

On Subsets of $\mathbb{Q}(\sqrt{m}) \setminus \mathbb{Q}$ under the Action of Hecke Groups $H(\lambda_q)$

Muhammad Aslam Malik¹, Muhammad Asim Zafar²

¹Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan ²Center for Undergraduate Studies, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan Email: <u>malikpu@yahoo.com</u>, <u>asimzafar@hotmail.com</u>

Received 2 February 2014; revised 2 March 2014; accepted 9 March 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

 $\mathbb{Q}(\sqrt{m})\setminus\mathbb{Q}$ is the disjoint union of $\mathbb{Q}^*(\sqrt{k^2m})$ for all $k \in \mathbb{N}$, where $\mathbb{Q}^*(\sqrt{k^2m})$ is the set of all roots of primitive second degree equations $ct^2 + 2at + b = 0$, with reduced discriminant $\Delta = a^2 - bc$ equal to k^2m . We study the action of two Hecke groups—the full modular group $H(\lambda_3) = PSL_2(\mathbb{Z})$ and the group of linear-fractional transformations $H(\lambda_4) = \langle x, y : x^2 = y^4 = 1 \rangle$ on $\mathbb{Q}(\sqrt{m}) \setminus \mathbb{Q}$. In particular, we investigate the action of $H(\lambda_3) \cap H(\lambda_4)$ on $\mathbb{Q}^*(\sqrt{k^2m})$ for finding different orbits.

Keywords

Quadratic Irrationals, Hecke Groups, Legendre Symbol, G-Set

1. Introduction

In 1936, Erich Hecke (see [1]) introduced the groups $H(\lambda)$ generated by two linear-fractional transformations $T(z) = \frac{-1}{z}$ and $S(z) = \frac{-1}{z+\lambda}$. Hecke showed that $H(\lambda)$ is discrete if and only if $\lambda = \lambda_q = 2\cos\left(\frac{\pi}{q}\right)$, $q \in \mathbb{N}$, $q \ge 3$ or $\lambda \ge 2$. Hecke group $H(\lambda_q)$ is isomorphic to the free product of two finite cyclic group of order 2 and q, and it has a presentation

$$H\left(\lambda_{q}\right) = \left\langle T, S : T^{2} = S^{q} = 1 \right\rangle \cong C_{2} * C_{q}$$

How to cite this paper: Malik, M.A. and Zafar, M.A. (2014) On Subsets of $\mathbb{Q}(\sqrt{m})\setminus\mathbb{Q}$ under the Action of Hecke Groups $H(\lambda_{o})$. Applied Mathematics, **5**, 1284-1291. <u>http://dx.doi.org/10.4236/am.2014.58120</u>

The first few of these groups are $H(\lambda_3) = G = PSL(2,\mathbb{Z})$, the full modular group having special interest for mathematicians in many fields of Mathematics, $H(\lambda_4) = H$ and $H(\lambda_6) = M$.

A non-empty set Ω with an action of the group G on it, is said to be a G-set. We say that Ω is a transitive G-set if, for any p,q in Ω there exists a g in G such that $p^g = q$. Let $n = k^2 m$, where $k \in \mathbb{N}$ and m is a square free positive integer. Then

$$\mathbb{Q}^*\left(\sqrt{n}\right) = \left\{\frac{a+\sqrt{n}}{c}: a, c, b = \frac{a^2-n}{c} \in \mathbb{Z} | (a,b,c) = 1\right\}$$

is the set of all roots of primitive second degree equations $ct^2 + 2at + b = 0$, with reduced discriminant $\Delta = a^2 - bc$ equal to *n* and

$$\mathbb{Q}\left(\sqrt{m}\right) \setminus \mathbb{Q} = \left\{ t + w\sqrt{m} : t, 0 \neq w \in \mathbb{Q} \right\}$$

is the disjoint union of $\mathbb{Q}^*(\sqrt{n})$ for all k. If $\alpha(a,b,c) \in \mathbb{Q}^*(\sqrt{n})$ and its conjugate $\overline{\alpha}$ have opposite signs then α is called an ambiguous number [2]. The actual number of ambiguous numbers in $\mathbb{Q}^*(\sqrt{n})$ has been discussed in [3] as a function of n. The classification of the real quadratic irrational numbers $\alpha(a,b,c)$ of $\mathbb{Q}^*(\sqrt{n})$ in the forms [a,b,c] modulo n has been given in [4] [5]. It has been shown in [6] that the action of the modular group $G = \langle x', y' : x' \, {}^2 = y \, {}^3 = 1 \rangle$, where $x'(z) = \frac{-1}{z}$ and $y'(z) = \frac{-1}{z+1}$, on the rational projective line $\mathbb{Q} \cup \{\infty\}$ is transitive. An action of $H = \langle x, y : x^2 = y^4 = 1 \rangle$, where $x(z) = \frac{-1}{2z}$ and $y(z) = \frac{-1}{2(z+1)}$ and its proper subgroups on $\mathbb{Q} \cup \{\infty\}$ has been discussed in [7] [8].

