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Abstract 

( ) m  is the disjoint union of ( )2 k m∗  for all k∈ , where ( )2 k m∗  is the set of all 

roots of primitive second degree equations 2 2 0ct at b+ + = , with reduced discriminant 2a bc∆ = −  
equal to k2m. We study the action of two Hecke groups—the full modular group ( ) ( )3 2 H PSL=λ  

and the group of linear-fractional transformations ( ) 2 4
4 , : 1H x y x y= = =λ  on ( ) m . In 

particular, we investigate the action of ( ) ( )3 4H Hλ λ  on ( )2 k m∗  for finding different orbits. 
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1. Introduction 
In 1936, Erich Hecke (see [1]) introduced the groups ( )H λ  generated by two linear-fractional transformations  

( ) 1T z
z
−

=  and ( ) 1S z
z λ
−

=
+

. Hecke showed that ( )H λ  is discrete if and only if π2cosq q
λ λ

 
= =  

 
,  

q∈ , 3q ≥  or 2λ ≥ . Hecke group ( )qH λ  is isomorphic to the free product of two finite cyclic group of 
order 2 and q, and it has a presentation 

( ) 2
2, : 1q

q qH T S T S C Cλ = = = ≅ ∗  
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The first few of these groups are ( ) ( )3 2,H G PSLλ = =  , the full modular group having special interest for 
mathematicians in many fields of Mathematics, ( )4H Hλ =  and ( )6H Mλ = . 

A non-empty set Ω  with an action of the group G on it, is said to be a G-set. We say that Ω  is a transitive 
G-set if, for any ,p q  in Ω  there exists a g in G such that gp q= . Let 2n k m= , where k∈  and m is a 
square free positive integer. Then 

( ) ( )
2

* : , , , , 1a n a nn a c b a b c
c c

 + − = = ∈ = 
  

  

is the set of all roots of primitive second degree equations 2 2 0ct at b+ + = , with reduced discriminant 
2a bc∆ = −  equal to n and 

( ) { }: ,0m t w m t w= + ≠ ∈    

is the disjoint union of ( )* n  for all k. If ( ) ( )*, ,a b c nα ∈  and its conjugate α  have opposite signs  
then α  is called an ambiguous number [2]. The actual number of ambiguous numbers in ( )* n  has been  

discussed in [3] as a function of n. The classification of the real quadratic irrational numbers ( ), ,a b cα  of 
( )* n  in the forms [ ], ,a b c  modulo n has been given in [4] [5]. It has been shown in [6] that the action of  

the modular group 2 3, :   1G x y x y′ ′ ′= = = , where ( ) 1x z
z
−′ =  and ( ) 1

1
y z

z
−′ =
+

, on the rational projective 

line { }∞  is transitive. An action of 2 4, : 1H x y x y= = = , where ( ) 1
2

x z
z
−

=  and ( ) ( )
1

2 1
y z

z
−

=
+

 and  

its proper subgroups on { }∞  has been discussed in [7] [8]. 
( )* n  invariant under the action of modular group G but ( )* n  is not invariant under the action of H. 

Thus it motivates us to establish a connection between the elements of the groups G and H and hence to deduce  
a common subgroup * ,H xy yx=  of both groups such that each of ( ) ( ){ }** *= : 2n n cα ∈   and 

( ) ( )* **n n   is invariant under H* and hence we find G-subsets of ( )* n  and H-subsets of ( )** n  

or ( ) ( )* ** **

4 4
n nn n∗

    
=             



     according as ( )0  4n mod≡/  or ( )0  4n mod≡  and ( )4n∗   

for all non-square n. Also the partition of ( )* n  has been discussed depending upon classes [ ], ,a b c  mod- 
ulo 1 2p p . 

2. Preliminaries 
We quote from [5] [6] and [8] the following results for later reference. Also we tabulate the actions on 
( ) ( )*, ,a b c nα ∈  of ,x y′ ′  and ,x y , the generators of G and H respectively in Table 1. 

Theorem 2.1 (see [5]) Let ( )2  8n mod≡ , 2n ≠ . Then ( ) ( ){ }1 * : or 1  8B n b c modα= ∈ ≡ ±  and  

( ) ( ){ }3 * : or 3  8B n b c modα= ∈ ≡ ±  are both G-subsets of ( )* n . 

