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Abstract 
If sample realizations are intervals, if the upper and the lower boundaries of such intervals are 
realizations of two independently distributed random variables, the two probability laws together 
lead to some interesting assertions. In this article, we shall attempt to remove certain confusions 
regarding the relationship between probability theory and fuzzy mathematics. 
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1. Introduction 
Let X and Y be two random variables independently distributed real intervals [ ],a b  and [ ],b c  respectively. Let 
( ).F  and ( ).G  be the probability distribution functions of X and Y respectively. 
Let [ ],a bα ∈  and [ ],b cβ ∈  the juxtaposition of events [ ],bα  and [ ],b β  would give us the interval 

[ ],α β . Observe that while [ ],bα  and [ ],b β  are simple probabilistic events, [ ],α β  is totally reference as an 
event because its boundaries are from two probabilistic populations. For simplicity let us call [ ],α β  a two- 
population event (t.p.e.), we are interested to calculate the probability associated with such a t.p.e., and thereaf-
ter to explain its physical significance. 

2. Simple and Compound Two-Population Events 
Let [ ]A ,α β=  be a t.p.e. It is easy to see that 

[ ] ( )( ) ( )Prob 1X F Gα β α β≤ ≤ = − ⋅                              (1) 
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In other words, in terms of intervals 

[ ] [ ] [ ] ( )( ) ( )Prob , , , 1b b X Y F Gα β α β ≤ ≤ = − ⋅                      (2) 

The identities (1) and (2) are rather elementary. But (2) in particular can have far reaching consequences, 
which we are going to assert later. The t.p.e. [ ],α β  is a simple t.p.e. in the sense, that if [ ]1 1 1,A α β=  and 

[ ]2 2 2,A α β=  are t.p.e.’s, we shall call 1 2A A  a compound t.p.e. 
Let ( ) ( )1 21 min ,α α α=  ( ) ( )1 22 max ,α α α=  ( ) ( )1 21 min ,β β β= , and ( ) ( )1 22 max ,β β β= . 
It is easy to see that 

[ ] ( )1 2 1Prob , or ProbX b X b X bα α α ≤ ≤ ≤ ≤ = ≤ ≤   

Similarly 

[ ] ( )1 2 1Prob , or Probb Y b Y b Xβ β β ≤ ≤ ≤ ≤ = ≤ ≤   

Therefore for the compound t.p.e. 

[ ]
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] ( ) ( )

( ) ( )

( )( ) ( )

1 2

1 1 2 2

1 1

1 1

1 1

Prob

Prob , , , or , , ,

Prob , , ,

Prob ,or

1

A A

b b X Y b b X Y

b b X Y

X b b Y

F G

α β α β

α β

α β
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 = ≤ ≤ ≤ ≤ 
  = ≤ ≤   
 = ≤ ≤ ≤ ≤ 

= − ⋅



                (3) 

In the same way, 

[ ] ( )1 2 2Prob , and ProbX b X b X bα α α ≤ ≤ ≤ ≤ = ≤ ≤   

Similarly 

[ ] ( )1 2 1Prob ,and Probb Y b Y b Xβ β β ≤ ≤ ≤ ≤ = ≤ ≤   

Therefore, 

[ ]
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] ( ) ( )

( ) ( )

( )( ) ( )

1 2

1 1 2 2

2 1

2 1

2 1

Prob

Prob , , , and , , ,

Prob , , ,

Prob ,

1

A A

b b X Y b b X Y

b b X Y

X b b Y

F G

α β α β

α β

α β

α β

 = ≤ ≤ ≤ ≤ 
  = ≤ ≤   
 = ≤ ≤ ≤ ≤ 

= − ⋅



                (4) 

Identities (3) and (4) give us the probabilities of union and intersection respectively of two simple two popu-
lation events. 

Our discussions on probability of a t.p.e. ends here. In what follows, we shall explain the physical signific-
ance of identity (2). It would thereafter be shown that a t.p.e. is indeed a possibilistic event. 

3. Physical Significance of a Two-Population Event 
Zadeh ([1]) introduced the mathematics of fuzziness long forty nine years ago. It has made inroads into almost 
all applied branches of knowledge. However, most of the mathematicians shy away from this branch of mathe-
matics for various reasons. One such is the belief that randomness and fuzziness are two independent concepts. 