 $\mathbb{Q}^*(\sqrt{n})$ invariant under the action of modular group G but $\mathbb{Q}^*(\sqrt{n})$ is not invariant under the action of H. Thus it motivates us to establish a connection between the elements of the groups G and H and hence to deduce a common subgroup $H^* = \langle xy, yx \rangle$ of both groups such that each of $\mathbb{Q}^{**}(\sqrt{n}) = \{\alpha \in \mathbb{Q}^*(\sqrt{n}): 2|c\}$ and $\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$ is invariant under H^* and hence we find G-subsets of $\mathbb{Q}^*(\sqrt{n})$ and H-subsets of $\mathbb{Q}^{**}(\sqrt{n})$ or $\mathbb{Q}^{*-}(\sqrt{n}) = \left(\mathbb{Q}^*\left(\sqrt{\frac{n}{4}}\right) \setminus \mathbb{Q}^{**}\left(\sqrt{\frac{n}{4}}\right)\right) \cup \mathbb{Q}^{**}(\sqrt{n})$ according as $n \neq 0 \pmod{4}$ or $n \equiv 0 \pmod{4}$ and $\mathbb{Q}^{*-}(\sqrt{4n})$ for all non-square n. Also the partition of $\mathbb{Q}^*(\sqrt{n})$ has been discussed depending upon classes [a, b, c] modulo $p_1 p_2$.

2. Preliminaries

We quote from [5] [6] and [8] the following results for later reference. Also we tabulate the actions on $\alpha(a,b,c) \in \mathbb{Q}^*(\sqrt{n})$ of x', y' and x, y, the generators of *G* and *H* respectively in Table 1.

Theorem 2.1 (see [5]) Let $n \equiv 2 \pmod{8}$, $n \neq 2$. Then $B^1 = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : b \text{ or } c \equiv \pm 1 \pmod{8} \right\}$ and $B^3 = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : b \text{ or } c \equiv \pm 3 \pmod{8} \right\}$ are both *G*-subsets of $\mathbb{Q}^* \left(\sqrt{n} \right)$.

Theorem 2.2 (see [5]) Let $n \equiv 6 \pmod{8}$. Then $B = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : b \text{ or } c \equiv 1 \text{ or } 3 \pmod{8} \right\}$ and $-B = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : b \text{ or } c \equiv -1 \text{ or } -3 \pmod{8} \right\}$ are both *G*-subsets of $\mathbb{Q}^* \left(\sqrt{n} \right)$.

Theorem 2.3 (see [6]) If $n \equiv 0$ or $3 \pmod{4}$, then $S = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : b \text{ or } c \equiv 1 \pmod{4} \right\}$ and

 $-S = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : b \text{ or } c \equiv -1 \pmod{4} \right\} \text{ are exactly two disjoint } G \text{-subsets of } \mathbb{Q}^* \left(\sqrt{n} \right) \text{ depending upon classes } [a, b, c] \text{ modulo 4.}$

Theorem 2.4 (see [6]) If $n \equiv 1 \pmod{4}$, then $\mathbb{Q}'(\sqrt{n}) = \left\{ \alpha \in \mathbb{Q}^*(\sqrt{n}) : 2 | (b,c) \right\}$ and

Table 1. The action of elements of <i>G</i> and <i>H</i> on $\alpha \in \mathbb{Q}^*(\sqrt{n})$.			
$x'(\alpha) = \frac{-1}{\alpha}$	<i>-a</i>	с	b
$y'(\alpha) = \frac{\alpha - 1}{\alpha}$	-a+b	-2a+b+c	с
$(y')^2(\alpha) = \frac{1}{1-\alpha}$	-a+c	с	-2a+b+c
$x'y'(\alpha) = \frac{\alpha}{1-\alpha}$	a – b	b	-2a+b+c
$y'x'(\alpha) = 1 + \alpha$	<i>a</i> + <i>c</i>	2a+b+c	С
$(y')^2 x'(\alpha) = \frac{\alpha}{1+\alpha}$	<i>a</i> + <i>b</i>	b	2a+b+c
$x(\alpha) = \frac{-1}{2\alpha}$	<i>-a</i>	$\frac{c}{2}$	2b
$y(\alpha) = \frac{-1}{2(\alpha+1)}$	-a-c	$\frac{c}{2}$	2(2a+b+c)
$y^{2}(\alpha) = \frac{-(\alpha+1)}{2(\alpha)}$	-3a-2b-c	2a+b+c	4a+4b+c
$y^{3}(\alpha) = \frac{(2\alpha+1)}{2\alpha}$	-a-2b	$\frac{4a+4b+c}{2}$	2(2a+b+c)
$xy(\alpha) = \alpha + 1$	a + c	2a+b+c	С
$yx(\alpha) = \frac{\alpha}{1-2\alpha}$	a – 2b	b	-4a+4b+c
$y^2 x(\alpha) = \frac{1-2\alpha}{2(-1+\alpha)}$	3a-2b-c	$\frac{-4a+4b+c}{2}$	2(-2a+b+c)
$y^3x(\alpha) = \alpha - 1$	<i>a</i> – <i>c</i>	2a+b+c	С

 $\mathbb{Q}^*\left(\sqrt{n}\right) \setminus \mathbb{Q}'\left(\sqrt{n}\right) = \left\{ \alpha \in \mathbb{Q}^*\left(\sqrt{n}\right) : 2 \nmid (b,c) \right\} \text{ are both } G\text{-subsets of } \mathbb{Q}^*\left(\sqrt{n}\right).$ **Lemma 2.5** (see [8]) Let $\alpha(a,b,c) \in \mathbb{Q}^*\left(\sqrt{n}\right)$. Then:

- 1) If $n \neq 0 \pmod{4}$ then $\frac{\alpha}{2} \in \mathbb{Q}^{**} \left(\sqrt{n}\right)$ if and only if 2|b.
- 2) $\frac{\alpha}{2} \in \mathbb{Q}^{**}(\sqrt{4n})$ if and only if $2 \nmid b$.