Theorem 2.2 (see [5]) Let ( )6  8n mod≡ . Then ( ) ( ){ }* : or 1 or 3  8B n b c modα= ∈ ≡  and  

( ) ( ){ }* : or 1 or 3  8B n b c modα− = ∈ ≡ − −  are both G-subsets of ( )* n . 

Theorem 2.3 (see [6]) If ( )0 or 3  4n mod≡ , then ( ) ( ){ }* :  or 1  4S n b c modα= ∈ ≡  and  

( ) ( ){ }* :  or 1  4S n b c modα− = ∈ ≡ −  are exactly two disjoint G-subsets of ( )* n  depending upon 

classes [ ], ,a b c  modulo 4. 
Theorem 2.4 (see [6]) If ( )1  4n mod≡ , then ( ) ( ) ( ){ }* : 2 ,n n b cα′ = ∈   and  
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Table 1. The action of elements of G and H on ( )* nα ∈ . 

( ) 1x α
α
−′ =  a−  c  b  

( ) 1y αα
α
−′ =  a b− +  2a b c− + +  c  

( ) ( )2 1
1

y α
α

′ =
−

 a c− +  c  2a b c− + +  

( )
1

x y αα
α

′ ′ =
−

 a b−  b  2a b c− + +  

( ) 1y x α α′ ′ = +  a c+  2a b c+ +  c  

( ) ( )2

1
y x αα

α
′ ′ =

+
 a b+  b  2a b c+ +  

( ) 1
2

x α
α
−

=  a−  
2
c  2b  

( ) ( )
1

2 1
y α

α
−

=
+

 a c− −  
2
c  ( )2 2a b c+ +  

( ) ( )
( )

2 1
2

y
α

α
α

− +
=  3 2a b c− − −  2a b c+ +  4 4a b c+ +  

( ) ( )3 2 1
2

y
α

α
α
+

=  2a b− −  4 4
2

a b c+ +  ( )2 2a b c+ +  

( ) 1xy α α= +  a c+  2a b c+ +  c  

( )
1 2

yx αα
α

=
−

 2a b−  b  4 4a b c− + +  

( ) ( )
2 1 2

2 1
y x αα

α
−

=
− +

 3 2a b c− −  4 4
2

a b c− + +  ( )2 2a b c− + +  

( )3 1y x α α= −  a c−  2a b c+ +  c  

 

( ) ( ) ( ) ( ){ }* * : 2 ,n n n b cα′ = ∈     are both G-subsets of ( )* n . 

Lemma 2.5 (see [8]) Let ( ) ( )*, ,a b c nα ∈ . Then: 

1) If ( )0  4n mod≡/  then ( )**

2
nα

∈  if and only if 2 b . 

2) ( )** 4
2

nα
∈  if and only if 2 b . 

Theorem 2.6 (see [8]) The set ( ) ( )*: , 1, 2n n t
t
α α ′′ = ∈ = 
 

  , is invariant under the action of H. 

Theorem 2.7 (see [8]) For each non square positive integer ( )1,2 or 3  4n mod≡ ,  

( ) ( ){ }** * : 2n n cα= ∈   is an H-subset of ( )n′′ . 

3. Action of ( ) ( )3 4H Hλ λ  on ( ) n∗  
We start this section by defining a common subgroup of both groups 2 3, :   1G x y x y′ ′ ′ ′= = =  and  
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2 4, : 1H x y x y= = = , where ( ) 1x α
α
−′ = , ( ) 1y αα

α
−′ = , ( ) 1

2
x α

α
−

=  and ( ) ( )
1

2 1
y α

α
−

=
+

. For this, we  

need the following crucial results which show the relationships between the elements of G and H. 
Lemma 3.1 Let ,x y′ ′  and ,x y  be the generators of G and H respectively defined above. Then we have: 

1) ( ) ( )22y x y y x′ ′ ′ ′=  and ( )( )223 1
2

y x y x′ ′ ′= . 

2) xy y x′ ′=  and ( )2yx x y′ ′= . 

3) ( )23y x x y′ ′=  and ( )( )223xy y x′ ′= . 

