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Abstract 
 
In this paper, a series of bicomplex representation methods of quaternion division algebra is introduced. We 
present a new multiplication concept of quaternion matrices, a new determinant concept, a new inverse con-
cept of quaternion matrix and a new similar matrix concept. Under the new concept system, many quaternion 
algebra problems can be transformed into complex algebra problems to express and study. These concepts 
can perfect the theory of [J.L. Wu, A new representation theory and some methods on quaternion division 
algebra, JP Journal of Algebra, 2009, 14(2): 121-140] and unify the complex algebra and quaternion division 
algebra. 
 
Keywords: Quaternion Determinant, Product of Quaternion Matrix, Inverse of Quaternion Matrix, Similar 
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1. Introduction 
 
In recent years, the algebra problems over quaternion 
division algebra have drawn the attention of mathematics 
and physics researchers [1-12]. Quaternion algebra the-
ory is getting more and more important. In many fields 
of applied science, such as physics, figure and pattern 
recognition, spacecraft attitude control, 3-D animation, 
people start to make use of quaternion algebra theory to 
solve some actual problems. Therefore, it encourages 
people to do further research [13-17] on quaternion alge-
bra theory and its applications. 

The main obstacle in the study of quaternion algebra is 
the non-commutative multiplication of quaternion. Many 
important conclusions over real and complex fields are 
different from ones over quaternion division algebra, 
such as determinant, the trace of matrix multiplication 
and solutions of quaternion equation. From the conclu-
sions on quaternion division algebra, we find it to lack 
for general concepts, such as the definition of quaternion 
matrix determinant. There are different definitions which 
are given in [1,3,4,6,11,18] since Dieudonne firstly in-
troduced the quaternion determinant in 1943. In addition, 
the inverse of quaternion matrix has not been well de-

fined so far, because it depends on other algebra con-
cepts. In the study of quaternion division algebra, people 
always expect to get some relations between quaternion 
division algebra and real algebra or complex algebra. 
However, some conclusions on real or complex fields are 
correct but not on quaternion division algebra. It makes 
us to consider establishing other algebra concept system 
over quaternion division algebra to unify the complex 
algebra and quaternion division algebra. 

Recently, Wu in [19] used real representation methods 
to express quaternion matrices and established some new 
concepts over quaternion division algebra. From these 
definitions, we can see that they can convert quaternion 
division algebra problems into real algebra problems to 
reduce the complexity and abstraction which exist in all 
kinds of definitions given in [1,3,6,10,11,20]. However, 
as Wu in [19] mentioned, these concept system is not 
suitable for complex algebra.  

In this paper, based on the bicomplex form of quater-
nion matrix, we present some new concepts to quaternion 
division algebra. These new concepts can perfect the 
theory of Wu in [19] and unify the complex algebra and 
quaternion division algebra. 

This paper is organized as follows. In Section 2, we 
introduce a complex representation method of quaternion 
matrices and explore the relation between quaternion 
matrices and complex matrices. In Section 3, we present 
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a series of new concepts over quaternion division algebra 
and study their properties. In section 4, we establish 
some important theorems to illustrate the applications 
and effectiveness of the new concept system. 

Let C  denote the complex field, H  denote the 
quaternion set, m nC  denote the set of m n  complex 
matrices, m nH  denote the set of m n  quaternion 
matrices and TA  denote the transpose matrix of A . 
 
2. The Bicomplex Representation Methods  

of Quaternion Matrices and the Relation  
between Quaternion Matrices and  
Complex Matrices 

 
For any quaternion matrix m nA H , A can be uniquely 
represented as 

0 1 j A A A ,              (2.1) 

where  0,1m n
s s A C , 1 jA  means to multiply 

each entries of 1A  by j from right hand side. 
For above reasons, we can establish a mapping rela-

tion between quaternion matrices and complex matrices 
as follows:s 

 0 1: | ,m nf  A H A A ,          (2.2) 

where  0,1m n
s s A C . 

The set of m n  quaternion matrices is written as A  
and the set of image of A  is written as imgA . 

