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Abstract 
Heat conduction dynamics are described by partial differential equations. Their approximations 
with a set of finite number of ordinary differential equations are often required for simpler com-
putations and analyses. Rational approximations of the Laplace solutions such as the Pade ap-
proximation can be used for this purpose. For some heat conduction problems appearing in a 
semi-infinite slab, however, such rational approximations are not easy to obtain because the Lap-
lace solutions are not analytic at the origin. In this article, a continued fraction method has been 
proposed to obtain rational approximations of such heat conduction dynamics in a semi-infinite 
slab. 
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1. Introduction 
Partial differential equations describing dynamics of diffusional processes, when coupled with other differential 
equations, are difficult to simulate and analyze. To overcome such difficulties of partial differential equations, 
they are often approximated by a set of ordinary differential equations. The Pade approximation of Laplace so-
lutions of the partial differential equations can be used for this purpose [1]-[4]. It is well-known that the Pade 
approximations are obtained easily through the continued fraction expansions [4]-[6] and routines for the Pade 
approximation and the continued fraction expansion are provided in the Maple package [7]. For some diffusion-
al problems appear in a semi-infinite slab, however, such Pade approximations do not exist because the Laplace 
solutions are not analytic at the origin. 
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Consider the heat equation 
2

2 , 0 , 0T T x L t
t x

∂ ∂
= < < <

∂ ∂
                                  (1) 

subject to 

( ) ( ) ( ) ( ),0 0, 0, , , 0T x T t f t T L t= = =                         (2) 

Here x is the one-dimensional space variable, t is the normalized time variable and T(x,t) is the temperature 
that is varying by f(t) at x = 0 and fixed to 0 at x = L. Applying the Laplace transformation for the variable t, we 
have [8] 

( )
( )( )
( ) ( )

sinh
,

sinh

L x s
T x s F s

L s

−
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Here ( ) ( ) ( )
0

, exp , dT x s s T xτ τ τ
∞

≡ −∫  and ( ) ( ) ( )
0

exp dF s s fτ τ τ
∞

≡ −∫ . As L goes to infinity, Equation (3)  

becomes 

( ) ( ) ( ), exp ,T x s x s F s L= − →∞                            (4) 

Equation (4) is the Laplace domain solution of the heat equation in a semi-infinite slab. ( ) ( )expG s s= −  is 
the transfer function relating the forcing function F(s) and the temperature T(1,s). By scaling s, it can be used for 
x other than 1. 

When the transfer function G(s) is approximated by a rational transfer function as 
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



                     (5) 

the partial differential Equation (1) with the initial and boundary conditions of Equation (2) can be replaced by a 
set of ordinary differential equation [9] which is easy to solve for any arbitrary forcing function of f(t), 
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                 (6) 

For the approximation of Equation (5), the Pade approximation method is often used, but it cannot be applied  
to our transfer function of ( ) ( )expG s x s= −  unfortunately because the transfer function is not analytic at the  

origin. Here a method to overcome this difficulty is investigated. 

2. Continued Fraction Expressions of ( )exp s−  
Rational approximation of ( )exp s−  is considered. Among two values of the square root of a complex s, only 
the root in right half complex plane is physically meaningful and used here. Since the series expansion and the 
continued fraction expansion in s do not exist at the origin, we consider a continued fraction expansion in the 
hyperbolic cosine function. From 

( ) ( ) ( ) ( )
1 1exp

exp 2cosh exp
s

s s s
− = =

− −
                      (7) 

we can obtain a continued fraction expansion as 
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Equation (8) converges for s such that [5] 

( )2cosh 2s ≥                                         (9) 

The convergence condition of Equation (9) includes the right half complex plane of s which is important for 
the approximation of transfer function G(s) [10]. 

The right hand side of Equation (8), when truncated, is analytic and the series expansion in s exists. With 75  

( )cosh s  terms in Equation (8), we can obtain a continued fraction expansion in s as 

( ) 0

1

2
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+
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                    (10) 

Here hi’s are given in Table 1. Truncating Equation (10) and rearranging, approximate rational transfer func-
tions in the form of Equation (5) can be obtained and given in Table 2. For this, Maple routines such as ‘cfrac’ 
and ‘convert’ are used [7]. 

Equation (8) converges rather slowly near s = 0. To speed-up the convergence, the following continued frac-
tion may be used. 
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             (11) 

However, its conversion to the form of Equation (10) is difficult (our computer fails to the task for α = 2 due 
to the memory size problem). 