4) ( )( )( )22 1
2

y x x y x y′ ′ ′ ′=  and ( ) ( )( )22 1
2

xy y x y x′ ′ ′ ′= . 

5) 2x x′ =  and ( )( )( )2 2 2y x y x′ = . 

6) ( ) 12
2

x y yx′ ′ =  and ( )2 3x y y x′ ′ = . In particular ( ) ( )1 3 12
2

x y xy−′ ′ =  and ( )( )2x y xy′ ′ = . 

Following corollary is an immediate consequence of Lemma 3.1. 
Corollary 3.2 1) By Lemma 3.1, since xy y x′ ′=  and ( )2yx x y′ ′=  so * ,H xy yx=  is a common sub- 

group of G and H where ,xy yx  are the transformations defined by ( ) 1xy α α= +  and ( )
1 2

yx αα
α

=
−

. 

2) As 2yxxy y= , 2xyyx xy x= , so 2 2,y xy x  is a proper subgroup of *H . 
3) * *, ,H x H y H= =  and * *, ,H x H y G′ ′= = . 

Since for each integer n, either ( ) 0n p =  or ( ) 1n p = ±  for each odd prime p. So in the following lemma, 
we classify the elements of ( )* n  in terms of classes [ ]( ), ,  a b c mod p  with 0 modulo p or qr, qnr nature 

of a, b and c modulo p. 
Lemma 3.3 Let p  be prime and ( )0  n mod p≡ . Then 0

p  consists of classes [ ]0,0,qr , [ ]0,0,qnr , 
[ ]0, ,0qr , [ ]0, ,0qnr , [ ], ,qr qr qr , [ ], ,qnr qr qr , [ ], ,qr qnr qnr  or [ ], ,qnr qnr qnr . 

Proof. Let [ ]( ), ,  a b c mod p  be any class of ( ), ,a b cα . Then ( )2  a bc mod p≡  leads us to exactly three 
cases. If ( )0  a mod p≡  then exactly one of ,b c  is ( )0  mod p≡  and the other is qr or qnr of p  as other- 
wise ( ), , 1a b c ≠  and hence the class [ ], ,a b c  is one of the forms [ ]0,0,qr , [ ]0,0,qnr , [ ]0, ,0qr , [ ]0, ,0qnr . 
If ( ) 1a p =  then ( ) 1bc p =  and the class takes the form [ ], ,qr qr qr  or [ ], ,qr qnr qnr . In third case if 
( ) 1a p = −  then ( )2 1a p =  so again ( ) 1bc p = . This yields the class in the forms [ ], ,qnr qr qr  or 
[ ], ,qnr qnr qnr . Hence the result.   

Lemma 3.4 Let ( ) 1n p =  and let [ ]( ), ,  a b c mod p  be the class of ( ), ,n a b cα  of ( )* n . Then: 
1) If ( )1  4p mod≡  then [ ]( ), ,  a b c mod p  has the forms [ ]0, ,qr qr , [ ]0, ,qnr qnr , [ ],0,qr qr , 

[ ],0,qr qnr , [ ], ,0qr qr , [ ], ,0qr qnr , [ ],0,qnr qr , [ ],0,qnr qnr , [ ], ,0qnr qr , [ ], ,0qnr qnr , [ ],0,0qnr  or 
[ ],0,0qr  only. 

2) If ( )3  4p mod≡  then [ ]( ), ,  a b c mod p  has the forms [ ]0, ,qnr qr , [ ]0, ,qr qnr , [ ],0,qr qr , [ ], ,0qr qr , 
[ ],0,qr qnr , [ ], ,0qr qnr , [ ],0,qnr qr , [ ], ,0qnr qr , [ ],0,qnr qnr , [ ], ,0qnr qnr , [ ],0,0qnr  or [ ],0,0qr  only. 