In this section we shall show the following: 
a) Randomness can actually be at the root of fuzziness. 
b) Two independent probability laws can define a fuzzy number. 
First, let us review certain necessary definitions. 
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3.1. Some Basic Definitions Related to Fuzziness 
Let E be the universe of discourse. A fuzzy set A in E is characterized by a membership function ( )A xυ  lying 
in [ ]0,1 . ( )A xυ  for x E∈  represents the grade of membership of x in A. Thus a fuzzy set A is defined as 

( )( ){ }, ,AA x x x Eυ= ∈  

A fuzzy set A is said to be normal if ( ) 1A xυ =  for at least one x E∈  
An α-cut of a fuzzy set is an ordinary set of elements with membership grade greater than or equal to a thre-

shold α, 0 1α≤ ≤ . Thus an α-cut Aα of a fuzzy set A is characterized by [2] 

( ){ }, AA x E xα υ α= ∈ ≥  

A fuzzy set is said to be convex if all its α-cuts are convex sets [2]. 
A fuzzy number is a convex normalized fuzzy set A defined on the real line E such that 
i) there exists an 0x E∈  such that ( )0 1A xυ = , and  
ii) ( )A xυ  is piecewise continuous. 
Indeed, if [ ],a c  is a real interval with a < b < c, for a fuzzy number denoted by [ ], ,a b c  with 
( ) ( ) 0A Aa cυ υ= = , and ( ) 1A bυ = . ( )A xυ  for [ ],x a b∈  is known as left reference function and ( )A xυ  for 
[ ],x b c∈  is known as the right reference function of the fuzzy number [ ]A , ,a b c=  (L-R fuzzy number) [3]. 

For such an L-R (left-right) fuzzy number, the left reference function is non-decreasing and the right reference 
function is non-increasing. Finally, the membership function of a fuzzy set is viewed as its possibility distribu-
tion [4]. 

3.2. Set Superimposition 
When we overwrite, the overwritten portion looks darker. Indeed, the doubly represented portion looks doubly 
dark. To explain this, we would need a set operation (S) of superimposition of two sets A and B defined as: 

( ) ( )( )( )( ) ( )( )2A S B A B A B B A= − + + −
                         (5) 

where ( )( )2A B  are the elements of ( )A B  represented twice, and (+) represents union of disjoint sets. 
If [ ]1 1,A a b=  and [ ]2 2,B a b=  are two real intervals such that ( )A B φ≠ , we would get from (5) 

[ ]( )[ ] ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( )( )2

1 1 2 2 1 2 2 1 1 2, , , , ,a b S a b a a a b b b   = + +                   (6) 

where ( ) ( )1 21 min ,a a a= , ( )(2) 1 2max ,a a a= , ( ) ( )1 21 min ,b b b= , and ( ) ( )1 22 max ,b b b= . 
Identity (6) explains why-if two line segments are superimposed, the common portion looks doubly dark [5]. 

Mazarbhuiya et al. used this operation to define fuzzy arithmetic operations [6] and to solve a fuzzy equation [7]. 
Set superimposition is also used in mining temporal data ([8] [9]). In ([10] [11]), Baruah tries to establish link 
between probability law and possibility law. 

Let now, [ ]( )1 2
1 1,a b  and [ ]( )1 2

2 2,a b  be two fuzzy sets with constant membership 1/2 everywhere. 
Following (6) we can write: 

[ ]( ) ( )[ ]( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )1 2 1 1 21 2 1 2
1 1 2 2 1 2 2 1 1 2, , , , ,a b S a b a a a b b b     = + +              (7) 

An obvious extension of (7) is: if ( ) ( ) ( )1 2, , , nx x x  are values of 1 2, , , nx x x  arranged in ascending order, 
and ( ) ( ) ( )1 2, , , ny y y  are values of 1 2, , , ny y y  are arranged in ascending order, we would get 

[ ]( ) ( )[ ]( ) ( ) ( )[ ]( )

( ) ( )
( )

( ) ( ) ( )
( )
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n n
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y y y y y y

+
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       = + + + + +       

     + + + + +     



 

 

       (8) 

At this point, we would need a classical result from order statistics to proceed further. 
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3.3. The Glivenko-Cantelli Theorem 
Define 

( )
( )

( ) ( )

( )

1

1

0,

, , 1, 2, , 1

1,

n r r

n

x x

rF x x x x r n
n

x x
+


= ≤ ≤ = −









                      (9) 

where 1 2, , , nx x x  are realizations of a random variable X, and ( ) ( ) ( )1 2, , , nx x x  are 1 2, , , nx x x arranged in 
ascending order. 

F(x) is random here with 

( ) ( ) ( )( ) ( )( )!Prob 1
! !

r n r
n

nrF x F x F xn r n r
− = = −   −

 

where ( )F x  is the underlying theoretical distribution function. ( )nF x  being an empirical distribution func-
tion. 

In such a case, the Glivenko-Cantelli Theorem on order statistics [12] states that  

( ) ( )Prob sup 0 1nF x F x − → =   

This means, ( ) ( )nF x F x→  uniformly in x with probability 1. 