Theorem 2.1. Let  0 1: | ,m nf  A H A A ,  

  0,1m n
s s A C . Then the mapping f  is a bijec- 

tive mapping from A  to imgA . 
Proof. For any entry  0 1,A A  in imgA , there exists 

the corresponding quaternion matrix 0 1 j A A A  in 
A , therefore f  is a surjection from A  to imgA . Si-

multaneously, since any quaternion matrix in A  can be 
uniquely represented as the form (2.1), so f  is an in-
jection from A  to imgA . Thus f  is a bijective map-
ping from A  to imgA .  

The proof is complete.  
Theorem 2.2. Bijection  0 1: ,f A A A ,  

 0,1m n
sA C s  is an isomorphism mapping from A  

to imgA .  
By the concept of isomorphism mapping, this theorem 

is easy to prove and we omit it here. □ 
We shall mention that Theorem 2.2 is the foundation 

of this article, because isomorphism vector spaces have 
the same properties. 
 
3. The Bicomplex Matrix Concept System  

over Quaternion Division Algebra 
 
According to the complex representation of quaternion 

matrices above, a series of new definitions of quaternion 
division algebra which are helpful to discuss the algebra 
problems on quaternion division algebra can be given as 
follows.  

Definition 3.1. The matrix j E E E  is said to be 
a n n  unit quaternion matrix if E  is a n n  unit 
matrix over complex field. In particular, if 1n  , then 

j j   1 1E E E  is said to be a unit quaternion writ-
ten as ua . 

Definition 3.2. Let and 0 1
n tj   B B B H  be given. 

The operator 0 0 1 1 j  A B A B A B  (where 0 0 1 1,A B A B  
are both the multiplications of complex matrices) is 
called the *-product of quaternion matrices A and B. In 
particular, if 1m n t   , then we can derive the 
*-product of quaternions. 

Note: when ,  m n n t  A C B C , then  A B AB . 
Under the Definition 3.1 and Definition 3.2, we give 

some relative properties. 
For any matrix , n nA B H , we have: 
1)     E A A E A , where E

 
is a n n  unit 

quaternion matrix; 
2)   A B B A ;  
3)       A B C A C B C ;  

4)  T T T  A B B A ; 

5)    Tr Tr  A B B A . 

Similarly, we establish a new definition as follows. 
Definition 3.3. Let 1nX H  and a H  be given. Then 

0 0 1 1a a a a j    X X X X  is called the *-product of 
quaternion and quaternion vector, where 0 1 j X X X , 

1 1
0 1,n n  C CX X , 0 1a a a j  , 0 1,a C a C  . 

Now, we introduce the following concept to quater-
nion division algebra. 

Definition 3.4. For any quaternion matrix n nA H   

 0 1 j A A A , 0 1 j A A A  is said to be the de-

terminant of A , where .  is the determinant of a com-

plex matrix.  
Note: when n nA C , then A A . 
The Definition 3.3 is reasonable. First of all, the result 

of a quaternion matrix determinant under Definition3.4 is 
a quaternion. Secondly, from Definition 3.4 we can see 
that it can convert the determinant of a quaternion matrix 
into that of complex matrices to reduce the complexity 
and abstraction. Finally, the new determinant has the 
same fundamental properties as that over complex field. 
That is, if A  is a n n quaternion matrix and i j , 
then we have 

1) TA A .  

2) If quaternion matrix B  is obtained from quater-
nion matrix A  by interchanging two rows (or columns) 
of A , then  B A . 
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3) If quaternion matrix A  has a zero row (or column),  

then 0T A A . 

4) nk k A A , where n

n

k k k k    , k H . 

5) If the jth row (column) of quaternion matrix A  
equal a multiple of the ith row (column) of the matrix, 
then 0A . 

6) Suppose that A , B  and C  are all n n  qua-
ternion matrices. If all rows of B  and C  both equal 
the corresponding to rows (columns) of A  except that 
the ith row (column) of A  equal the sum of the ith of 
B  and C , then  A B C . 

