations are in their dimensionless units. The final phase-field equations in two dimensions are:  
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The solution of the phase-field Equation (2.5) describes the shape, motion and location of the diffusion layer, 
while the solution of the thermal-diffusion Equation (2.6) gives the temperature of the interfacial layer. 

3. Numerical Method and Results 
For space discretization, we applied the method of finite difference (central difference scheme) and for time 
discretization, we applied the 4th-order Runge-Kutta method. The Laplacians 2ϕ∇  and 2u∇   occurring in 
phase-field Equation (2.5) and thermal-diffusion Equation (2.6) respectively are solved by using the nine point 
finite difference formula for desirable accuracy. We gave an illustration of the effect of each parameter on the 
growth and shape of dendritic crystal. The effect of each parameter on the size, shape and growth of crystal is 
analyzed separately and thoroughly. Parameters like relaxation time τ , orientation angle 0θ , interfacial width 
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δ , melting temperature MT , time t , latent heat F  and mode number of anisotropy 0a  are studied 
separately and their effects on the dendrite are visualized. Numerical results for both phase-field ϕ  and 
temperature u  are presented here for different values of time. We focused in this study, on the measures of 
controlling the growth of dendrites. We also presented here the effect of each parameter on the tip velocity and 
tip radius of side branches. Since the side branches in dendritic growth are very important from industrial point 
of view. Their presence directly affects the quality of material and they normally occur due to the presence of 
impurities in the material. Therefore, we also focused on the effect of each parameter on the side branches. 

3.1. Effect of Relaxation Time on Dendrite 
In Figures 1(a)-(c), results are compared using different values of τ . For 0.03x y∆ = ∆ =  and 0.0001t∆ = , 
we have compared the dendritic growth for 0.0003τ = , 0.0004  and 0.0005 , inside square domain of size 
[ ] [ ]0,215 0,215×  with anisotropy 0 6a =  and at time 0.1t = . The graphs clearly shows that for small values 
of relaxation time i.e., for 0.0003τ = , the growth process is much faster as compared to 0.0004τ =  and 
0.0005 . This is in agreement to the fact that, for small values of relaxation time τ , the atoms takes less time to 
retain their equilibrium position and undergo the process of nucleation, while for large values of relaxation time 
the equilibrium state is retained lately. Relaxation time has an indirect effect on the tip velocity and tip radius of 
side branches. Note that in Figures 1(a)-(c) both tip velocity and tip radius of side branches decreases as the re- 
laxation time is increased from = 0.0003τ  to 0.0005 . 

3.2. Effect of Orientation Angle on Dendrite 
The angle 0θ  is the orientation of anisotropy axis and changing the value of 0θ  brings changes in the ori- 
entation of dendritic crystal. With anisotropy 0 6a = , Figure 2(a) and Figure 2(b) shows the rotational effect of 
crystal at an angle of 90˚ which is due to the change in the value of orientation angle 0θ  from 1.57  to 0.05  
respectively. It also shows that 0θ  changes only the orientation of the crystal keeping the shape and growth of 
dendrite unaffected. 

 

 
(a)                     (b)                     (c) 

Figure 1. Crystal growth at (a) 0.0003τ = ; (b) 0.0004τ = ; and (c) 0.0005τ = .     
 

 
(a)                             (b) 

Figure 2. Crystal growth at (a) 0 = 1.57θ ; (b) 0 = 0.05θ .            
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3.3. Effect of Interfacial Width on Dendrite 
In this subsection, for the same values of step size, t∆  and 0a , we computed the problem for two different 

0.01δ =  and 0.011 for time 0.12t =  as shown in Figure 3(a) and Figure 3(b). We observed that when the in- 
terfacial width δ  is slightly increased from 0.01 to 0.011 respectively, the tip velocity and tip radius of side 
branches also increased. Note that for interfacial width 0δ =  the growth of the crystal almost ceases (the me- 
thod diverges). 

