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Abstract 
Detection of small pulmonary nodules is the goal of lung cancer screening. Computer-aided detec- 
tion (CAD) systems are recommended to use in lung cancer computed tomography (CT) screening 
to increase the accuracy of nodule detection. Size and density of lung nodules are primary factors 
in determining the risk of malignancy. Therefore, purpose of this study is to apply computer-si- 
mulated virtual nodules based on the point spread function (PSF) measured in same scanner 
(maintaining spatial resolution condition) to assess the CAD system performance dependence on 
nodule size and density. Virtual nodules with density differences between lung background and 
nodule density (∆CT) values (200, 300 and 400 HU) and different sizes (4 to 8 mm) were generat- 
ed and fused on clinical images. CAD detection was performed and free-response receiver operat- 
ing characteristic (FROC) curves were obtained. Results show that both density and size of virtual 
nodules can affect detection efficiency. Detailed results are possible to use for quantitative analy- 
sis of a CAD system performance. This study suggests that PSF-based virtual nodules could be ef- 
fectively used to assess the lung cancer CT screening CAD system performance dependence on 
nodule size and density. 
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1. Introduction 
The National Cancer Institute (USA) has released the results of the National Lung Screening Trial, which has 
identified that computed tomography (CT) screening can reduce the mortality from lung cancer 20% more than 
by screening with chest radiography [1]. Meanwhile, research results show that the combination of a radiologist 
and computer-aided detection (CAD) as a second reader can significantly improve the detection rates of lung no- 
dules, and it has been recommended and proposed to use a CAD system for daily routine work [2]-[5]. Conse-
quently, CAD has become an attractive research interest in medical imaging and diagnostic radiology. 

Many studies of performance evaluations of CAD systems have been carried out using clinical image data- 
bases [2]-[13]. As the image databases included actual nodules with complicated shapes and heterogeneous den-
sity, the CAD performance evaluated with using the database was considered as an overall performance for var-
ious size and density of nodules, not for specific size/density. Clinically, the size and density of nodules are pri-
mary factors in determining the risk for malignancy [14]; therefore, not only the previous evaluation of the 
overall CAD performance but also the evaluation for specific size/density will be necessary. However, because 
actual nodules are complicated, typically having varied morphologies and heterogeneous densities, the image 
databases do not lend themselves for classification of nodules by their size and density. For this task, artificial 
nodules with known size and density included in a lung phantom might be useful [15], however, more clinical 
evaluations using lung images obtained from CT screening are essential. 

To overcome this problem, a previously proposed unique method of using computer-simulated virtual nodules 
might be applicable [16]-[18]. The virtual nodules were calculated exactly based on the characteristics of the 
spatial resolution in a CT system, from object functions that were numerically generated by assuming solitary 
nodules having spherical shape and uniform density. By inserting the virtual nodules into the clinical lung im-
ages and applying them to a computer-aided volumetry analysis, the accuracy of the volumetry was investigated 
[17]. By using those lung images including virtual nodules, it will be possible to evaluate the CAD performance 
for specific size/density of nodules; for obtaining such the specific performance, the settings of object functions 
as uniform spheres are appropriate because of the known size and density. The validity of virtual nodules had 
been verified by use of artificial spherical objects with uniform density included in a phantom. Actual nodules in 
the image database would not be suitable for those validation studies, because of the difficulty of the classifica-
tion by size and density as described above. Therefore, when limited to the study of evaluating the CAD perfor- 
mance for specific size/density, previous validation studies using artificial nodules in a phantom would be satis-
factory enough for verifying the reliability of virtual nodules. 

Virtual nodules have not been applied for the clinical evaluation of the CAD performance, such as the evalua-
tion with the sensitivity and specificity of nodule detections. The purpose of this study was to apply the virtual 
nodules to demonstrate the dependence of the CAD performance on nodule size and density with the free-re- 
sponse receiver operating characteristic (FROC) analysis. We used clinical images of ten subjects obtained from 
a lung cancer screening. The virtual nodules were obtained by various settings of size and density in object func- 
tions, inserted into images and applied to the CAD analysis. CAD performance was evaluated for each size and 
density of nodules, and the size/density dependence was assessed. In discussion section, we clarified the advan-
tages of virtual nodules, compared with other possible methods of evaluating the CAD performance. 