Theorem 2.6 (see [8]) The set $\mathbb{Q}''(\sqrt{n}) = \left\{\frac{\alpha}{t} : \alpha \in \mathbb{Q}^*(\sqrt{n}), t = 1, 2\right\}$, is invariant under the action of *H*. **Theorem 2.7** (see [8]) For each non square positive integer $n \equiv 1, 2 \text{ or } 3 \pmod{4}$, $\mathbb{Q}^{**}(\sqrt{n}) = \left\{\alpha \in \mathbb{Q}^*(\sqrt{n}) : 2|c\right\}$ is an *H*-subset of $\mathbb{Q}''(\sqrt{n})$.

3. Action of $H(\lambda_3) \cap H(\lambda_4)$ on $\mathbb{Q}^*(\sqrt{n})$ We start this section by defining a common subgroup of both groups $G = \langle x', y' : x'^2 = y'^3 = 1 \rangle$ and

$$H = \langle x, y : x^2 = y^4 = 1 \rangle, \text{ where } x'(\alpha) = \frac{-1}{\alpha}, y'(\alpha) = \frac{\alpha - 1}{\alpha}, x(\alpha) = \frac{-1}{2\alpha} \text{ and } y(\alpha) = \frac{-1}{2(\alpha + 1)}. \text{ For this, we}$$

need the following crucial results which show the relationships between the elements of G and H.

Lemma 3.1 Let x', y' and x, y be the generators of G and H respectively defined above. Then we have:

- 1) $y^2 = (x'y')^2 (y'x')$ and $y^3 = \frac{1}{2} (x'(y')^2)^2 x'$.
- 2) xy = y'x' and $yx = (x'y')^2$.
- 3) $y^3 x = x'(y')^2$ and $xy^3 = ((y')^2 x')^2$.
- 4) $y^2 x = \frac{1}{2} (x'(y')^2) (x'y')$ and $xy^2 = \frac{1}{2} (y'x') ((y')^2 x')$.
- 5) x' = 2x and y' = (2x)(2y)(2x).
- 6) $x'y' = 2(yx)\frac{1}{2}$ and $x'(y')^2 = y^3x$. In particular $(x'y')^{-1} = 2(xy^3)\frac{1}{2}$ and $(x'(y')^2) = xy$. Following corollary is an immediate consequence of Lemma 3.1.

Corollary 3.2 1) By Lemma 3.1, since xy = y'x' and $yx = (x'y')^2$ so $H^* = \langle xy, yx \rangle$ is a common sub-

group of G and H where xy, yx are the transformations defined by $xy(\alpha) = \alpha + 1$ and $yx(\alpha) = \frac{\alpha}{1 - 2\alpha}$.

- 2) As $yxxy = y^2$, $xyyx = xy^2x$, so $\langle y^2, xy^2x \rangle$ is a proper subgroup of H^* . 3) $\langle H^*, x \rangle = \langle H^*, y \rangle = H$ and $\langle H^*, x' \rangle = \langle H^*, y' \rangle = G$.

Since for each integer n, either (n/p) = 0 or $(n/p) = \pm 1$ for each odd prime p. So in the following lemma, we classify the elements of $\mathbb{Q}^*(\sqrt{n})$ in terms of classes $[a,b,c] \pmod{p}$ with 0 modulo p or qr, qnr nature of a, b and c modulo p.

Lemma 3.3 Let p be prime and $n \equiv 0 \pmod{p}$. Then \mathbb{E}_p^0 consists of classes [0,0,qr], [0,0,qnr], [0,qr,0], [0,qnr,0], [qr,qr,qr], [qnr,qr,qr], [qr,qnr,qnr] or [qnr,qnr,qnr].

Proof. Let $[a,b,c] \pmod{p}$ be any class of $\alpha(a,b,c)$. Then $a^2 \equiv bc \pmod{p}$ leads us to exactly three cases. If $a \equiv 0 \pmod{p}$ then exactly one of b, c is $\equiv 0 \pmod{p}$ and the other is qr or qnr of p as otherwise $(a,b,c) \neq 1$ and hence the class [a,b,c] is one of the forms [0,0,qr], [0,0,qnr], [0,qr,0], [0,qnr,0]. If (a/p)=1 then (bc/p)=1 and the class takes the form [qr,qr,qr] or [qr,qnr,qnr]. In third case if (a/p) = -1 then $(a^2/p) = 1$ so again (bc/p) = 1. This yields the class in the forms [qnr,qr,qr] or [qnr,qnr,qnr]. Hence the result.

Lemma 3.4 Let (n/p) = 1 and let $[a,b,c] \pmod{p}$ be the class of $\alpha_n(a,b,c)$ of $\mathbb{Q}^*(\sqrt{n})$. Then:

1) If $p \equiv 1 \pmod{4}$ then $[a,b,c] \pmod{p}$ has the forms [0,qr,qr], [0,qnr,qnr], [qr,0,qr], [qr,0,qr], [qr,0,qr], [qr,0,qr], [qr,0,qr], [qr,0,qr], [qnr,0,qr], [qnr,qr,0], [qnr,qnr,0], [qnr,0,0] or [ar, 0, 0] only.

