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Abstract 
 
It is an open problem if an elementary p-group of rank k ≥ 3 does admit full-rank normalized factorization 
into two of its subsets such that one of the factors has p elements. The paper provides an answer in the p ≤ 7 
special case. 
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1. Introduction 
 
Let G be a finite abelian group. We use multiplicative 
notation in connection with abelian groups and e will 
denote the identity element of G. For two subset A and B 
of G the product AB is defined to be consisting of all the 
elements ab, where , a A b B . If 

1 1 2 2 1 2 1 2= ,   , ,  ,a b a b a a A b b B   

imply 1 2 , 1 2 , then we say that the product AB 
is direct. If the product AB is direct and is equal to G, 
then the equation  is called a factorization of G. 

=a a =b b

=G AB
We say that a subset A of G is normalized if e A . 

The factorization  is called a normalized fac-
torization if the factors A and B are normalized. A nor-
malized subset A of G is termed a full-rank subset of G if 

=G AB

=A G . Here A  denotes the span of A in G. In other 
words A  is e smallest subgroup of G containing A. 
A normalized factorization =G AB  is called a full-rank 
factorization if the factors A and B are full-rank subsets 
of G. 

 th

Let p be a prime and let k be a positive integer. A 
group that is a direct product of k cyclic groups of order 
p is called an elementary p-group of rank k. In 1970 in 
the open problems section in his book [4] L. Rédei ad-
vanced the following conjecture. 

Conjecture 1 Let p be a prime. An elementary 
p-group of rank 3 does not admit any full-rank factoriza-
tion. 

Let  be a normalized factorization, where G 
is an elementary p-group of rank 3. One of the factors A 
and B must have p elements while the other factor must 
have  elements. A normalized subset of order p in 

the  case cannot contain three generator elements 
of the group. Thus Rédei’s conjecture holds for  
and for the remaining part we may restrict our attention 
to the  case. 

=G AB

2p

= 3p

p 

= 3p

5

p

In 1998 S. Szabó and C. Ward [7] carried out a com-
puter assisted exhaustive search to verify Rédei’s con-
jecture for 11 . In a private conversation K. Corrádi 
proposed the following generalization to Rédei’s conjec-
ture. 

Conjecture 2 Let p be a prime and let G be an ele-
mentary p-group of rank . If  is a nor-
malized factorization of G such that 

3k  =G AB
=A p  and 1= kB p  , 

then at least one of the factors does not span G. 
The normalized factor A can contain only 1p   gen-

erator elements of G and so the generalized conjecture 
certainly holds for >k p 1  and so it is enough to deal 
with the 3 1k p    case. 

In this note we verify Corrádi's conjecture for 7p  . 
 
2. The k = 3 Case 
 
At certain points in this paper we rely on some elemen-
tary concepts of graph theory. We presents these here. 
Let Γ be a simple graph, that is, Γ does not have double 
edges or loops. The set of vertices of Γ is denoted by V. 
Suppose U is a subset of V. If each two distinct elements 
of U are always connected in Γ by an edge of Γ, then the 
subgraph Δ of Γ spanned by U is called a clique of Γ. 
The set of vertices of Δ is U. If U has k elements, then 
we say that Δ is a clique of size k of Γ. Sometimes we 
express this fact simply by saying the Δ is a k-clique of Γ. 
The following problem is called the listing version of the 
k-clique problem. 
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Problem 1 Given a finite simple graph Γ and a posi-
tive integer k. List all k-cliques of Γ. 

By the complexity theory of computation, Problem 1 
belongs to the NP complete complexity class. Loosely 
speaking Problem 1 is computationally hard. We will 
solve two instances of the k-clique problem. In these 
cases the sizes of Γ are not overly large and the existing 
algorithms presented in [1,3] can handle them. 

Let p be a prime and let G be an elementary p-group 
of rank 3 with basis elements x1, x2, x3, where 

1 2 3= = =x x x p . Let  be a normalized fac-
torization of G such that 

=G AB
=A p , 2=B p . 