2. Materials and Methods 
2.1. Theory 
Blurring of the CT image can be described by the PSF of a system [19] [20]. The PSF is assumed separable into 
a two-dimensional (2D) PSF in the x-y scan plane and the SSP in the z-direction perpendicular to the scan plane  
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[16] [21]-[23]. Then, the three dimensional (3D) CT image I (x, y, z) can be expressed as [16] [20] [22]. 

( ) ( ) ( ) ( ), , , , ** , *I x y z O x y z PSF x y SSP z=                                  (1) 

where O(x, y, z) is the object function, PSF(x, y) and SSP(z) are the 2D PSF and slice sensitivity profile, respec- 
tively; and ** and * are 2D and 1D convolutions, respectively. Noise and artifact components are neglected in 
this representation. 

2.2. PSF-Based Virtual Nodules 
PSF-based virtual nodules are obtained as follows. First, the 2D PSF and SSP were measured in a CT scanner at the 
screening clinic and were used for calculations as in Equation (1). Then, object functions O(x,y,z) are generated 
numerically with any shape and density as desired. Substituting the measured 2D PSF and SSP in Equation (1), 
CT images I(x,y,z) were computed from the object functions, thus generated computer-simulated nodule images 
were based on the spatial resolution characteristics of the CT scanner at the screening clinic. This procedure can 
be used to generate different characteristic simulated-nodule images by applying various shapes, dimensions and 
densities to the object function. These simulated images can be fused on practical images following a desired fu- 
sion process. For accuracy, computer simulated images were generated with fine intervals and thus, intervals of 
simulated images were not similar to that of the practical images. Therefore, before the fusion process resam- 
pling should be done to match the discrete-data intervals with those of the practical images. Then, the simulated 
blurred images were transformed into practical images that can be used in clinical evaluations [17]. Fusing the 
resampled 3D simulated images on practical screening images, PSF-based virtual nodules can be obtained. 

2.3. CAD Performance Assessment 
An image database from a lung cancer CT screening clinic belonging to the General Hospital at Nagano, Japan, 
was used for the study. Institutional board approval was obtained from the same hospital to get ethical clea- 
rance for accessing the screening database. In this clinic, applicants have been subjected to lung screening exa- 
minations with a multidetector-row CT scanner without contrast enhancement (Asteion, Toshiba Medical Sys-
tems, Tokyo, Japan). The imaging parameters were as follows: reconstruction kernel FC50, 120 kV, 30 mA tube 
current, 8.0 mm slice thickness, 4 detector rows, 0.75 s rotation time and a pitch factor of 1.375. 

Setting the reconstruction kernel as FC50, 2D PSF measurement of the scanner was performed using a me- 
thod that determined the 2D PSF in the scan plane by one scan of a commercial phantom, accompanied by veri- 
fication [24] [25]. Setting the slice thickness to 8.0 mm, SSP measurement was performed using a commercial 
phantom (Gold Disk Delta phantom Kyoto Kagaku Co., Ltd., Kyoto, Japan) consisting of a 50-μm-thick gold 
disk of 1 mm in diameter placed in acrylic. 

In this study, object functions O(x,y,z) were generated numerically as ideal spheres with uniform density as- 
suming solitary spherical pulmonary nodules (Figure 1). Densities of the object functions were assigned using 
the term ∆CT, where ∆CT was defined as the density difference between background and the object function. 
Substituting the measured 2D PSF and SSP in Equation (1), CT images I(x,y,z) were computed from the object 
functions O(x,y,z) to which the different sizes and densities were assigned. Then, resampling was performed. 

CT images of 10 subjects were randomly selected from the database, and the images of five of them were 
fused with computer generated simulated nodule images. For this study, we used a simple addition method as 
the fusion technique. According to nodule size, fused virtual nodules may be included in a number of adjacent 
slices. To cover the whole lung field, three locations were selected from the upper, middle and lower field areas 
(Figure 2). Each selected location was fused on 10 nodule images so that there were five virtual nodules in each 
of the left and right lungs. Thus, altogether 30 virtual nodules per subject were applied in the study. The position 
of each simulated nodule image was decided avoiding large pulmonary vessels. 