Proof. Let [ ]( ), ,  a b c mod p  be the class of ( ), ,n a b cα  with 2a n bc− = . As ( ) 1n p =  so if ( ) 0a p =   
then ( )( )2 1a n p− = ±  according as ( )1  4p mod≡  or ( )3  4p mod≡ . Thus we have [ ]0, ,qr qr , [ ]0, ,qnr qnr  

if ( )1  4p mod≡  and [ ]0, ,qnr qr , [ ]0, ,qr qnr  if ( )3  4p mod≡ . If ( ) 1a p = ±  then ( )( )2 0a n p− = , so we  

get [ ],0,qr qr , [ ],0,qr qnr , [ ], ,0qr qr , [ ], ,0qr qnr , [ ],0,qnr qr , [ ],0,qnr qnr , [ ], ,0qnr qr , [ ], ,0qnr qnr , 
[ ],0,0qnr  or [ ],0,0qr  only. This proof is now complete.   

Lemma 3.5 Let ( ) 1n p = −  and let [ ]( ), ,  a b c mod p  be the class of ( ), ,a b cα  of ( )* n . Then: 
1) If ( )1  4p mod≡  then [ ]( ), ,  a b c mod p  has the forms [ ]0, ,qnr qr , [ ]0, ,qr qnr , [ ], ,qr qr qr , [ ], ,qr qnr qnr , 

[ ], ,qnr qr qr  or [ ], ,qnr qnr qnr  only. 
2) If ( )3  4p mod≡  then [ ]( ), ,  a b c mod p  has the forms [ ]0, ,qr qr , [ ]0, ,qnr qnr , [ ], ,qr qr qnr , 

[ ], ,qr qnr qr , [ ], ,qnr qr qnr  or [ ], ,qnr qnr qr  only. 
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Proof. The proof is analogous to the proof of Lemma 3.4.   
Note: If ( )2 0n =  then [ ]1,1,1 , [ ]0,0,1  and [ ]0,1,0  are three classes of ( )* n  in modulo 2. If n is  

an odd then three classes of ( )*Q n  are [ ]1,0,1 , [ ]1,1,0  and [ ]0,1,1  modulo 2. These are the only classes  

of ( )* n  if ( )3  4n mod≡ . But if ( )1  4n mod≡  then [ ]1,0,0  is also a class of ( )*Q n  and there are 
no further classes. These classes in modulo 2 of ( )* n  do not give any useful information during the study 
of action of G  on ( )* n  except that if ( )1  4n mod≡  then the set consisting of all elements of ( )* n  
of the form [ ]1,0,0  is invariant under the action of the group G. Whereas the study of action of H* on 

( )*Q n  gives some useful information about these classes. The following crucial result determines the H*- 
subsets of ( )* n  depending upon classes [ ], ,a b c  modulo 2. It is interesting to observe that ( )* n   
splits into ( )** n  and ( ) ( )* **n n   in modulo 2. Each of these two H*-subsets further splits into 

proper H*-subsets in modulo 4. 
Lemma 3.6 ( )** n  and ( ) ( )* **n n   are two distinct H*-subsets of ( )* n  depending upon 

classes [ ], ,a b c  modulo 2. 
Theorem 3.7 and Remarks 3.8 are extension of Lemma 3.6 and discuss the action of H* on ( )* n  de- 

pending upon classes [ ], ,a b c  modulo 4. Proofs of these follow directly by the equations  
a n a c nxy

c c
 + + +

=  
 

, 2
4 4

a n a b nyx
c a b c

 + − +
=   − + + 

 and classes [ ], ,a b c  modulo 4 given in [6]. 

Theorem 3.7 Let n be any non-square positive integer. Then ( ) ( )* **n n   splits into two proper H*- 

subsets ( ) ( ) ( ){ }* **
1 : 1  4A n n c modα= ∈ ≡  , ( ) ( ) ( ){ }* **

2 : 3  4A n n c modα= ∈ ≡  . 

Similarly ( )** n  splits into two proper H*-subsets ( ) ( ){ }**
1 : 0  4B n c modα= ∈ ≡  and  

( ) ( ){ }**
2 : 2  4B n c modα= ∈ ≡ . 

Remark 3.8 1) Let ( )1  4n mod≡ . Then ( ) ( ) ( ){ }** : 2 ,n n b cα′ = ∈   and ( ) ( )** n n′   are 

H*-subsets of ( )** n . In particular if ( )5  8n mod≡ , then ( ) ( )**
1B n n′=    and ( )2B n′=   are 

H*-subsets of ( )** n . Whereas if ( )1  8n mod≡ , then ( ) ( ){ }1 1 : 1  4C n B a modα ′= ∈ ≡ ,  

( ) ( ){ }2 1 : 3  4C n B a modα ′= ∈ ≡ , ( ) ( ){ }3 : 2  4C Q n c modα ′= ∈ ≡  and ( ) ( )**
4C n n′=    are 

H*-subsets of ( )** n . Specifically, 1 1 2 4B C C C=   , 2 3B C= . 