3.4. Effect of Melting Temperature on Dendrite 
In this subsection, we gave the numerical simulation for different values of melting temperature MT  for phase- 
field distribution ϕ . Using square domain of size [ ] [ ]0,215 0,215×  with 0.03x∆ = , 0.0002t∆ = , 0 6a = , 
and latent heat 2.0F = , we compared the results for 1.0,  1.1MT =  and 1.2 at time 0.2t = . Figures 4(a)-(c) 
shows the effect of melting temperature MT  on the size, shape and growth of dendrite for phase-field ϕ  dis- 
tribution. Since the dimensionless temperature u  is given by  

0
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  

where T  is the temperature of the system, MT  is the melting temperature and 0T  is the system’s initial 
temperature with value 0 0T = . As the value of MT  is increased from 1.0 to 1.2, the dimensionless temperature 
u  decreases. Therefore, the growth process accelerates by increasing the value of MT  (Figures 4(a)-(c)). Note 
that melting temperature MT  has a direct effect on the growth and shape of dendrite. It is also clear from 
Figures 4(a)-(c) that increasing the melting temperature MT , increases the tip velocity of side branches while 
the tip radius has an inverse effect. When MT  is increased, the dimensionless temperature u~  decreases and 
the tip radius of side branches decreases. When the dimensionless temperature u~  is very low the growth of 
these dendrites accelerates, the tip velocity of the side branches is increased by lowering the temperature, where- 
as the radius or thickness of these side branches is small. By increasing the temperature, the growth rate is de- 
creased, side branches grow with less speed while have larger radii. Further increasing the temperature of the 
system beyond melting point melts the structure.  

 

 
(a)                             (b) 

Figure 3. Crystal growth at (a) 0.01δ = ; (b) 0.011.δ =     
 

 
(a)                     (b)                     (c) 

Figure 4. Crystal growth at (a) 1.0MT = ; (b) 1.1MT = ; and (c) 1.2MT = .       
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3.5. Effect of Anisotropy on Dendrite 
Anisotropy has a direct effect on the shape of dendritic crystal. In Figure 5, we presented the tetragonal shape of 
dendrite using mode number of anisotropy 0 4a = , on square mesh of size [ ] [ ]0,215 0,215×  with 0.0001t∆ = , 
latent heat 1.8F = , relaxation time 0.0003=τ , orientation angle 0 1.57θ = , interfacial width 0.01δ =  and 

0.03x y∆ = ∆ =  at time 0.2t =  both for phase-field and temperature values respectively. We now present the 
hexagonal shape of dendrite in Figure 6, by increasing the mode number of anisotropy 0 6a = , on square mesh 
of size [ ] [ ]0,215 0,215×  with 0.0001t∆ = , latent heat 1.8F = , relaxation time 0.0003τ = , orientation 
angle 0 1.57θ = , interfacial width 0.01δ =  and 0.03x y∆ = ∆ = , both for phase-field and temperature values 
respectively at time 0.2.t =  Note that anisotropy has a direct affect on the side branches. As clear from 
Figures 5-7, when anisotropy is increased from 0 4a =  to 0 6a = , the side branches appear around the crystal. 
Moreover the tip velocity and tip radius of side branches is also increased when anisotropy is changed from 4 to 
6. We now give the octagonal shape of dendrite by using mode number of anisotropy 0 8a =  under the same 
values of physical parameters at time 0.2.t =  In Figure 7, we have simulated the results for both phase-field 
and temperature distribution respectively. The anisotropic mode number 0a  tells us about the presence of im- 
purities in a material. Materials abundant in impurities have large anisotropic mode numbers and therefore a 
large amount of side branches grow around the dendritic crystal with larger radii. 

3.6. Effect of Latent Heat on Dendrite 
The whole growth process of the dendrite depends mainly upon latent heat F. This auxiliary parameter is the 
most important physical quantity of the phase-field model. It accounts for the liberation of heat from the solidifi- 

 

 
(a)                             (b) 

Figure 5. Dendritic growth for anisotropy 0 4a = . (a) (Phase-field distribu- 
tion); (b) (temperature distribution).                                     

