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Abstract 
Mobility is an indispensable activity of our daily lives and road transport is one popular approach 
to mobility. However road congestion occurrence can be irritating and costly. This work contri-
butes to the modeling and therefore predicting road congestion of a Ghanaian urban road by way 
of queuing theory using stochastic process and initial value problem framework. The approach is 
used to describe performance measure parameters, allowing the prediction of the level of queue 
built up at a signalized intersection as an insight into road vehicular congestion there and how 
such congestion occurrence can be efficiently managed. 
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1. Introduction 
Being the capital of Ghana, socio-economic factors in Accra are influencing rapid growth in vehicular popula-
tion. Human population growth in the capital coupled with increased road vehicle ownership is the main factor 
fueling vehicular population increases. Human population growth in the capital is 4.4% above national average, 
and presently road vehicle ownership is increasing at 83.9% per annum [1]. Accra is one of the most populous 
cities in the country, and the levels of road vehicular traffic congestion now observed in Dansoman, a suburb of 
Accra, is a reflection of worsening urban traffic congestion experiences emanating from increased vehicular 
population. The volume of vehicular traffic on these roads increases during rush hours to and from work, during 
which a journey could take much longer time. Also there are certain odd times, outside the rush hours, when this 
congestion phenomenon had occurred unexpected. 

Road traffic management (RTM) in Ghana, like most developing countries, has been very challenging and 
most attempts to address the problem have yielded little results [2]. This includes arterial routes expansion to 
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accommodate increased vehicular traffic volume, mass transport facility and road junction control measures 
among others. Given the factors fuelling vehicular population in the capital, Accra roads appear woefully inade- 
quate to match present vehicular population on our roads. This disparity is causing road traffic congestion, 
which is crippling mobility in the capital and gradually grinding economic activities in the city to a halt. Road 
traffic signal used as a road junction control measure to minimize congestion currently is inadequate. This is evi- 
dent from the observation that although the majority of the signal lights have been revamped, they are being 
augmented currently by human traffic wardens (TW) to manage the situation. On countless occasions have I 
observed activities of these wardens on traffic flow rates at signalized junctions during peak hours and their in-
terventions amazingly make positive impact on the congestion problem. Clearly automatic signal control ap-
proach to traffic management is not working as expected and delays due to road congestion and its accompany-
ing cost is weakening the economic impact of urban road transport. Given that roads are constantly used by ve-
hicles at all times, human intervention for optimal road vehicular traffic control by TW cannot be avoided, espe-
cially for developing economies like Ghana. Also given that the disparity in road expansion and road vehicular 
population increases, the positive impact of TW on road traffic congestions is likely to be inefficient if traffic 
flow and evolution, especially for the unexpected congestions, is not accurately predicted. 

However relatively little attention, by way of research, has been given to this congestion problem in the urban 
towns of Ghana. A scientific approach investigation of the problem could encourage the improvement of trans-
port policies and strategies in place to mitigate this economic debilitating spate of congestion on our roads. For 
instance as a first step towards prescribing a solution to the problem, the ability to forecast traffic volumes for 
any time period, especially those critical periods, cannot be over emphasized. This forecast approach also has 
the capacity to directly support proactive traffic control, including educated deployment of TW to critical areas 
as well as accurate travel time estimations. 

The primary contribution of this paper is to demonstrate a modeling of traffic evolution on an arterial road to 
Malam highway that serves surrounding suburbs and communities. Other possible benefit of this work is that it 
serves as a basis to other interesting investigations to characterize traffic congestion and the results obtained 
may serve as vital inputs to decisions that seek to improve traffic control and management. The objective there-
fore is to investigate the problem of congestion on the road segment and subsequently build upon this investiga-
tion to develop efficient tools capable of predicting and providing intelligent information on vehicular traffic 
flow. 

Queues are waiting lines which occur whenever units must wait for a facility because the facility may be busy 
and therefore it is unavailable to render service required. The study of queues describes this phenomenon and 
since Erlang’s pioneering work for queuing theory, a number of authors have applied the theory in many areas 
(see [3]-[7] and reference therein) including its extensive practical application in most performance analysis. 
This work contributes to the application of queuing theory, to model the traffic congestion problem identified, 
using stochastic processes framework, to a signalized road intersection. We solve the model’s system of diffe-
rential equations by initial value problem method. We then attempt to give a performance measure analysis to 
describe traffic intensity variations. The next section gives a theoretical background to model the traffic flow at 
the road intersection. Section 3 focuses on application of the theory to data obtained from Dansoman signalized 
junction, on the Malam-Kaneshiee Road while Section 4 serves as the concluding section, giving insights gained 
from the results as well as suggestions to overcome the undesirable descriptions that the results indicate. 

2. Theoretical Background 
This section gives the theory used in this work including brief general features of a queuing systems as well as 
the concept of stochastic process description of a Markovian queuing system from which time dependent transi- 
tions obtained using initial value problem approach and various performance measure characteristics deduced. 