2) As we know that if n  and c  are even, then a  must be even as ( ), , 1a b c = . If ( )2  4n mod≡ , then 
( )**

2B n=   and 1B φ= . 
3) If ( )0 or 3  4n mod≡ , then 2B  or 1B  is empty according as 0n ≡  or ( )3  4mod . As we know that if n  

and c are even, then a must be even as ( ), , 1a b c = . However ( ) ( ){ }**
1 : 1  4D n b modα= ∈ ≡ ,  

( ) ( ){ }**
2 : 3  4D n b modα= ∈ ≡  are proper H*-subsets of ( )** n  depending upon classes [ ], ,a b c  

modulo 4. 
Lemma 3.9 Let n be any non-square positive integer. Then ( )** 4n  and ( ) ( )* **n n   are distinct 

H*-subsets of an H-set ( ) ( ) ( ) ( )( )** * **4 4n n n n∗ =

    . 

Proof. Follows by the equations ( ) ( )( ) ( )* ** ** 4x n n n=    and vice versa. Hence  

( ) ( )* **n n   is equivalent to ( )** 4n . 

Clearly ( ) ( ) ( )* ** **
1 1 1 4n n n=    where ( )*

1 n  denotes the set of all ambigious numbers in 
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( )* n  (see [8]). 
Remark 3.10 1) Each G-subset X of ( )* n  splits into two H*-subsets ( )**X n  and ( )**X n  

and ( )( ) ( )( )** **x X n x X n X′ ′= =  . 

2) Each H-subset Y of ( )4n∗  splits into two H*-subsets ( )**Y n  and ( )** 4Y n . 

3) Each H-subset Y of ( )n∗ , ( )0  4n mod≡/  splits into two H*-subsets ( )**Y n  and 

( )** 4Y n . 

4) Each H-subset Y of ( )** n , ( )0  4n mod≡/  splits into two H*-subsets ( )**Y n  and ( )** 4Y n . 

Theorem 3.11 a) If A is an H*-subset of ( )** n  or ( ) ( )* **n n  , then ( )A x A′
  is a G-subset 

of ( )* n . 
b) If A is an H*-subset of ( )** n , then ( )A x A  is an H-subset of ( )** n  or ( )n∗  according 

as ( )0  4n mod≡/  or ( )0  4n mod≡ . 
c) If A is an H*-subset of ( ) ( )* **n n  , then ( )A x A  is an H-subset of ( )4n∗  for all non- 

square n. 
Proof. Proof of a) follows by the equation ( )( ) ( ) ( )** * **x n n n′ =   . 

Proof of b) follows by the equations ( )( ) ( )** **x n n=   or ( )( )** * **

4 4
n nx n

   
=       

   
    ac- 

cording as ( )0  4n mod≡/  or ( )0  4n mod≡ . 

Proof of c) follows by the equation ( ) ( )( ) ( )* ** ** 4x n n n=   .   

Following examples illustrate the above results. 

Example 3.12 1) Let 8n = . Then ( )*1 8 8
1

α +
= ∈  but ( )**1 8 2 32 32

2 2 4
α + +
= = ∈ . Also 

( )*2 8 8
1

β +
= ∈  but ( ) ( )* **1 2 2 2

2 1
β +
= ∈  . Similarly ( )**2 8 8

4
γ +
= ∈  whereas 

( )*4 32 32
2 16
γ +
= ∈ . Also ( ) ( ) ( )8 2 2

H H
∗ = −

 , ( ) ( ) ( )32 8 8
H H

∗ = −

 . So ( )8Q′′  

has exactly 4 orbits under the action of H whereas ( )* 8  splits into two G-orbits namely ( )8
G

, ( )8
G

− . 