Computing was performed using MATLAB software (Mathworks Inc., Natick, MA). In this study prototype 
lung cancer CT screening CAD system developed by our research team was used [8] [26]. 

2.4. Nodule Size Dependency 
The aim of the first part of the study was to assess CAD performance dependence on virtual nodule size. There- 
fore, computer simulated nodule images were generated applying different sizes of 4, 5, 6, 7 and 8 mm while the  
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Figure 1. Schematic for image simulation. (a) The ob- 
ject function by assuming an ideal sphere with diameter 
and contrast (ΔCT) between nodule and background den- 
sities. (b) Computed nodule image obtained from the 
object function by Equation (1).                     

 

 
Figure 2. Virtual nodule images fused on three locations of the lung field. (a) 
Selected locations are shown in a coronal image of the lung field. (b) Loca- 
tion in the upper lung field. (c) Location in the middle lung field. (d) Location 
in the lower lung field.                                              

 
∆CT value of the object function was kept unchanged at 300 HU. Subsequently, images were resampled, and 
were fused on above said five subjects screening images as described earlier so that there were 30 virtual no-
dules per each subject with one size at a time. Five separate sets of images for the different nodule sizes were 
prepared. Each set of prepared screening images together with the rest of the five subjects’ images (without vir-
tual nodules) were separately analyzed by the CAD system. 

Prototype CAD system used in this study has provided the option of changing its sensitivity. Thus, nodule 
detection sensitivity of the system was changed, and the number of combinations of true positive fraction (TPF) 
and false positives per subject (FPS) were taken for different sensitivity levels [12] [13]. These values were used 
to obtain FROC curves. The jackknife FROC (JAFROC) method was used to estimate the statistical significance 
of the difference between the curves obtained for different nodule sizes separately [27]. 

2.5. Nodule Density Dependency 
The second part of the study was focused on CAD performance dependence on virtual nodule density. Thus, the 
simulated images were generated applying ∆CT value of 200, 300 and 400 HU to the object function. Size was 
kept unchanged at 6 mm. Resampling and fusion were performed as described earlier and three separate sets of 
images were prepared for each ∆CT value. Finally, the same procedure was followed for CAD detections, ob- 
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taining FROC curves and statistical analysis as in the previous section. 

3. Results 
Performance dependence of a lung cancer CT screening CAD system has been assessed based on two nodule 
characteristics of size and density. Figure 3 and Figure 4 show corresponding sample CAD detections for differ- 
ent virtual nodule sizes and densities, respectively. CAD performance dependence on nodule size has shown in 
Figure 3 where all five virtual nodules having diameter of 8 mm have been detected but only four with diameter 
of 5 mm; thus one FN appears in Figure 3(a). Therefore, Figure 3 indicates that the CAD system detected larger 
virtual nodules than small ones. Nodule density also affected on nodule detection by the CAD system (Figure 4). 
All five high density (∆CT = 400 HU) nodules have been detected while only three from low density (∆CT = 200 
HU) nodules. Therefore, there are two false negative (FN)s in Figure 4(a). Furthermore, the figure shows that a 
larger number of higher-density virtual nodules have been detected than low-density ones. Overall results imply  
 

 
Figure 3. CAD detections of virtual nodules having different sizes 
and same density (∆CT = 300 HU) on a selected location. Arrow shows 
false positives on the bottom left of both images. (a) Only four virtual 
nodules with diameter of 5 mm were detected. (b) When the diameter 
is 8 mm, all five nodules were detected by CAD on the same loca-
tion.                                                      

 

 
Figure 4. CAD detections of virtual nodules having different densi- 
ties and same size (diameter 6 mm) on a selected location. (a) Only 
three virtual nodules with density (∆CT) 200 HU were detected. (b) 
When the density (∆CT) is 400 HU, all five nodules were detected by 
CAD on the same location.                                    
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that tendency of virtual nodule detection by the CAD system can be seen towards high-density, larger-sized no-
dules. Detailed results of CAD detection dependence on size and density of a virtual nodule are shown below. 