7) If quaternion matrix B  is the n n  matrix re-
sulting from adding a multiple of the ith row (or column) 
of matrix A  to the jth row (or column) of matrix A , 
then B A . 

8) Let A  and B  be n n  quaternion matrices re-
spectively. We have   A B A B . 

Up to now, people still treat the inverse matrix concept 
of quaternion matrix as complex matrix, that is, if qua-
ternion matrix A  satisfies 1 A A E  (where E  is a 
real unit matrix), then people think that quaternion ma-
trix A  exists its inverse matrix 1A . However, people 
pointedly ignore two questions. An issue is how to define 
the product of quaternion matrices 1A  and A . The 
other one is how to make a calculation of 1A . 

It indicates that the terminology of inverse matrix does 
not have a clear definition in quaternion algebra theory.  

In the following, we shall give a new definition and 
specific computational method for the inverse of quater-
nion matrix. 

Definition 3.5. Let 0 1
n nj   A A A H  be given 

(where 0 1,  A A  both are complex matrices). If the inverse 
matrices of 0A  and 1

1
A  both exist, then quaternion 

matrix A  is said to be invertible and the inverse matrix 
is written as 1 1

0 1 j   A A A , where 1
0
A , 1

1
A  denote 

the inverse of complex matrices 0A , 1A  respectively. 
Note: when n nA C , then 1 A A . 
The inverse of quaternion matrix under the new defi-

nition has the same fundamental properties as those un-
der the traditional algebra system. It is easy to show the 
following facts by the new concept, namely, if a quater-
nion matrix A  is invertible, then we have: 

1)   A A . 

2)        1 1
0 1

k k kk j
    A A A A , where  

k    A A A A  is product of kA  which is defined 
in Definition 3.2. 

3) If 1 2, , , mA A A  are all invertible quaternion ma-
trices, then 

 1 2 1 1m m m

   
       A A A A A A . 

Obviously, by the new definition of inverse of quater-
nion matrix above, people can determine easily whether 
the inverse matrix of quaternion matrix exists or not and 
calculate the inverse matrix if possible. 

Under the definition of inverse of quaternion matrix 
above, a new concept of similar quaternion matrices can 
be given as follows:  

Definition 3.6. Let , n nA B H , if there exists an 
invertible quaternion matrix P such that   A P B P , 
then A  and B  are said to be similar quaternion ma-
trices written as A B . 

Note: when , n nA B C ,   A P B P  is equiva-
lent to 1

0 0
A P BP , where 0 1 P P P j , 0 1, n nP P C . 

For similar quaternion matrices, we will deduce many 
important properties in the next section. 
 
4. Some Applications of the Bicomplex  

Matrix Concept System  
 
In this section, we establish some important theorems to 
illustrate the applications and effectiveness of the new 
concept system for the research of quaternion division 
algebra. The eigenvalue is an important issue in quater-
nion division algebra theory, so under the new concept 
system, we will study firstly the eigenvalues of quater-
nion matrix and the relation between eigenvalues of 
similar quaternion matrices in detail. 

Before showing the application, we’ll introduce firstly 
some concepts associated with eigenvalue. 

Definition 4.1. For any matrix   n n
ija  HA , if 

there exists nonzero quaternion vector 1nX H  and a 
quaternion 0 1 j     (where 0 , 1  are both com-
plex numbers) such that   A X X , then   is said 
to be the left eigenvalue of A , and X  is the left ei-
genvector corresponding to  . 

For the sake of distinction, we call the left eigenvalue 
and the left eigenvector under Definition 4.1 the left 
quaternion eigenvalue and the left quaternion eigenvec-
tor respectively. 

According to the new definition of quaternion matrix 
multiplication and   A X X , we can derive that 
      0E A X . Thus  f    E A  is said 
to be the characteristic polynomial of A  (where the op-
erator   denotes the determinant of quaternion matrix 
under Definition 3.4). 