3.4. The Glivenko-Cantelli Theorem Applied to Superimposed Equally Fuzzy Sets 
Consider the identity (8) once again. Let X and Y be random and independently distributed in two real intervals 
[ ],a b  and [ ],b c  respectively. Let ( )*F  and ( )*G  be the probability distribution functions of X and Y re-
spectively. 

Application of Glivenko-Cantelli Theorem on identity (8) now after the imposition of randomness, as n →∞ , 
on n superimposed equally fuzzy sets ( )1,i ix x +

 
  , 1,2, ,i n=  , gives us the following: 

i) ( )Prob sup 0 1, .r F x a x bn
 − → = ≤ ≤  

 

ii) ( )( )Prob sup 1 0 1,r G y b y cn
 − − → = ≤ ≤  

                                             (10) 

In other words, a probability distribution function ( )F x  in [ ],a b  can indeed be the left reference function, 
and a complementary probability distribution function or survival function ( )1 G y−  in [ ],b c  can similarly be 
the right reference function of a fuzzy number. 

We can therefore conclude that randomness can actually be at the root of fuzziness, and that two independent 
probability laws can define a fuzzy number. 

4. Discussions 
The possibility distribution function in [ ], ,a b cΩ = , which indeed is the membership function of a fuzzy num-
ber [ ], ,a b c , can be viewed as two different functions, one in the interval [ ]1 ,a bΩ =  and the other in the in-
terval [ ]2 ,b cΩ = . In 1Ω , if a probability law 1PΩ , and in 2Ω , if another probability law 2PΩ  are defined 
such that 1 2Ω Ω  defines a fuzzy interval, 1PΩ  and 2PΩ  together can define the possibility distribution 
FΩ  on 1 2Ω =Ω Ω . The fuzzy mathematicians have all along been trying to impose a PΩ  on the same Ω  
on which FΩ  is defined. For this mistake, they have all along been saying that fuzziness and randomness are 
two independent concepts. 

In fact, every sample realization , 1,2, ,ib i m=   can be thought of as values of unit fuzzy membership, 
around which intervals expressed as [ ]1 1 1, ,a b c  would give us fuzzy numbers. Accordingly, in [ ]1 1,a b  there 
can be a probability law, while in [ ]1 1,b c  there can be another probability law. Within the fuzzy number 
[ ]1 1 1, ,a b c  one can define possibilistic events, which are indeed t.p.e.’s defined in Section 1 of this article. 
Probabilities of such t.p.e.’s or possibilistic events, simple or compound, can be found following (2), (3) and (4). 
As long as one continues to impose a single probability law in a Ω where a possibility distribution is defined, the 
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question of involving randomness to define fuzziness cannot arise. Independent probability laws on 1Ω  and 
2Ω , can finally define a possibility law on 1 2Ω Ω . In other words, possibility can indeed be a measure, and 

indeed it is a product measure. 
It is to be noted that identities (2) and (10) are directly related. In fact, (10) explains the physical significance 

of (2). We would like to conclude our discussions with an important comment. The fuzzy mathematicians inva-
riably use the triangular fuzzy number in computations. No fuzzy mathematician has as yet supplied a logical 
answer as to why they use the triangular fuzzy number only. An obvious answer hidden in escapism is that it is 
simple to use. Simplicity of the triangular number in fact lies elsewhere. If ( ).F  and ( ).G  are uniform prob-
ability distribution functions, we simply get the triangular number. What we mean is: just as the uniform law is 
the simplest in the field of probability, so is the triangular number the simplest in fuzzy mathematics. 

In other words, the simplicity of the triangular fuzzy number is rooted at the simplicity of the uniform proba-
bility law. This is the actual reason why the triangular number is simple. 

To illustrate the concept, let us take a simple example. Let [ ], ,A a b c=  be a normal fuzzy number whose 
membership function is given by 

( )
( )
( )

,  for 

,  for 

F x a x b
A x

G x b x c

≤ ≤= 
≤ ≤  

where 

( )
0,  for 

,  for 

x a
F x x a a x bb a

=  − ≤ ≤ −



 

is the Dubois-Prade left reference function and 

( )
0,  for 

,  for 

x c
G x x b b x cc b

=  − ≤ ≤ −



 

is the Dubois-Prade right reference function. If we observe clearly, then we find that ( )F x  is actually a proba- 

bility distribution function whose probability density function is ( ) 1f x b a=
−

 and ( )G x  is a complementary 

probability distribution function or survival function whose probability density function is ( ) 1g x c b=
−

. This  

illustrates the fact that randomness can actually be at the root of fuzziness and two probability laws are sufficient 
to define a fuzzy number. 
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