 

 
(a)                             (b) 

Figure 6. Dendritic growth for anisotropy 0 6a = . (a) (Phase-field distribu- 
tion); (b) (temperature distribution).                                      
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(a)                               (b) 

Figure 7. Dendritic growth for anisotropy 0 8a = . (a) (phase-field distribution); (b) (temper- 
ature distribution).                                                               

 
cation front (diffusion layer). Large values of latent heat F accounts for the evacuation of heat from the inter- 
facial region in a great amount. Therefore, the growth of dendrite is directly proportional to the value of latent 
heat F. For small values of F the growth process is slow, as less amount of heat evacuates from the diffusion 
layer and hence the solidification process is slow. Latent heat F is the main parameter which triggers the so- 
lidification process. Figures 8(a)-(e) shows the dendritic growth for latent heat 0.5, 1.0, 1.5, 1.8F =  and 2.0, 
inside square domain of size [ ] [ ]0,215 0,215×  with 0.0002t∆ = , relaxation time 0.0003τ = , orientation 
angle 0 1.57θ = , interfacial width 0.01δ = , mode number of anisotropy 0 6a =  and 0.03x y∆ = ∆ =  res- 
pectively at time 0.1t = . Figures 8(a)-(e) clearly shows that the shape of dendrite depends upon the latent heat 
F, for large values of F the branches and side branches form around the dendritic crystal. Latent heat F has a di- 
rect effect on the tip radius and tip velocity of side branches. As latent heat F increases from 0.5 to 2.0, the tip 
radius and tip velocity of side branches also increases. Therefore, in order to limit the growth of side branches, 
latent heat F should be taken small. 

3.7. Effect of Time on Dendrite 
Time has a direct effect on the growth as well as on the shape of dendritic crystal. Figures 9(a)-(e) shows the 
effect of time on the dendritic growth for 0.0t = , 0.05, 0.1, 0.15 and 0.2 respectively with relaxation time 

0.0003τ = , orientation angle 0 1.57θ = , interfacial width 0.01δ = , mode number of anisotropy 0 6a = , 
0.03x y∆ = ∆ = , 0.0001t∆ =  and latent heat 1.8F = . Figure 9 clearly shows the effect of time on the growth 

and shape of dendrites. At time 0.0t = , we get the central nucleus while for large values of time the growth 
process accelerates along with the shape. The branches and side branches form around the solid grain for large 
values of time. In Figure 10, we have given contour plot of dendritic growth for time 0.0t = , 0.05, 0.1, 0.15 
and 0.2 respectively. It also shows the acceleration of growth phenomenon with the passage of time. Clearly the 
interfacial velocity is a function of time. The tip radius and tip velocity of side branches also increases by 
increasing the time. 

4. Conclusion 
In this work, a numerical scheme is developed for the solution of phase-field equation coupled with thermal dif- 
fusion equation. The numerical procedure is based on nine point finite difference for spatial discretization and 
4th-order Runge-Kutta method for temporal discretization on uniform grids. Both methods are popular for their 
simplicity, stability and accuracy. The numerical solver is tested and validated by studying each parameter brief- 
ly and the effect of every physical parameter on the growth of dendrite is analyzed and justified with the actual 
phenomenon of dendritic solidification. Effects of relaxation time, interfacial width, mode number of anisotropy, 
temporal resolution, orientation angle, latent heat, melting temperature and time on the growth and shape of  
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(a)                     (b)                     (c) 

 
(a)                         (b) 

Figure 8. Dendritic growth at (a) 0.5F = ; (b) 1.0F = ; (c) 
1.5F = ; (d) 1.8F = ; and (e) 2.0F = .                   

 

 
(a)                     (b)                     (c) 

 
(a)                         (b) 

Figure 9. Dendritic growth at (a) 0.0t = ; (b) 0.05t = ; (c) 
0.1t = ; (d) 0.15t = ; and (e) 0.2t = .                     

 

 
Figure 10. Dendritic growth at 0.0t = , 0.05t = , 

0.1t = , 0.15t = ; and 0.2t = .                         
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dendritic crystal are simulated and presented. Effects of these parameters on the tip velocity and tip radius of 
side branches are also presented. 
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