Theorem 4.1. A n n  quaternion matrix  

0 1 j A A A  (where 0A , 1A  both are complex matri-
ces), if   and   are the left eigenvalues of 0A  and 

1A  respectively, then aj   and b j  ( a C  , 
b C  ) are the left quaternion eigenvalues of A .  
Proof. Since   and   are the left eigenvalues of 

0A  and 1A  respectively, then there exist nonzero vectors 
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1nC  and 1nC  such that 0 1,    A A    . 
We have 

     0 1 0j j aj          0A A A A     , 

for a C  . 

     
   

0 1 1

            

j j j j j

b j j





      

  

0A A A A   


, 

for b C  . 
So aj   and b j  are all the left quaternion ei-

genvalues of A . 
The proof is complete. □ 
Similarly, we introduce a new right quaternion eigen-

value concept.  
Definition 4.2. For any matrix   n n

ija  HA , if 
there exists nonzero quaternion vector 1 nH and qua-
ternion 0 1 j     (where 0 1,  are both complex 
numbers) such that  

  Y A Y , then   is said to be the right quater-
nion eigenvalue of A , and Y  is the right quaternion 
eigenvector corresponding to  . 

For the right eigenvalue of quaternion matrix, we have 
the following theorem:  

Theorem 4.2. A n n quaternion matrix 0 1 j A A A  
(where 0A , 1A are both complex matrices), if   and 
  are the right eigenvalues of 0A  an 1A  respectively, 
then aj   and b j ( ,a C b C    ) are the right 
quaternion eigenvalues of A .  

Proof. Since   and   are the right eigenvalues of 

0A  and 1A  respectively, then there exist nonzero vectors 
1 nC  and 1 nC such that 0 1,  A A    . 

We have  

   
 

0 1 0

        ,  for 

j j

aj a C 

     

     

0  

 

A A A A
. 

     
   

0 1 1

            , for

j j j j j

b j j b C





      

    

0   



A A A A
. 

So aj   and b j  are the right quaternion ei-
genvalues of A . 

The proof is complete. □ 
Theorem 4.3. If the left eigenvalues of 0A  are 

1 2, , , k    and the left eigenvalues of 1A  are  

1 2, , , m    (where 0A , 1A  both are complex matri-
ces), then the left quaternion eigenvalues of matrix 

0 1 j A A A  are  s aj  or  
,  ,  ,  1, , ,  1, ,tb j a C b C s k t m        .  

Proof. Suppose that   is arbitrary left quaternion 
eigenvalue of A , then   0 , 1

0 1
nj   H   ,  

such that   A   , that is, 0 0 0 0

1 1 1 1





 

A

A

 
 

. Since  

 0 , we know that both 0  and 1  are not zeroes. 
So there are two cases as follows: 

1) When  0 , obviously, we have  
 0 1 2, , , k     . 

So,  , 1, 2, ,i aj i k     . 
2) When  0 , obviously, we have  
 1 1 2, , , m     .  

So,  , 1, 2, ,tb j t m     . 
To sum up 1), 2) and Theorem 4.1, we can draw the 

conclusion. 
The proof is complete. □ 
Theorem 4.4. If the right eigenvalues of 0A  are 

1 2, , , k    and the right eigenvalues of 1A  are  

1 2, , , m    (where 0A , 1A  both are complex matri-
ces), then the right quaternion eigenvalues of matrix 

0 1 j A A A  are  s aj   or  
,  ,  ,  1, , ,  1, ,tb a C b C s k t m        .  

This proof is similar toTheorem 4.3. So we omit it 
here. 

Theorem 4.5. Let n nA H , then A  and TA  have 
the same quaternion left (right) eigenvalues. 

Proof. Since 0 1 j A A A  (where  

0
n nA C , 1

n nC A ), then 0 1
T T T j A A A . We know  

iA  and T
iA  have the same left (right) eigenvalues 

( 1,2i  ). By Theorem 4.3 and Theorem 4.4, we can 
draw the conclusion. 

The proof is complete. □ 
Theorem 4.6. Let n nA H  and , H    be 

given. If     is the left (right) quaternion eigenvalue 
of A , then     is the right (left) quaternion eigen-
value of A . 