Proposition 1 For , 7p =A G  implies that B is 
a subgroup of G. 

Proof. As =A G , we may choose the basis ele-
ments x1, x2, x3 such that 1 2 3, ,x x x A

 2 3 4, ,
. We will work 

with the subset 1 1= ,A a a a a  of A, where 

1 2 1 3 2 4= , = , = , = .a e a x a x a x3

4

 

For each i, j,  we set 1 <i j  1
, =i j i jH a a . 

Choose an 1 . Multiplying the factorization 
 by 

ja 
1

A
=G AB ja

j jAa
=G A

 gives the normalized factorization 
. By Lemma 5 of [2], in the fac-

torization  the factor 
1 B

 1
ja B

1= =G Ga
1

jAa  can be re-
placed by ,i jH  to get the normalized factorization 

, . Since the product = i jG H B ,i jH B  is direct, by 
Lemma 2.1 of [6], 

 1 1
, , = .i j i jH H BB e   

Plainly, 1
, , ,=i j i j i jH H H  and so 

 1
, =i jH BB e  

holds for each i, j, . Set 1 <i j  4

,
1 < 4

= .i j
i j

T H
 
  

Clearly, . We define a graph Γ. The 
nodes of Γ are the elements of G. Two nodes 

 1 =T BB e
,g h G  

are connected if 1gh T . We may call T a test set 
since we use it for testing if a pair  , g h  is an edge of 
Γ. 

The graph Γ has 3=G p  nodes. We focus our atten-
tion on cliques of size p2 in Γ. The reason is the follow-
ing. If the products ,i jH B

1T BB
 are direct for each i, j, 

, then  and so the elements 
of B form the nodes of a clique of size p2 in Γ. Con-
versely, if the elements of B are the nodes of a clique of 
size p2 in Γ, then 

1 < 4i j   = e

 = e1T BB  and hence the prod-
ucts ,i jH B  are direct for each i, j, . 1 < 4i j 

We call a clique normalized if e is one of its nodes. A 
computer assisted inspection reveals that each normal-
ized cliques of size p2 in Γ is a subgroup of G. 

One can draw the following conclusion. If  
is a normalized factorization of G, where 

=G AB

3, ,1 2x x x A , 

then B must be a subgroup of G. 
This completes the proof.  
For p = 5 the graph Γ has 53 = 125 nodes. The search 

found 30 cliques of size 52 = 25. Each of them was a 
coset modulo some subgroup of order 25 of G. (The 
subgroup that plays the role of the modulus of course 
may vary from case to case.) In particular the normalized 
cliques of size 25 in Γ correspond to subgroups of G. 

For p = 7 the graph Γ has 73 = 343 nodes. The inspec-
tion gave 140 cliques of size 72 = 49. Each of them 
turned out to be a coset modulo some subgroup of order 
49. 

For p = 11 the graph Γ does contain normalized 
cliques of size 112 that are not subgroups of G. So our 
approach to verify Rédei’s conjecture (or Corrádi’s con-
jecture) breaks down for  . 11p 

The above mentioned computer searches are not par-
ticularly demanding in terms of the time of computation. 
However, one cannot be cautious enough in connection 
with computer aided proofs. Therefore, in order to be on 
the safe side we used the algorithms described in [1,3] 
respectively as these algorithms have well tested imple-
mentations. 

One can view the elements of G as points of the 
3-dimensional affine space   3

GF p
p


7

. Using geomet-
rical terminology one can say that for  a clique of 
size p2 in Γ is a 2-dimensional linear complex in 

  3
GF p   . A 2-dimensional linear complex is a translated 

copy of some 2-dimensional subspace of   3
GF p   . 

 
3. The k = 4 Case 
 
Let p be a prime and let G be an elementary p-group of 
rank 4 with basis elements 1 4, ,x x , where 

1 4= = =x x p . Let  be a normalized fac-
torization of G such that 

=G AB
=A p , 3=B p . 