2) If $p \equiv 3 \pmod{4}$ then $[a,b,c] \pmod{p}$ has the forms [0,qnr,qr], [0,qr,qnr], [qr,0,qr], [qr,qr,0], [qr, 0, qnr], [qr, qnr, 0], [qnr, 0, qr], [qnr, qr, 0], [qnr, 0, qnr], [qnr, qnr, 0], [qnr, 0, 0] or [qr, 0, 0] only. *Proof.* Let [a,b,c](mod p) be the class of $\alpha_n(a,b,c)$ with $a^2 - n = bc$. As (n/p) = 1 so if (a/p) = 0then $((a^2 - n)/p) = \pm 1$ according as $p \equiv 1 \pmod{4}$ or $p \equiv 3 \pmod{4}$. Thus we have [0, qr, qr], [0, qnr, qnr]if $p \equiv 1 \pmod{4}$ and [0, qnr, qr], [0, qr, qnr] if $p \equiv 3 \pmod{4}$. If $(a/p) = \pm 1$ then $((a^2 - n)/p) = 0$, so we get [qr, 0, qr], [qr, 0, qnr], [qr, qr, 0], [qr, qnr, 0], [qnr, 0, qr], [qnr, 0, qnr], [qnr, qr, 0], [qnr, qnr, 0], [qnr, 0, 0] or [qr, 0, 0] only. This proof is now complete.

Lemma 3.5 Let (n/p) = -1 and let $[a,b,c] \pmod{p}$ be the class of $\alpha(a,b,c)$ of $\mathbb{Q}^*(\sqrt{n})$. Then:

1) If $p \equiv 1 \pmod{4}$ then $[a,b,c] \pmod{p}$ has the forms [0,qnr,qr], [0,qr,qnr], [qr,qr,qr], [qr,qnr,qnr], [qnr,qr,qr] or [qnr,qnr,qnr] only.

2) If $p \equiv 3 \pmod{4}$ then $[a,b,c] \pmod{p}$ has the forms [0,qr,qr], [0,qnr,qnr], [qr,qr,qnr], [qr, qnr, qr], [qnr, qr, qnr] or [qnr, qnr, qr] only.

Proof. The proof is analogous to the proof of Lemma 3.4.

Note: If (n/2) = 0 then [1,1,1], [0,0,1] and [0,1,0] are three classes of $\mathbb{Q}^*(\sqrt{n})$ in modulo 2. If n is an odd then three classes of $Q^*(\sqrt{n})$ are [1,0,1], [1,1,0] and [0,1,1] modulo 2. These are the only classes of $\mathbb{Q}^*(\sqrt{n})$ if $n \equiv 3 \pmod{4}$. But if $n \equiv 1 \pmod{4}$, then [1,0,0] is also a class of $Q^*(\sqrt{n})$ and there are no further classes. These classes in modulo 2 of $\mathbb{Q}^*(\sqrt{n})$ do not give any useful information during the study of action of G on $\mathbb{Q}^*(\sqrt{n})$ except that if $n \equiv 1 \pmod{4}$ then the set consisting of all elements of $\mathbb{Q}^*(\sqrt{n})$ of the form [1,0,0] is invariant under the action of the group G. Whereas the study of action of \dot{H}^* on $Q^*(\sqrt{n})$ gives some useful information about these classes. The following crucial result determines the H^* subsets of $\mathbb{Q}^*(\sqrt{n})$ depending upon classes [a,b,c] modulo 2. It is interesting to observe that $\mathbb{Q}^*(\sqrt{n})$ splits into $\mathbb{Q}^{**}(\sqrt{n})$ and $\mathbb{Q}^{*}(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$ in modulo 2. Each of these two H^{*} -subsets further splits into proper H^* -subsets in modulo 4.

Lemma 3.6 $\mathbb{Q}^{**}(\sqrt{n})$ and $\mathbb{Q}^{*}(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$ are two distinct H^{*} -subsets of $\mathbb{Q}^{*}(\sqrt{n})$ depending upon classes [a,b,c] modulo 2.

Theorem 3.7 and Remarks 3.8 are extension of Lemma 3.6 and discuss the action of H^* on $\mathbb{Q}^*(\sqrt{n})$ depending upon classes [a,b,c] modulo 4. Proofs of these follow directly by the equations

$$xy\left(\frac{a+\sqrt{n}}{c}\right) = \frac{a+c+\sqrt{n}}{c}, \quad yx\left(\frac{a+\sqrt{n}}{c}\right) = \frac{a-2b+\sqrt{n}}{-4a+4b+c}$$
 and classes $[a,b,c]$ modulo 4 given in [6].