Proof. Since   is the left quaternion eigenvalue of 
A , then there exits nonzero vector   such that 

  A   . Then    T T  A   , we can have 
T T T  A  . So   is the right quaternion eigen-

value of TA , by Theorem 4.5, we know   is the right 
quaternion eigenvalue of A . The same proof to  . 

So, the proof is complete. □ 
Specially, when n nA C , if     is the left (right) 

eigenvalue of A , then     is the right (left) eigen-
value of A . 

Note: By the new definition of quaternion multiplica-
tion, the left quaternion eigenvalue of a quaternion ma-
trix is equivalent to its right quaternion eigenvalue. So 
they are both called quaternion eigenvalue of the quater-
nion matrix. 

In the following, we show an important result. 
Theorem 4.7. Let , n nA B H  be given. If A∽ B , 

then A  and B  have the same eigenvalues. 
Proof. Since A∽ B , there exists an invertible matrix 

n nP H  such that   A P B P , that is equivalent to 
1

0 0
A P BP  and 1

1 1 1 1
A BP P  (where 0 1 j A A A , 

0 1 j B B B , 0 1 j P P P ). We know sB  and sA  
 0,1s   have the same eigenvalues. By Theorem 4.3 
and Theorem 4.4, we can draw that A  and B  have 
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the same eigenvalues. 
The proof is complete. □ 
Theorem 4.8 (The generalized Cayley-Hamilton theo-

rem over quaternion division algebra). A quaternion ma-
trix A  must be the root of its characteristic polynomial 
 f    E A . 
Proof. According to Definition 3.4, we know that: 

   
   

   

0 1

0 1 0 1

0 0 1 1 0 1

       

       

f f j

j j

j g h j

   

 

   

    

   

     

E A

E E A A

E A E A

, 

where  0 0 0g   E A ,  1 1 1h   E A . 
According to the Cayley-Hamilton theorem on com-

plex field, we know  0g  0A ,  1h  0A . So,  
     0 1f g h   0A A A . It indicates that quaternion 

matrix A  must be the root of its characteristic polyno-
mial  f  .  

So, the proof is complete. □ 
Theorem 4.9. Let (where 0 1

n nj   A A A H  

0 1, n nA A C ) be given. A  is a diagonalizable matrix 
if and only if both 0A  and 1A  are diagonalizable ma-
trices. 

Proof. A  is diagonalizable matrix , that is ,there ex-
its an invertible quaternion matrix P  such that  

  A P P . It is equivalent to 1
0 0 0 0

A P P  and 
1

1 1 1
A P P  (where 0 1 j     is diagonal matrix). 

So, A  is diagonalizable matrix if and only if both 0A  
and 1A  are diagonalizable matrices. 

The proof is complete. □ 
Corollary 4.9. Let 0 1

n nj   A A A H  (where  

0 1, n nA A C ) be given. If 0A  and 1A  both have n  
different eigenvalues, then A  is diagonalizable matrix. 

Corollary 4.9'. Let 0 1
n nj   A A A H  (where  

0 1, n nA A C ) be given. Quaternion matrix A  is di-
agonalizable matrix if and only if and 1A  both have n  
linearly independent eigenvactors. 

Corollary 4.9''. Let 0 1
n nj   A A A H  (where  

0 1, n nA A C ) be given. Quaternion matrix A  is di-
agonalizable matrix if and only if the geometric multi-
plicity of 0A  and 1A  both equal their algebraic multi-
plicity respectively.  

In Section 3, we have given the new definition of the 
inverse of quaternion matrix, but that of quaternion is not 
defined. In fact, a quaternion can be treated as a 1 1  
matrix. So we can define the inverse of quaternion as 
follows: 

Definition 4.3. For any quaternion 0 1a a a j  , if 
neither of 0a  and 1a  are zeroes, then 1 1

0 1a a a j     
is said to be the inverse of a , where  1 0,1sa s   is 
the reciprocal of sa . 

It is easy to verify the following facts. For any 

,a b H , we have:  

1) u ua a a a a    ;  

2) a b b a   ; 

3)  a b c a c b c      ;  

4)    0 1

n nna a a j  ; 

5) If 0 1a a a j   has the inverse a−, then ua a a  . 