Proposition 2 For 7p  , =A G  implies that B is 
a subgroup of G. 

Proof. We may assume that 1 4, ,x x  A  since this 
is only a matter of choosing the basis elements 1 4, ,x x  
suitably. We set  51 1= , ,A a  a , where 

1 2 1 5= , = , , = .a e a x a x 4  

We know that 1A A . For each i, j, 1 < 5i j   
we set 1

,i j i jH = a a . By Lemma 5 of [2], in the fac-
torization  the factor A can be replaced by 

,i j

=G AB
H  to get the normalized factorization , . As 
the product 

= i jG H B

,i jH B  is direct, by Lemma 2.1 of [6], it 
follows that 

 1
, =i jH BB e                (1) 

for each i, j, 1 < 5i j  . 
We partition B into subsets 0 1 1, , , pB B B  . Each 
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3

1.

b B

 4 =

 can be represented uniquely in the form 

       1 4
1 4= ,   0 1 , , 4b x x p        (2) 

The set i  consists of each  for which 
. Note that 

B b B
i

   
  

11
0 1 0

1 1
0 1 0

1 1
0 0 1 1

=

       =

           .

p p

p p

p p

BB B B B B

B B B B

B B B B

1

1


 

 
 

 
 

   

   

  

 

 



 

In particular it follows that . We use 
now equations (1) only for i, j,  to conclude 
that 

1
k kB B BB 

1 < 4i j 

1

 1
, =i j k kH B B e               (3) 

holds for each i, j, k, , . 1 < 4i j  0 1k p  
Set 4 1 2 3= , ,L x x x . (The index 4 intends to indicate 

that x4 is missing from the basis 1, , 4x x  in the defini-
tion of .) Set 4L

4 ,
1 < 4

= .i j
i j

T H
 
  

Obviously . We define a graph 4 1
4 =k kT B B e  . 

The nodes of 4  are the elements of . Two nodes  4L

4,g h L  are connected if 1
4gh T


. 

The graph  has 4
3p4  nodes. In addition 

4 4  and . Note that 4  is isomorphic 
to the graph Γ used in the proof of Proposition 1. Con-
sequently the nodes of a clique of size p2 in  form a 
2-dimensional linear complex in 

=L
T  L 1

4Lk kB B 

 
44

GF p  
1 =k kB

. 
From (3) one can see that 4  and con-

sequently the elements of k  form the nodes of a clique 
of size p2 in . Using geometrical terminology one 
may say that  is a 2-dimensional linear complex in 

T B e
B

4
kB

  4
GF p   . 
We set out now to prove that the union of the p dis-

joint 2-dimensional linear complexes 0 1 1, , , pB B B   
forms a 3-dimensional linear complex. This will show 
that B is in fact a subgroup of G of order p3. 

We partition B into 0 1 1, , , pC C C  . Each b B  can 
be represented uniquely in the form (9). The set  
contains each  for which . Note that 

iC
b B  1 = i

  
  

1
0 1 0 1

1 1
0 1 0

1 1
0 0 1 1

=

=

.

p p

p p

p p

BB C C C C

C C C C

C C C C

1

1


 

 
 

 
 

   

   

  

 

 



 

Therefore in particular 1
k kC C BB 1 

2 <
 holds. We use 

now equations (1) only for i, j,  to con-
clude that 

5i j 

 1
, =i j k kH C C e            (4) 

holds for each i, j, k, , . 2 <i j 

Set 1 2 3 4= , ,L x x x . (The meaning of the index 1 is 
that x1 is missing from the basis 1, , 4x x  in the defini-
tion of the subgroup .) Set 1L

1 ,
2 < 5

= .i j
i j

T H
 
  

Plainly  1
1 1 1 =T C C e . We define a graph 1 . The 

nodes of 1  are the elements of . Two nodes 1L

4,g h L  are connected if 1
1gh T  . 