Theorem 3.7 Let *n* be any non-square positive integer. Then $\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$ splits into two proper H^* - $A_1 = \left\{ \alpha \in \mathbb{Q}^*\left(\sqrt{n}\right) \setminus \mathbb{Q}^{**}\left(\sqrt{n}\right) : c \equiv 1 \pmod{4} \right\} \quad , \qquad A_2 = \left\{ \alpha \in \mathbb{Q}^*\left(\sqrt{n}\right) \setminus \mathbb{Q}^{**}\left(\sqrt{n}\right) : c \equiv 3 \pmod{4} \right\}$ subsets Similarly $\mathbb{Q}^{**}(\sqrt{n})$ splits into two proper H^* -subsets $B_1 = \{\alpha \in \mathbb{Q}^{**}(\sqrt{n}) : c \equiv 0 \pmod{4}\}$ and $B_2 = \left\{ \alpha \in \mathbb{Q}^{**}\left(\sqrt{n}\right) : c \equiv 2 \pmod{4} \right\}.$

Remark 3.8 1) Let $n \equiv 1 \pmod{4}$. Then $\mathbb{Q}'(\sqrt{n}) = \left\{ \alpha \in \mathbb{Q}^{**}(\sqrt{n}) : 2|(b,c) \right\}$ and $\mathbb{Q}^{**}(\sqrt{n}) \setminus \mathbb{Q}'(\sqrt{n})$ are H^* -subsets of $\mathbb{Q}^{**}(\sqrt{n})$. In particular if $n \equiv 5 \pmod{8}$, then $B_1 = \mathbb{Q}^{**}(\sqrt{n}) \setminus \mathbb{Q}'(\sqrt{n})$ and $B_2 = \mathbb{Q}'(\sqrt{n})$ are H^* -subsets of $\mathbb{Q}^{**}(\sqrt{n})$. Whereas if $n \equiv 1 \pmod{8}$, then $C_1 = \left\{ \alpha \in \mathbb{Q}'(\sqrt{n}) \cap B_1 : a \equiv 1 \pmod{4} \right\}$, $C_2 = \left\{ \alpha \in \mathbb{Q}'(\sqrt{n}) \cap B_1 : a \equiv 3 \pmod{4} \right\}, \quad C_3 = \left\{ \alpha \in \mathbb{Q}'(\sqrt{n}) : c \equiv 2 \pmod{4} \right\} \text{ and } C_4 = \mathbb{Q}^{**}(\sqrt{n}) \setminus \mathbb{Q}'(\sqrt{n}) \text{ are } C_4 = \mathbb{Q}^{**}(\sqrt{n}) \times \mathbb{Q}'(\sqrt{n}) \text{ are } C_4 = \mathbb{Q$

 H^* -subsets of $\mathbb{Q}^{**}(\sqrt{n})$. Specifically, $B_1 = C_1 \cup C_2 \cup C_4$, $B_2 = C_3$.

2) As we know that if n and c are even, then a must be even as (a,b,c)=1. If $n \equiv 2 \pmod{4}$, then $B_2 = \mathbb{Q}^{**}(\sqrt{n})$ and $B_1 = \phi$. 3) If $n \equiv 0$ or $3 \pmod{4}$, then B_2 or B_1 is empty according as $n \equiv 0$ or $3 \pmod{4}$. As we know that if n = 0 or $3 \pmod{4}$.

and c are even, then a must be even as (a,b,c) = 1. However $D_1 = \left\{ \alpha \in \mathbb{Q}^{**}(\sqrt{n}) : b \equiv 1 \pmod{4} \right\}$,

 $D_2 = \left\{ \alpha \in \mathbb{Q}^{**}(\sqrt{n}) : b \equiv 3 \pmod{4} \right\}$ are proper H^* -subsets of $\mathbb{Q}^{**}(\sqrt{n})$ depending upon classes [a, b, c]modulo 4.

Lemma 3.9 Let *n* be any non-square positive integer. Then $\mathbb{Q}^{**}(\sqrt{4n})$ and $\mathbb{Q}^{*}(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$ are distinct H^* -subsets of an H-set $\mathbb{Q}^{*\sim}(\sqrt{4n}) = \mathbb{Q}^{**}(\sqrt{4n}) \cup (\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n}))$.

Proof. Follows by the equations $x(\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})) = \mathbb{Q}^{**}(\sqrt{4n})$ and vice versa. Hence $\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$ is equivalent to $\mathbb{Q}^{**}(\sqrt{4n})$.

Clearly $\left|\mathbb{Q}_{1}^{*}(\sqrt{n})\setminus\mathbb{Q}_{1}^{**}(\sqrt{n})\right| = \left|\mathbb{Q}_{1}^{**}(\sqrt{4n})\right|$ where $\mathbb{Q}_{1}^{*}(\sqrt{n})$ denotes the set of all ambigious numbers in

 $\mathbb{Q}^*(\sqrt{n})$ (see [8]).

Remark 3.10 1) Each *G*-subset *X* of $\mathbb{Q}^*(\sqrt{n})$ splits into two *H*^{*}-subsets $X \setminus \mathbb{Q}^{**}(\sqrt{n})$ and $X \cap \mathbb{Q}^{**}(\sqrt{n})$ and $x'(X \setminus \mathbb{Q}^{**}(\sqrt{n})) = x'(X \cap \mathbb{Q}^{**}(\sqrt{n})) = X$.

2) Each *H*-subset *Y* of $\mathbb{Q}^{*\sim}(\sqrt{4n})$ splits into two *H*^{*}-subsets $Y \setminus \mathbb{Q}^{**}(\sqrt{n})$ and $Y \cap \mathbb{Q}^{**}(\sqrt{4n})$.