In addition, we discover that there are some special 
phenomena about the roots of quaternion polynomial 
under the new definition of quaternion multiplication.  

Definition 4.4. The polynomial which has the form as 
follows:  * 1*0 *1 *0

0 1 1
n

n na x a x a x a x
         is 

said to be quaternion polynomial with complex coeffi-
cients (where ,  0,1, ,ia i n   are all complex numbers, 

0 1x x x j  , *0x  is the *-product of i quaternion x  
and 0x  is unit quaternion). 

Theorem 4.10. Let  f x  be a quaternion polyno-
mial with complex coefficients. Then  f x  has infinite 
quaternion roots. 

Proof. By Fundamental Theorem of algebra,  f x  
exists at least one complex root 0x , then for any given 
complex number 1x , obviously, 0 1x x j  is the root of 
 f x . 
The proof is complete. □ 
Theorem 4.11. Let  f x  be a quaternion polyno-

mial with complex coefficients and 0 1
n nj   A A A H  

be a given quaternion matrix (where, both 0A  and 1A  
are compex matrices). If   is the eigenvalue of 0A , 
then  f   is the eigenvalue of  f A . 

Proof. According to the new definition of quaternion 
multiplication, we can easily obtain    0f fA A . 
Since   is the eigenvalue of 0A , so  f   is the ei-
genvalue of  0f A . 

The proof is complete. □ 
Under the new concept system, we can also solve the 

problems of existence and uniqueness of the solutions to 
the quaternion system of linear equations  A X b , 
where operator ‘ ’ denotes the new multiplication of 
quaternion matrices. 

As we known, for any m nA H , A  can be repre-
sented uniquely as 0 1 j A A A , where sA   0,1s   
are n n  complex matrices. Let  

 T

10 11 20 21 0 1, , , n nx x j x x j x x j   X  and  
 T

10 11 20 21 0 1, , , n nb b j b b j b b j   b  be 1n  quater- 
nion vectors, then the following theorems are valid. 

Theorem 4.12. Let 0 1
n nj   A A A H  be given 

and 0 1 j X X X  be 1n  quaternion vector. If rank 
 s srA  and the fundamental system of solutions to the 
system of homogeneous linear equations s s  0A X  is 

 1, 2 , ,
ii i i n r      0,1s   respectively, then any solu-

tion to the quaternion system of homogeneous linear 
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equations   0A X  can be expressed as follows: 

    
    

0 0

1 1

01 01 02 02 0 0

11 11 12 12 1 1       

n r n r

n r n r

c c c

c c c j

  

  

 

 

   

  





X
, 

where ,  0, , ,  0,1
sst s sc C t n r s    . 

Proof. By the new definition of quaternion matrix 
multiplication, the quaternion system of homogeneous 
linear equations   0A X  is equivalent to the system  

of homogeneous linear equations 0 0

1 1


 

0

0

X

X

A

A
. Since any  

solution to the system of homogeneous linear equations 

s s  0A X  can expressed as 

    0 01 1 2 2s s s s s s n r s n rc c c      X  

(where ,  1, , ,  0,1
sst s sc C t n r s    ) 

and the solutions of the quaternion system of homoge-
neous linear equations   0A X  are 0 1 j X X X . 
So we can draw the conclusion. 

So, the proof is complete. □ 
Corollary 4.12. Let 0 1 j A A A  be a given quater-

nion matrix (where m n
sA C  , 0,1s  ).  

If rank  0A  = rank  1A  = n , then the quaternion 
system of homogeneous linear equations   0A X  has 
unique solution  T

0,0, 0 0 X . 
Corollary 4.12'. Let 0 1 j A A A  be a given qua-

ternion matrix (where m n
s

A C , 0,1s  ). If rank 
 0 nA  and rank  1 nA , then the quaternion sys-
tem of homogeneous linear equations   0A X  only 
exists complex solutions. 