2) ( )37′′  splits into nine H-orbits. Also  

( ) ( ) ( ) 1 37 1 37 1 37 1 37148 37 37
3 3 3 3

H H H H
H H

∗        + + − + − +
= −               − − −       



      and  

( )** 1 37 1 37 1 3737
2 4 4

H H H
     + + − +

=           −     
  . Whereas ( )* 37  splits into four G -orbits namely 

( )37
G

, 1 37
2

G
 +
  
 

 1 37
3

G
 +
  
 

 and 1 37
3

G
 − +
  − 

. (see Figure 1) ◆   

Theorem 3.13 Let p be an odd prime factor of n. Then ( ) ( ) ( ){ }*
1 :  or 1pS n b p c pα= ∈ =  and  

( ) ( ) ( ){ }*
2 :  or 1pS n b p c pα= ∈ = −  are two H*-subsets of ( )* n . In particular, these are the only H*- 

subsets of ( )* n  depending upon classes [ ], ,a b c  modulo p. 
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Figure 1. Orbit of 1 37
2

β +
=  and ( ) ( )( ) ( )( ) ( )53 22 3 2xy xy xy xy xy β β= . 

 
Proof. Let [ ]( ), ,  a b c mod p  be the class of ( ) ( )*, ,a b c nα ∈ . In view of Lemma 3.3, either both of ,b c   

are qrs or qnrs and the two equations ( )( ) ( ), , , 2 , xy a b c a c a b c cα α′= + + + , 
( )( ) ( ), , 2 , , 4 4yx a b c a b b a b cα α′= − − + +  fix b, c modulo p. If ( )0  a b mod p≡ ≡  then ( )( )2 1a b c p+ + =   

or ( )( )2 1a b c p+ + = −  according as ( ) 1c p =  or ( ) 1c p = − . similarly for ( )0  a c mod p≡ ≡ . This 

shows that the sets 1
pS  and 2

pS  are H*-subsets of ( )* n  depending upon classes modulo p.   

The following corollary is an immediate consequence of Lemma 3.6 and Theorem 3.13. 
Corollary 3.14 Let p be an odd prime and ( )0  2n mod p≡ . Then ( )* n  splits into four proper H*- 

subsets depending upon classes modulo 2p. 
Proof. Since 2a n bc− =  implies that ( )2  2a bc mod p≡ . This is equivalent to congruences ( )2  a bc mod p≡  

and ( )2  2a bc mod≡ . By Theorem 3.13 1
pS , 2

pS  are H*-subsets and then, by Lemma 3.6, each of 1
pS  and  

2
pS  further splits into two H*-subsets ( )**

1
pS n , ( )**

2
pS n , ( )**

1
pS n  and ( )**

2
pS n .   

The next theorem is more interesting in a sense that whenever ( ) 1n p = ± , ( )* n  is itself an H*-set 
depending upon classes [ ], ,a b c  modulo p. 

Theorem 3.15 Let p be an odd prime and ( ) 1n p = ± . Then ( )* n  is itself an H*-set depending upon 
classes [ ], ,a b c  modulo p. 

Proof. follows from Lemmas 3.4, 3.5 and the equations ( ) 1xy α α= +  and ( )
1 2

yx αα
α

=
−

 given in Table 

1. 
Let us illustrate the above theorem in view of Theorem 3.4. If ( )3 1n = , then the set  
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }0,1,2 , 0,2,1 , 1,0,1 , 1,1,0 , 2,0,2 , 2,0,1 , 2,1,0 , 2,2,0 , 1,2,0 , 1,0,2 , 1,0,0 , 2,0,0  is an H*-set. 

That is, ( )* n  is itself an H*-set depending upon classes [ ], ,a b c  modulo 3. Similarly for ( )3 1n = − . 