3) Each *H*-subset *Y* of $\mathbb{Q}^{*\sim}(\sqrt{n})$, $n \neq 0 \pmod{4}$ splits into two *H*^{*}-subsets $Y \setminus \mathbb{Q}^{**}(\sqrt{n})$ and $Y \cap \mathbb{Q}^{**}(\sqrt{4n})$.

4) Each *H*-subset *Y* of $\mathbb{Q}^{**}(\sqrt{n})$, $n \neq 0 \pmod{4}$ splits into two *H*^{*}-subsets $Y \setminus \mathbb{Q}^{**}(\sqrt{n})$ and $Y \cap \mathbb{Q}^{**}(\sqrt{4n})$. **Theorem 3.11** a) If *A* is an *H*^{*}-subset of $\mathbb{Q}^{**}(\sqrt{n})$ or $\mathbb{Q}^{*}(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$, then $A \cup x'(A)$ is a *G*-subset of $\mathbb{Q}^{*}(\sqrt{n})$.

b) If A is an H^* -subset of $\mathbb{Q}^{**}(\sqrt{n})$, then $A \cup x(A)$ is an H-subset of $\mathbb{Q}^{**}(\sqrt{n})$ or $\mathbb{Q}^{*\sim}(\sqrt{n})$ according as $n \neq 0 \pmod{4}$ or $n \equiv 0 \pmod{4}$.

c) If A is an H^* -subset of $\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})$, then $A \cup x(A)$ is an H-subset of $\mathbb{Q}^{*\sim}(\sqrt{4n})$ for all non-square n.

Proof. Proof of a) follows by the equation $x'\left(\mathbb{Q}^{**}\left(\sqrt{n}\right)\right) = \mathbb{Q}^{*}\left(\sqrt{n}\right) \setminus \mathbb{Q}^{**}\left(\sqrt{n}\right)$.

Proof of b) follows by the equations $x\left(\mathbb{Q}^{**}\left(\sqrt{n}\right)\right) = \mathbb{Q}^{**}\left(\sqrt{n}\right)$ or $x\left(\mathbb{Q}^{**}\left(\sqrt{n}\right)\right) = \mathbb{Q}^{*}\left(\sqrt{\frac{n}{4}}\right) \setminus \mathbb{Q}^{**}\left(\sqrt{\frac{n}{4}}\right)$ according as $n \neq 0 \pmod{4}$ or $n \equiv 0 \pmod{4}$.

Proof of c) follows by the equation $x\left(\mathbb{Q}^*\left(\sqrt{n}\right)\setminus\mathbb{Q}^{**}\left(\sqrt{n}\right)\right) = \mathbb{Q}^{**}\left(\sqrt{4n}\right)$. Following examples illustrate the above results.

Example 3.12 1) Let n = 8. Then $\alpha = \frac{1+\sqrt{8}}{1} \in \mathbb{Q}^* \left(\sqrt{8}\right)$ but $\frac{\alpha}{2} = \frac{1+\sqrt{8}}{2} = \frac{2+\sqrt{32}}{4} \in \mathbb{Q}^{**} \left(\sqrt{32}\right)$. Also $\beta = \frac{2+\sqrt{8}}{1} \in \mathbb{Q}^* \left(\sqrt{8}\right)$ but $\frac{\beta}{2} = \frac{1+\sqrt{2}}{1} \in \mathbb{Q}^* \left(\sqrt{2}\right) \setminus \mathbb{Q}^{**} \left(\sqrt{2}\right)$. Similarly $\gamma = \frac{2+\sqrt{8}}{4} \in \mathbb{Q}^{**} \left(\sqrt{8}\right)$ whereas $\frac{\gamma}{2} = \frac{4+\sqrt{32}}{16} \in \mathbb{Q}^* \left(\sqrt{32}\right)$. Also $\mathbb{Q}^{**} \left(\sqrt{8}\right) = \left(\sqrt{2}\right)^H \cup \left(-\sqrt{2}\right)^H$, $\mathbb{Q}^{**} \left(\sqrt{32}\right) = \left(\sqrt{8}\right)^H \cup \left(-\sqrt{8}\right)^H$. So $Q'' \left(\sqrt{8}\right)$ has exactly 4 orbits under the action of U whereas $\mathbb{Q}^* \left(\sqrt{8}\right)$ explicit into two C orbits normally $\left(\sqrt{8}\right)^G = \left(\sqrt{8}\right)^G$.

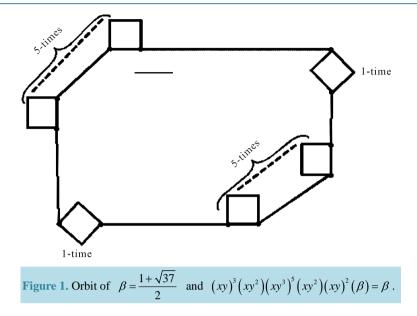
has exactly 4 orbits under the action of *H* whereas $\mathbb{Q}^*(\sqrt{8})$ splits into two *G*-orbits namely $(\sqrt{8})^G$, $(-\sqrt{8})^G$. 2) $\mathbb{Q}''(\sqrt{37})$ splits into nine *H*-orbits. Also