3.1. Nodule Size Dependency 
Figure 5 shows FROC curves for CAD detections of different virtual nodule sizes. TPF of CAD detections 
of smaller-sized virtual nodules are lower than that of larger ones. The TPF for 4 mm virtual nodules is 
clearly the lowest value while other nodules are considerably high. TPFs increased with the increase of vir- 
tual nodule size. However, the gap between curves of consecutive virtual nodule sizes decreases when in- 
creasing their size. Results by the JAFROC method (Table 1) show that there are statistically significant 
differences between FROC curves of all pairs of different virtual nodule sizes (p < 0.05) except between 7 
and 8 mm curves (p = 0.131). According to these results, this CAD system was able to detect larger virtual 
nodules easily. 

3.2. Nodule Density Dependency 
FROC curves of each density for ∆CT values of 200, 300 and 400 HU were plotted (Figure 6). The curves show 
that the lowest density (∆CT = 200 HU) virtual nodules have the lowest TPF. The efficiency of CAD detection 
is shown to have increased with nodule density. Maximum TPFs of the 300 and 400 HU curves are more than 
0.9 while the 200 HU curve has a value less than 0.9. However, the gap between FROC curves for a selected 
 

 
Figure 5. FROCs for different nodule sizes from 4 - 8 mm are 
shown. TPF of CAD detections increased with nodule size. 
However, when nodule size increased the gap between con- 
secutive curves decreased.                               

 
Table 1. p-values for each pair of different nodule sizes (diameters).                                               

 4 mm 5 mm 6 mm 7 mm 8 mm 

4 mm - <0.05 <0.001 <0.001 <0.001 

5 mm - - <0.001 <0.001 <0.001 

6 mm - - - <0.001 <0.05 

7 mm - - - - 0.131 

8 mm - - - - - 
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Figure 6. FROCs for ∆CT values of 200, 300 and 400 
HU. CAD showed better performance on 400 HU no- 
dules. TPF increased with virtual nodule density. The 
gap between the 200 and 300 HU curves is higher than 
that of 300 and 400 HU. Curves have become horizon- 
tal when the FP per subject value is about eight.        

 
value of FPS decreased with density. CAD performance dependency on nodule density among the three densi- 
ties was statistically analyzed by using the jackknife method (Table 2). Results show that a statistically signifi- 
cant difference can be seen between each nodule density (p < 0.01). Results also show that more dense virtual 
nodules were conveniently detected by the tested CAD system. 

4. Discussion 
CAD system performance dependence on nodule size and density was demonstrated by the use of virtual no- 
dules. In this approach, virtual nodules were divided into various groups by their size and density; those values 
of size and density (ΔCT) were true values in the object functions (Figure 1). In order to get clear definition for 
the size and density, spherical object function with a selected density at a time applied for this preliminary study. 
However, any irregular shape and density distribution can be applied to the simulation process. The ranges in 
size and ΔCT were from 4 to 8 mm in 1-mm increments and from 200 to 400 HU in 100-HU increments, re- 
spectively. Each group consisted of a sufficiently large number of virtual nodules (150 nodules in 5 subjects). If 
we use actual nodules in CT images obtained from patients for the same study, such exact and detailed classifi- 
cation of nodules would not be possible because true values of size and density of actual nodules were not 
known in images. Even if we use values of size and density measured from the images [10], those values include 
some error. Furthermore, numerous nodules in a large-scale image database were necessary to perform a de- 
tailed classification (increments of 1-mm in diameter and 100-HU density) with a large enough number of no- 
dules per group. Newly archiving such a large-scale image database is laborious. In addition, as actual nodules 
have heterogeneous density with various complicated shapes, acquiring a clear definition of size and density 
would be difficult. Because of these practical reasons, we believe that it is not possible to obtain results as 
shown in Figure 5 and Figure 6 by using actual nodules. Virtual nodules can overcome this limitation, and 
therefore are effective for the evaluation of CAD performance dependence on nodule size and density. Further- 
more, CAD performance evaluation should be performed by using images with the same scan/reconstruction 
parameters as screenings are done in the clinic where the CAD system is used. Because, CAD performance va- 
ries with image quality and therefore it depends on scan/reconstruction parameters [28]-[33]. However, large 
archived databases, which consist of images from number of screening centers, contain images of limited scan/ 
reconstruction parameters. Further, such images have different spatial resolution conditions. Because, the PSF 
and SSP are dependent on the scanner itself and selected scan/reconstruction parameters [34]. Therefore,  
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Table 2. p-values for each pair of different nodule densities 
(∆CTs).                                           