The graph 1  has 3=L p1  nodes. In addition 

1 1  and . Therefore, in fact 1T L 1
1Lk kC C   is iso-

morphic to the graph Γ we defined in the proof of Propo-
sition 1. From (4) it follows that  1

1T C C e =k k  and 
so  is a 2-dimensional linear complex in kC

 G
4

F p   . 
Let us observe that 0B C0  is a subgroup of G of 

order p. Using geometrical terminology 0B C0  is a 

1-dimensional linear complex in   4
GF p  . We may  

view 0  as a union of p disjoint 1-dimensional linear 
complexes. Similarly, we may view 0  as a union of p 
disjoint 1-dimensional complexes. In addition each of 
these linear complexes is a translated copy of 

B
C

0 0B C . 
Using the 1-dimensional linear complexes 

1 0 2 0 1 0, , , pB C B C B C    

analogously we can conclude that B is a union of p2 dis-
joint 1-dimensional complexes each of which is a trans-
lated copy of 0 0B C . The translation vectors form a 
2-dimensional linear complex. Therefore B is a 
3-dimensional linear complex in   4

GF p   . 
This completes the proof.  
For the k = 6 case we need a corollary of Proposition 2. 

Set 

,
1 < 5

= i j
i j

T H
 
  

and define a graph Γ. The nodes of Γ are the elements of 
G. Two nodes ,g h G  are connected if 1gh T  . 

Corollary 1 Each clique of size p3 in Γ corresponds to 
a 3-dimensional linear complex in   4

GF p   . 
 
4. The k ≥ 5 Case 
 
Let p be a prime and let G be an elementary p -group of 
rank 5 with basis elements 1 5, ,x x , where 

1 5= = =x x p . Let  be a normalized fac-
torization of G such that 

=G AB
=A p , 4=B p . 

Proposition 3 For 

5 0 1k p  

7p  , =A G  implies that B is 
a subgroup of G. 

Proof. The proof is similar to the proof of Proposition 
2 and we just outline the argument. It may be assumed 
that 1 5, ,x x A . We set 1 1 6= , , A a a , where 

1 2 1 6= , = , , = .a e a x a x 5  
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Clearly 1A A . For each i, j,  we set 1 <i j  6
1

,i j i j=H a a . From the factorization  we get 
the normalized factorization , . From the di-
rectness of the product 

=G AB

i jG H B=

,i jH B  it follows that 

 , =i j
1H BB e                  (5) 

for each i, j, . 1 < 6i j 
We partition B into subsets 0 1 1, , , pB B B  , Each 

 can be represented uniquely in terms of the basis b B
1, , 5x x  in the form 

       1 5
1 5= ,   0 1 , , 5b x x p     1      (6) 

The set i  consists of each  for which 
. It follows that k k

B b B
1BB 5 = i 1B B  . The equations 

(5) for i, j,  give that 1 < 5i j 

 1
, =i j k kH B B e               (7) 

for each i, j, k, , . 1 < 5i j  0 1k p  
Set 5 1 4= , , xL x  and 

5 ,
1 < 5

= .i j
i j

T H
 
  

We define a graph 5 . The nodes of 5  are the 
elements of 5 . Two nodes 5

 
L ,g h L  are connected if 

1
5gh T 

kB

. Note that 5  is isomorphic to the graph Γ in 
Corollary 1. From (7) one can see that the elements of 

 form the nodes of a clique of size p3 in  and so  



5

kB  is a 3-dimensional linear complex in   5
GF p   . 

Next we partition B into 0 1 1, , , pC C , where iC  
contains each  for which  in the repre-
sentation (6). A routine computation shows that 

k k  The equations (5) for i, j,  
imply that 

C 
 1 = ib B

11C C BB  2 <i j 6 

 1
, =i j k kH C C e             (8) 

for each i, j, k, , . 2 <i j  6 0 1k p  
Set 1 2 5= , , xL x  and 

1 ,
2 < 6

= .i j
i j

T H
 
  

We define a graph 1 . The nodes of 1  are the ele-
ments of 1 . Two nodes 1

 
L ,g h L  are connected if 

1
1gh T  . Let us observe that 1  is isomorphic to the 

graph Γ in Corollary 1. From (8) it follows that  is a 


kC
3-dimensional linear complex in   5

GF p   . 
Using the fact that 0 0  is a subgroup of G of or-

der p2 one can show that B is a 4-dimensional linear  
B C

complex in   5
GF p   . 