Theorem 3.16 Let p be an odd prime and n is a quadratic residue (quadratic non-residue) of 2p. Then 
( )* n  is the disjoint union of three H*-subsets ( ) ( )* **n n  , ( ) ( )** n n′   and ( )n′  de- 

pending upon classes [ ], ,a b c  modulo 2p. 
Proof. Follows by Theorems 2.6, 2.7 and 3.15.   
The following example justifies the above result. 
Example 3.17 Since ( )17 5  6mod≡ , then ( )* 15  splits into these three H*-subsets 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }0,1,1 , 1,2,1 , 2,5,1 , 3,4,1 , 4,5,1 , 5,2,1 , 0,5,5 , 5,4,5 , 4,1,5 , 3,2,5 , 2,1,5 , 1,4,5 ,  

[ ] [ ] [ ] [ ] [ ] [ ]{ }1,1,2 , 3,5,2 , 5,1,2 , 3,1,4 , 1,5,4 , 5,5,4 , [ ] [ ] [ ] [ ] [ ] [ ]{ }1,2,4 , 5,2,4 , 3,4,4 , 1,4,2 , 3,2,2 , 5,4,2 . ◆  
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The next theorem is a generalization of Theorem 3.13 to the case when n involves two distinct prime factors. 
Theorem 3.20 Let 1p  and 2p  be distinct odd primes factors of n. Then 1 2

1,1 1 1
p pS S S=  , 1 2

1,2 1 2
p pS S S=  , 

1 2
2,1 2 1

p pS S S=   and 1 2
2,2 2 2

p pS S S=   are four H*-subsets of ( )* n . More precisely these are the only H*- 
subsets of ( )* n  depending upon classes [ ], ,a b c  modulo 1 2p p . 

Proof. Let [ ]( )1 2, ,  a b c mod p p  be any class of ( ) ( )*, ,a b c nα ∈  with ( )1 20  n mod p p≡ . Then  
2a n bc− =  implies that 

( )2
1 2 a bc mod p p≡                                  (1) 

This is equivalent to congruences ( )2
1 a bc mod p≡  and ( )2

2 a bc mod p≡ . By Theorem 3.14, the congru-  
ence ( )2

1 a bc mod p≡  gives two H*-subsets ( ) ( ) ( ){ }1 *
1 1 1:  or 1pS n c p c pα= ∈ =  and  

( ) ( ) ( ){ }1 *
2 1 1:  or 1pS n c p c pα= ∈ = −  of ( )* n . As ( )2

2 a bc mod p≡ , again applying Theorem 3.13  

on each of 1
1
pS  and 1

2
pS  we have four H*-subsets 1,1S , 1,2S , 2,1S  and 2,2S  of ( )* n . 

References 
[1] Sahin, R. and Bizim, O. (2003) Some Subgroups of the Extended Hecke Groups ( )qH λ . Mathematica Acta Scientia, 

23B, 497-502. 
[2] Mushtaq, Q. (1988) Modular Group Acting on Real Quadratic Fields. Bulletin of the Australian Mathematical Society, 

3, 303-309. 

[3] Husnine, S.M., Aslam Malik, M. and Majeed, A. (2005) On Ambiguous Numbers of an Invariant Subset ( )* 2k m  

of ( )m  under the Action of the Modular Group PSL(2,Z). Studia Scientiarum Mathematicarum Hungarica, 42, 

401-412. http://dx.doi.org/10.1556/SScMath.42.2005.4.5 
[4] Aslam Malik, M. and Asim Zafar, M. (2011) Real Quadratic Irrational Numbers and Modular Group Action. Southeast 

Asian Bulletin of Mathematics, 35, 439-445. 

[5] Malik, M.A. and Asim Zafar, M. (2013) G-Subsets of an Invariant Subset ( )* 2k m  of ( )m Q   under the 

Modular Group Action. Utilitas Mathematica, 91, 377-387. 

[6] Aslam Malik, M., Husnine, S.M. and Majeed, A. (2005) Intrasitive Action of the Modular Group ( )2PSL   on a Sub- 

set ( )* 2k m  of ( )m . PUJM, 37, 31-38. 

[7] Mushtaq, Q. and Aslam, M. (1997) Transitive Action of a Two Generator Group on Rational Projective Line. South- 
east Asian Bulletin of Mathematics, 1, 203-207. 

[8] Aslam Malik, M., Husnine, S.M. and Asim Zafar, M. (2012) Certain H-Subsets of ( )m   under the Action of 

2 4, : 1H x y x y= = = . Pakistan Journal of Science, 64, 67-74. 

http://dx.doi.org/10.1556/SScMath.42.2005.4.5

	On Subsets of  under the Action of Hecke Groups 
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	3. Action of  on 
	References