Theorem 4.13. Let 0 1 j A A A  be a given quater-
nion matrix, 0 1 j X X X  and 0 1 j b b b  be qua-
ternion vectors (where m n

s
A C , 1n

s
X C ,  

 T

1 2, , ,s s s snb b b b , stb C , 0,1s  , 1, 2, ,t n  ).  

If there is at least one  0 0,1s   such that rank  0sA  

  rank  0 0s sA b , then the quaternion system of linear  

equations  A X b  has no solution.  
Proof. By the new definition of quaternion matrix 

multiplication, the quaternion system of linear equations 
 A X b  is equivalent to the system of linear equa- 

tions 0 0 0

1 1 1


 

b

X b

A

A

X
, since    0 0 0

rank ra< nks s sA A b , the  

system of linear equations 0 0 0

1 1 1


 

b

X b

A

A

X
 have no solution,  

that is, the quaternion system of linear equations  
 A X b  has no solution.  
So, the proof is complete. □ 
Theorem 4.14. Let 0 1 j A A A  be a given quater-

nion matrix and 0 1 j X X X  be a given quaternion 

vector (where m n
s

A C , 1n
s

X C , 0,1s  ). We sup- 
pose that the fundamental system of solutions to the sys-
tem of linear equations s s  0A X  is  1, 2 , ,

ss s s n r     
 0,1s   respectively and  0,1s s   is a special so-
lution of the system of linear equations s s sA X b  re-
spectively, and rank  sA  = rank  s sA b   0,1s  , 
then any solution to the quaternion system of linear 
equations  A X b  can be expressed as: 

    
    

0 0

1 1

0 01 01 02 02 0 0

1 11 11 12 12 1 1       

n r n r

n r n r

c c c

c c c j

   

   

 

 

    

   





X
. 

Proof. By the new definition of quaternion matrix 
multiplication, the quaternion system of linear equations 
 A X b  is equivalent to the system of linear equa-  

tions 0 0 0

1 1 1


 

b

X b

A

A

X
. Since any solution to the system of  

linear equations s s sA X b  can expressed as follows: 

   1 1 2 2 s ss s s s s s s n r s n rc c c        X  (where  

,  1, 2, , ,  0,1st sc C t n r s    ), so any solution to the 
system of quaternion linear equations  A X b  can be 
expressed as: 

    
    

0 0

1 1

0 01 01 02 02 0 0

1 11 11 12 12 1 1       

n r n r

n r n r

c c c

c c c j

   

   

 

 

    

   





X
. 

The proof is complete. □ 
Theorem 4.15. Let 0 1 j A A A  be a given quater-

nion matrix, 0 1 j X X X  and 0 1 j b b b  be quater- 
nion vectors (where m n

s
A C , 1n

s
X C , 1n

s C b , 
 0,1s  ). If rank  sA  = rank  s sA b  = n   0,1s  , 
then the quaternion system of linear equations  A X b  
exists unique solution. 

Proof. By the new definition of quaternion matrix 
multiplication, the quaternion system of linear equations 
A X b   is equivalent to the system of linear equations  

0 0 0

1 1 1


 

b

X b

A

A

X
, and rank  sA  = rank  s sA b  = n , we  

know the system of linear equations 0 0 0

1 1 1


 

b

X b

A

A

X
 have  

unique solution. So the quaternion system of linear equa-
tions  A X b  exists unique solution.  

The proof is complete. □ 
Corollary 4.15. Let 0 1 j A A A  be a given n n  

quaternion matrix and 0 1 j b b b  be a given 1n  
quaternion vector. If rank  sA  = rank  s sA b  = n  
 0,1s  , then the solution of the quaternion system of 
equations  A X b  is 1 X A b . 

Corollary 4.15'. Let m nA C  and 0 1 j b b b  
(where 1

1,  0,1,  n
s s   0b C b ) be given. Then the 
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quaternion system of linear equations  A X b  has no 
solution. 

Corollary 4.15''. Let m nA C  and 1nb C  be 
given. If rank  A  = rank  A b , then any solution to the 
quaternion system of linear equations  A X b  can 
expressed as 1 aj AX b , where a C . 
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