3. Simulations 
There are several methods to convert partial differential equations to ordinary differential equations [11]. Each 
method has its own merits and demerits, and direct comparisons are difficult. Here the simplest finite difference 
method (FDM) is used to illustrate the performance of the proposed method. The FDM method can be applied to 
the slab with a finite length (L) and the approximation of [8] [11] 

( )( ) ( ) ( )( )2

2 2

1 , 2 , 1 ,

x k x

T k x t T k x t T k x tT
x x

= ∆

+ ∆ − ∆ + − ∆∂
≈

∂ ∆
                  (12) 

Case 1: Responses for a step forcing, f(t) = 1, are compared. Since F(s) = 1/s, Equation (4) for x = 1 becomes  
( ) ( ) ( ) ( )1, exp expT s s F s s s= − = −  and its analytic inversion is [8] 

( ) ( )1, erfc 0.5T t t=                                       (13) 
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Table 1. Constants in Equation (10).                                                                         

h0 h1 h2 h3 h4 h5 h6 

0.9871795 25.833333 387.516667 177.223806 89.759543 64.329228 38.382429 

h7 h8 h9 h10 h11 h12 h13 

33.586195 20.810544 20.918549 12.772382 14.518649 8.406289 10.907154 

h14 h15 h16 h17 h18 h19  

5.708357 8.808881 3.794178 7.840209 2.055945 9.060914  

 
Table 2. Approximate rational transfer functions.                                                               

Order Approximate Rational Transfer Function 

1 7.69231E 2 0.9871795
3.87097E 2 1 25.83333s s

−
=

+ − +
 

2 5.29764E 5 1.21718E 1
1.71610E 3 1.27279E 1s s

− −
+

+ − + −
 

3 4.17239E 5 3.96591E 4 2.37921E 1
1.62304E 3 8.01919E 3 2.60873E 1s s s

− − −
+ +

+ − + − + −
 

4 4.15846E 5 1.79084E 4 1.72118E 3 3.69655E 1
1.62222E 3 6.56117E 3 2.19943E 2 4.31843E 1s s s s

− − − −
+ + +

+ − + − + − + −
 

5 4.15842E 5 1.66537E 4 5.04522E 4 5.30220E 3 4.98132E 1
1.62222E 3 6.49028E 3 1.53275E 2 4.75865E 2 6.29315E 1s s s s s

− − − − −
+ + + +

+ − + − + − + − + −
 

6 4.15842E 5 1.66205E 4 3.83649E 4 1.25068E 3 1.271830E 2 6.06194E 1
1.62222E 3 6.48890E 3 1.46426E 2 2.91596E 2 8.83094E 2 8.38651E 1s s s s s s

− − − − − −
+ + + + +

+ − + − + − + − + − + −
 

8 

4.15842E 5 1.66202E 4 3.73453E 4 6.68900E 4
1.62222E 3 6.48889E 3 1.46000E 2 2.59761E 2
1.37727E 3 5.34402E 3 4.11291E 2 7.19763E 1

4.21218E 2 7.82521E 2 2.17456E 1 1.21075

s s s s

s s s s

− − − −
+ + +

+ − + − + − + −
− − − −

+ + + +
+ − + − + − +

 

10 

4.15842E 5 1.66202E 4 3.73449E 4 6.62648E 4 1.03240E 3
1.62222E 3 6.48889E 3 1.46000E 2 2.59556E 2 4.05540E 2
1.51632E 3 3.10510E 3 1.06167E 2 5.97219E 2

5.84561E 2 8.36398E 2 1.40357E 1 3.24

s s s s s

s s s s

− − − − −
+ + + +

+ − + − + − + − + −
− − − −

+ + + +
+ − + − + − +

7.26206E 1
676E 1 1.35305s

−
+

− +

 

 
Ordinary differential equations of Equation (6) based on approximate rational transfer functions in Table 2 

are solved for f(t) = 1. Responses are compared in Figure 1. The proposed method with n = 5 and the FDM me-
thod with L = 6 and Δx = 1 have the same number of ordinary differential equations. The FDM method shows a 
large offset at a large time. To make the offset be less than the proposed method, L should be more than 78 and, 
correspondingly, the number of ordinary differential equations should be more than 77. 

Case 2: Responses for a forcing, ( ) ( )e erfctf t t= , are compared. Its Laplace transform is [8] 

( ) ( )( )1 1F s s s= +                                     (14) 

Equation (4) for x=1 becomes ( ) ( ) ( ) ( ) ( )( )1, exp exp 1T s s F s s s s= − = − +  and its analytic inver- 

sion is [8] 
( ) ( )11, e erfc 0.5tT t t t+= +                                 (15) 

Responses of our approximations in Table 2 and the FDM method with L = 6 and Δx = 1 are shown in Figure 2. 
Similar conclusions as the above case can be drawn. 

4. Conclusion 
The continued fraction expansion of ( )exp s−  that appears in solving the heat equation (the partial differen- 
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Figure 1. Responses for f(t) = 1.                                           

 

 

Figure 2. Responses for ( ) ( )e erfctf t t= .                                 

 
tial equation) in the semi-infinite slab by the Laplace transformation method is proposed. The truncated contin-
ued fraction can be used to convert the partial differential equation to a set of ordinary differential equations, 
making simulations and analyses simple. 
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