This completes the proof.  
For the k = 6 case we need a corollary of Proposition 3. 

Set 

,
1 < 6

= i j
i j

T H
 
  

and define a graph Γ. The nodes of Γ are the elements of 

G. Two nodes ,g h G  are connected if 1gh T  . 
Corollary 2 Each clique of size p4 in Γ corresponds to  

a 4-dimensional linear complex in   5
GF p   . 

Let p be a prime and let G be an elementary p-group 
of rank 6 with basis elements 1 6, ,x x , where 

1 6= = =x x p . Let  be a normalized fac-
torization of G such that 

=G AB
=A p , 5=B p . 

Proposition 4 For 7p  , =A G  implies that B is 
a subgroup of G. 

Proof. The proof is similar to the proof of Proposition 
3 and we do not detail it.  

We spell out the main result of this note formally as a 
theorem. 

Theorem 1 Let G be a finite elementary p-group, 
where p is a prime and let  be a normalized 
factorization such that 

=G AB
=A p p. If , then either 7

A G  or B G . 
 
5. An Application 
 
Let G be a finite abelian group and let A be a subset of G. 
We say that the subset A is periodic if there is an element 
g G  such that =gA G  and g e . A factorization 

 is called periodic if the factors A and B are 
both periodic. A. D. Sands has proved the following 
lemma. (See Lemma 3 o

=G AB

f [5].) 
Lemma 1 Let  be a factorization of a finite 

abelian group G such that 
=G AB

2A  , 2B  . If 
 min , 3A B  , then the factorization  is 

periodic. 
=G AB

Motivated by this result we prove the next theorem. 
Theorem 2 Let  be a normalized factoriza-

tion of a finite abelian group G such that 
=G AB

=A p  is a 
prime and 2B  . If 7p  , then either A G  or B 
is periodic. 

Proof. Let 7p   be a prime and consider a normal-
ized factorization  of a finite abelian group G 
such that 

=G AB
=A p , 2B   and =A G . We claim that 

B is periodic. 
If 2A   or 3A  , then by Sands’ lemma it fol-

lows that either A or B is periodic. Thus for the remain-
ing part of the proof we may assume that = 5A  or 

= 7A . 
Choose an element  a A e . By Lemma 5 of [2], in 

the factorization  the factor A can be replaced 
by 

=G AB
 2 , ,a a 

AB

1p

1

= , ,'A e a
=G

 to get the normalized fac-
torization . This factorization is equivalent to 
the fact that the sets 

2, , , , peB aB a B a B             (9) 

form a partition of G. Multiplying the factorization 
 by the element a we get the normalized fac-

torization 
= 'G A B

 = = 'G Ga A a B . This factorization is 
equivalent to the fact that the sets 

Copyright © 2011 SciRes.                                                                                OJDM 
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5

2 3, , , , paB a B a B a B            (10) 

form a partition of G. Comparing the partitions (9) and 
(10) provides that . Therefore, if = peB a B pa e , 
then B is periodic. Thus for the remaining part of the 
proof we may assume that  for each =pa e  a A e . 
As =G A , it follows that G is an elementary p-group. 
From the factorization , by Theorem 1, it fol-
lows that either 

=G AB
A G  or B G . Using =G A  

we get that B G . 
The reader can check that in the course of the proof of 

Theorem 1 we obtained the following side result. Let G 
be a finite elementary p-group where  is a prime. 
If  is a normalized factorization such that 

7p 
=G AB

=A p  and =A G , then B is a subgroup of G. 
Clearly, a subgroup B of G is a periodic subset unless 

= 1B . But in our case, by the hypotheses of the theo-
rem, 2B   holds. 

This completes the proof.  
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