$$\mathbb{Q}^{*\sim}\left(\sqrt{148}\right) = \left(\sqrt{37}\right)^{H} \cup \left(-\sqrt{37}\right)^{H} \cup \left(\frac{1+\sqrt{37}}{3}\right)^{H} \cup \left(\frac{1+\sqrt{37}}{-3}\right)^{H} \cup \left(\frac{-1+\sqrt{37}}{-3}\right)^{H} \cup \left(\frac{-1+\sqrt{37}}{-3}\right)^{H} \cup \left(\frac{-1+\sqrt{37}}{-3}\right)^{H} \text{ and}$$

$$\mathbb{Q}^{**}\left(\sqrt{37}\right) = \left(\frac{1+\sqrt{37}}{2}\right)^{H} \cup \left(\frac{1+\sqrt{37}}{4}\right)^{H} \cup \left(\frac{-1+\sqrt{37}}{-4}\right)^{H}. \text{ Whereas } \mathbb{Q}^{*}\left(\sqrt{37}\right) \text{ splits into four } G \text{ -orbits namely}$$

$$\left(\sqrt{37}\right)^{G}, \left(\frac{1+\sqrt{37}}{2}\right)^{G} \left(\frac{1+\sqrt{37}}{3}\right)^{G} \text{ and } \left(\frac{-1+\sqrt{37}}{-3}\right)^{G}. \text{ (see Figure 1)} \blacklozenge$$

Theorem 3.13 Let p be an odd prime factor of n. Then $S_1^p = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : (b/p) \text{ or } (c/p) = 1 \right\}$ and $S_2^p = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : (b/p) \text{ or } (c/p) = -1 \right\}$ are two H^* -subsets of $\mathbb{Q}^* \left(\sqrt{n} \right)$. In particular, these are the only H^* -subsets of $\mathbb{Q}^* \left(\sqrt{n} \right)$ depending upon classes [a, b, c] modulo p.



Proof. Let [a,b,c](mod p) be the class of $\alpha(a,b,c) \in \mathbb{Q}^*(\sqrt{n})$. In view of Lemma 3.3, either both of b,c are qrs or qnrs and the two equations $xy(\alpha(a,b,c)) = \alpha'(a+c,2a+b+c,c)$, $yx(\alpha(a,b,c)) = \alpha'(a-2b,b,-4a+4b+c)$ fix b,c modulo p. If $a \equiv b \equiv 0 \pmod{p}$ then ((2a+b+c)/p) = 1 or ((2a+b+c)/p) = -1 according as (c/p) = 1 or (c/p) = -1. similarly for $a \equiv c \equiv 0 \pmod{p}$. This shows that the sets S_1^p and S_2^p are H^* -subsets of $\mathbb{Q}^*(\sqrt{n})$ depending upon classes modulo p.

The following corollary is an immediate consequence of Lemma 3.6 and Theorem 3.13.

Corollary 3.14 Let *p* be an odd prime and $n \equiv 0 \pmod{2p}$. Then $\mathbb{Q}^*(\sqrt{n})$ splits into four proper H^* -subsets depending upon classes modulo 2p.

Proof. Since $a^2 - n = bc$ implies that $a^2 \equiv bc \pmod{2p}$. This is equivalent to congruences $a^2 \equiv bc \pmod{p}$ and $a^2 \equiv bc \pmod{2}$. By Theorem 3.13 S_1^p , S_2^p are H^* -subsets and then, by Lemma 3.6, each of S_1^p and S_2^p further splits into two H^* -subsets $S_1^p \cap \mathbb{Q}^{**}(\sqrt{n})$, $S_2^p \cap \mathbb{Q}^{**}(\sqrt{n})$, $S_1^p \setminus \mathbb{Q}^{**}(\sqrt{n})$ and $S_2^p \setminus \mathbb{Q}^{**}(\sqrt{n})$.

The next theorem is more interesting in a sense that whenever $(n/p) = \pm 1$, $\mathbb{Q}^*(\sqrt{n})$ is itself an H^* -set depending upon classes [a,b,c] modulo p.

Theorem 3.15 Let p be an odd prime and $(n/p) = \pm 1$. Then $\mathbb{Q}^*(\sqrt{n})$ is itself an H^* -set depending upon classes [a,b,c] modulo p.

Proof. follows from Lemmas 3.4, 3.5 and the equations $xy(\alpha) = \alpha + 1$ and $yx(\alpha) = \frac{\alpha}{1 - 2\alpha}$ given in Table

1.

Let us illustrate the above theorem in view of Theorem 3.4. If (n/3) = 1, then the set

 $\{ [0,1,2], [0,2,1], [1,0,1], [1,1,0], [2,0,2], [2,0,1], [2,1,0], [2,2,0], [1,2,0], [1,0,2], [1,0,0], [2,0,0] \} \text{ is an } H^* \text{-set.}$ That is, $\mathbb{Q}^* (\sqrt{n})$ is itself an H^* -set depending upon classes [a,b,c] modulo 3. Similarly for (n/3) = -1.

Theorem 3.16 Let p be an odd prime and n is a quadratic residue (quadratic non-residue) of 2p. Then $\mathbb{Q}^*(\sqrt{n})$ is the disjoint union of three H^* -subsets $\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n}), \mathbb{Q}^{**}(\sqrt{n}) \setminus \mathbb{Q}'(\sqrt{n})$ and $\mathbb{Q}'(\sqrt{n})$ depending upon classes [a,b,c] modulo 2p.

Proof. Follows by Theorems 2.6, 2.7 and 3.15.

The following example justifies the above result.