 200 HU 300 HU 400 HU 
200 HU - <0.001 <0.001 
300 HU - - <0.01 
400 HU - - - 

 
PSF-based method which used images of the same scanner [17] [24] is more appropriate to assess the perfor- 
mance dependence on size and density of a lung cancer CT screening CAD system. 

Sizes and densities of virtual nodules were selected based on the literature [35]. Clinically, the size and den-
sity of lung nodules are primary factors in determining the risk of malignancy. Lung cancer CT screening guide-
lines indicate that follow up actions are recommended for the subjects having nodules with diameters above 5 
mm [14]; this supports the high clinical importance of Figure 5, which illustrates CAD performance dependen-
cy in 1-mm increments of nodule diameter starting from 4 mm. According to Figure 5 tested CAD system has 
shown better performance on 6 mm or higher nodules (TPF = 0.9 when FPS = 3) and detection of 5 mm was less 
than that (TPF = 0.7 when FPS = 3). Results shown in Figure 5 has illustrated a quantitative assessment of per-
formance dependence on nodule size. Similarly, Figure 6 shows the quantitative results based on density depen- 
dence. According to Figure 5 and Figure 6, tested CAD system has detected nodules with size 6 mm and den- 
sity (ΔCT) 300 HU and above with higher accuracy. Therefore, obtaining the quantitative performance results of 
the tested CAD system with the applied scan/reconstruction conditions is possible with our method. These re- 
sults are useful to the radiologist. As reported in other CAD performances studies, our study also emphasized 
that CAD performance increased with nodule size and density. Statistical analysis by the JAFROC method also 
showed the same trend (Table 1 and Table 2). 

One important characteristic of this method is generating virtual nodules with quite similar spatial resolution 
to the images from a selected CT scanner. Therefore, this method can be used to evaluate the CAD system de-
pendence on scan/reconstruction parameters of the images of a selected CT scanner. Moreover, with the aging of 
a scanner, image quality may change, and thus there is a possibility of changing the CAD performance on the 
images of a scanner. Therefore, this method may be the better selection to evaluate performance dependence on 
scan/reconstruction parameters at any stage. Furthermore, unlike phantom studies, any number of virtual no-
dules with different known densities and sizes can be added at any location of CT slices [18]. In addition, human 
images are used, and therefore similar to actual clinical practice with the same noise and artifact conditions. 
Furthermore, lung cancer CT screening CAD systems have been introduced to clinics and their use is widely 
spreading and becoming popular. However, up to now there is no accredited or standard methodology available 
to assess the CAD performance dependence on scan/reconstruction parameters. Therefore, the application of 
PSF-based virtual nodule method might be a possible solution. 

Our study had some limitations. Only three levels of the lung were selected to place the nodules. However, 
larger number of nodules per subject (30 in a subject) was applied to cover the peripheral and inner area of the 
selected locations. In addition, this preliminary study considered only solitary nodules; therefore, nodule were 
placed avoiding the large blood vessels. This does not exactly represent the distribution of lung cancer or metas- 
tases. Nevertheless, placing the nodule attached to the vessel or lung wall also can be done. Furthermore, when 
the virtual nodules are used with the different shapes and density distributions, CAD performance dependence is 
assessed and then the validation with real nodules is needed. However, purpose of this study is to get the CAD 
performance dependence on nodule size and density. Therefore, validations of virtual nodules with phantom 
nodules [17] [18] are sufficient. Further studies are needed applying nodules having irregular shapes and hetero- 
geneous density distribution for overall performance assessment of lung cancer CT screening CAD system. 

5. Conclusion 
This study suggests that PSF-based virtual nodules could be effectively used to quantitatively assess the lung 
cancer CT screening CAD system performance dependence on nodule size and density. 
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