Example 3.17 Since $17 \equiv 5 \pmod{6}$, then $\mathbb{Q}^*(\sqrt{15})$ splits into these three H^* -subsets

 $\left\{ [0,1,1], [1,2,1], [2,5,1], [3,4,1], [4,5,1], [5,2,1], [0,5,5], [5,4,5], [4,1,5], [3,2,5], [2,1,5], [1,4,5] \right\},$

 $\left\{ [1,1,2], [3,5,2], [5,1,2], [3,1,4], [1,5,4], [5,5,4] \right\}, \left\{ [1,2,4], [5,2,4], [3,4,4], [1,4,2], [3,2,2], [5,4,2] \right\}.$

The next theorem is a generalization of Theorem 3.13 to the case when *n* involves two distinct prime factors. **Theorem 3.20** Let p_1 and p_2 be distinct odd primes factors of *n*. Then $S_{1,1} = S_1^{p_1} \cap S_1^{p_2}$, $S_{1,2} = S_1^{p_1} \cap S_2^{p_2}$, $S_{2,1} = S_2^{p_1} \cap S_1^{p_2}$ and $S_{2,2} = S_2^{p_1} \cap S_2^{p_2}$ are four H^* -subsets of $\mathbb{Q}^*(\sqrt{n})$. More precisely these are the only H^* -subsets of $\mathbb{Q}^*(\sqrt{n})$ depending upon classes [a,b,c] modulo p_1p_2 .

Proof. Let $[a,b,c] \pmod{p_1 p_2}$ be any class of $\alpha(a,b,c) \in \mathbb{Q}^* (\sqrt{n})$ with $n \equiv 0 \pmod{p_1 p_2}$. Then $a^2 - n = bc$ implies that

$$a^2 \equiv bc \left(mod \ p_1 p_2\right) \tag{1}$$

This is equivalent to congruences $a^2 \equiv bc \pmod{p_1}$ and $a^2 \equiv bc \pmod{p_2}$. By Theorem 3.14, the congruence $a^2 \equiv bc \pmod{p_1}$ gives two H^* -subsets $S_1^{p_1} = \left\{ \alpha \in \mathbb{Q}^* \left(\sqrt{n} \right) : (c/p_1) \operatorname{or} (c/p_1) = 1 \right\}$ and

 $S_{2}^{p_{1}} = \left\{ \alpha \in \mathbb{Q}^{*}\left(\sqrt{n}\right) : \left(c/p_{1}\right) \text{ or } \left(c/p_{1}\right) = -1 \right\} \text{ of } \mathbb{Q}^{*}\left(\sqrt{n}\right). \text{ As } a^{2} \equiv bc \pmod{p_{2}}, \text{ again applying Theorem 3.13}$ on each of $S_{1}^{p_{1}}$ and $S_{2}^{p_{1}}$ we have four H^{*} -subsets $S_{1,1}, S_{1,2}, S_{2,1}$ and $S_{2,2}$ of $\mathbb{Q}^{*}\left(\sqrt{n}\right).$

References

- [1] Sahin, R. and Bizim, O. (2003) Some Subgroups of the Extended Hecke Groups $\overline{H}(\lambda_q)$. *Mathematica Acta Scientia*, **23B**, 497-502.
- [2] Mushtaq, Q. (1988) Modular Group Acting on Real Quadratic Fields. *Bulletin of the Australian Mathematical Society*, 3, 303-309.
- [3] Husnine, S.M., Aslam Malik, M. and Majeed, A. (2005) On Ambiguous Numbers of an Invariant Subset $\mathbb{Q}^*(\sqrt{k^2m})$ of $\mathbb{Q}(\sqrt{m})$ under the Action of the Modular Group PSL(2,Z). *Studia Scientiarum Mathematicarum Hungarica*, **42**, 401-412. <u>http://dx.doi.org/10.1556/SScMath.42.2005.4.5</u>
- [4] Aslam Malik, M. and Asim Zafar, M. (2011) Real Quadratic Irrational Numbers and Modular Group Action. Southeast Asian Bulletin of Mathematics, 35, 439-445.
- [5] Malik, M.A. and Asim Zafar, M. (2013) *G*-Subsets of an Invariant Subset $\mathbb{Q}^*\left(\sqrt{k^2m}\right)$ of $\mathbb{Q}\left(\sqrt{m}\right)\setminus Q$ under the Modular Group Action. *Utilitas Mathematica*, **91**, 377-387.
- [6] Aslam Malik, M., Husnine, S.M. and Majeed, A. (2005) Intrasitive Action of the Modular Group $PSL_2(\mathbb{Z})$ on a Subset $\mathbb{Q}^*(\sqrt{k^2m})$ of $\mathbb{Q}(\sqrt{m})$. *PUJM*, **37**, 31-38.
- [7] Mushtaq, Q. and Aslam, M. (1997) Transitive Action of a Two Generator Group on Rational Projective Line. *Southeast Asian Bulletin of Mathematics*, **1**, 203-207.
- [8] Aslam Malik, M., Husnine, S.M. and Asim Zafar, M. (2012) Certain *H*-Subsets of $\mathbb{Q}(\sqrt{m}) \setminus \mathbb{Q}$ under the Action of $H = \langle x, y : x^2 = y^4 = 1 \rangle$. *Pakistan Journal of Science*, **64**, 67-74.