2.1. Features of a Queuing System 
Typically any queuing system is composed of units, referred to as customers, needing some kind of service and 
who arrive at a service facility, join a queue if service is not immediately available, and eventually leave after 
receiving the service. A server refrerrs to mechanism that delivers service(s) to the customer. If upon arrival a 
“customer” finds the server busy, then s/he may form a queue, join it or leave the system without receiving any 
service even after waiting for some time [8] [9]. This therefore permits a number of different possible con- 
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figurations such as the following, used in this work, to describe vehicular traffic flow as a queuing system: 
1) Customers are vehicles using the road infrastruction at the signalized intersection for which the traffic light 

in use to regulate vehicular flow through the intersection is the server. 
2) Vehicles arrive randomly as units and form a single file of waiting line until they are served by a server. 
3) Vehicles are served individually in parallel, according to the order in which they arrived. 
4) The Arival Pattern: This is the manner in which arrivals occur, indicted by the inter-arrival time between 

any two consecutive arrivals. For our stochastic modelling framework, the inter-arrival time may vary and may 
be described by a specific probability distribution that best describes the arrival pattern observed. 

5) Arrival Rate λ : This is the average number of vehicles arriving per unit time. 
6) The Service Pattern: This is the manner in which the service is rendered and is specified by the time taken 

to complete a service. Similar to the arrival pattern, distribution of the service time must be specified under sto- 
chastic modelling considerations. 

7) Service Time µ : This gives the average number of vehicles served per unit time. 

8) Server Utilization ρ : This gives the average utilisation of the server, given by λρ
µ

=  

9) Mean Service Time τ : The time to serve a designated customer. 
10) Mean Waiting Time T: The average time spent in the queue by a customer who receives a service. 
11) Mean Queue Size N: The Average number of customers in the system for service 
The quality of service one receives could be judged, at least in part, by the length of time one waits in the 

queue for service and this is very much influenced by what constitutes the configurations of the syetem. We can 
indicate this configuration as A/B/C/X/Y/Z, [10]-[12], according to Kendall-Lee notation, where the symbols A, 
B, C, X, Y, and Z respectively indicating the inter-arrival time distribution, the service time distribution, the 
number of servers, the system capacity, the population size and the queue discipline. For instance M/M/2/FCFS/ 
6/∞ refers to a queuing system that possesses a Markovian Poisson arrivals, Markovian exponential service, two 
servers, first come first served (FCFS) queue discipline, a limit of six customers in the queue and an unlimited 
source of customers in the population. 

2.2. Stochastic Processes 
We let t  be a parameter that assumes values in a set T , and let ( )X t  represent a random variable for every 
t T∈ . Then ( )X t  gives the rule describing the observed non-deterministic behaviour of the traffic system 
being modelled and any collection of ( ){ },X t t T∈  constitutes a stochastic process [13] whose index t  
interprets the time element of the physical evolution of the system. ( )X t  describes the state of the process at 
time t while the elements of T indicate time epochs. In this case T  is a linear set and may result in a discrete- 
time process or a continuous-time process. For example, { }, 0,1, 2,nX n =   can be described as discrete-time 
process while that ( ){ }, 0X t t ≥  can also be described as a continuous-time process. The set of all possible 
values that the random variable ( )X t  can assume constitute the state space of the process. As such a system 
may be described by any of these four different categories of the space and time stochastic process: (i) discrete 
state space and discrete time; (ii) continuous state space and discrete-time; (iii) discrete state space and conti- 
nuous-time; and (iv) continuous state space and continuous-time. Considering state space processes are as chains 
[14] [15] then we could talk of discrete-time chains and continuous-time chains. Relating this time evolution 
phenomena to vehicle queue at a signalised intersection as a result of traffic congestion constitutes an observed 
stochastic processes. In this case X(t) represents the number of vehicles arriving at the signalised junction by 
time t; and so ( ){ }, 0X t t >  is a continuous-time discrete space. On the other hand if nW  describes the 
queuing time of the nth  arrival, then { }, 0,1, 2,nW n =   is a discrete time discrete space process. Here in this 
work we attempt an analysis of the vehicular traffic congestion at a signalised intersection with the hope of 
gaining insight into the following critical performance measures: 

1) Distribution of the number of vehicles ( )N t  in the system at time t or the number of units in the queue. 
( )N t  is therefore a measure of the queue length at time t. 
2) Distribution of the waiting time in the queue, the time that an arrival has to wait in the queue. Suppose nW  

denotes the waiting time of the nth arrival, then of interest is the distribution W of all nW . 
3) Distribution of the virtual waiting time ( )W t  the length of time an arrival has to wait had he arrived at 

time t. 
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4) Distribution of the busy period being the length (or duration) of time during which the server remains busy. 
The busy period is the interval from the moment of arrival of a unit vehicle at an empty system to the moment 
that the channel becomes free for the first time. This therefore constitutes a random variable. 

2.3. Markov Chain 
Suppose that we observe the state of the vehicular traffic at discrete time points t = 0, 1, 2,… for which suc- 
cessive time points define a set of random variables (RVs) 0 1 2, ,X X X . The values assumed by the RVs nX  
are the states of the system at time n . Suppose that Xn assumes the finite set of values 0,1, ,m ; then nX i=  
means that the system’s state at time n is i. The family of random variables (RVs) { }, 0nX ≥  is therefore a sto- 
chastic process with discrete parameter space 0,1,2,n =   and discrete state space { }0,1, ,S m=  . A sto- 
chastic process { }, 0nX n ≥  is called a Markov chain if for every X S∈ , Equation (1) is satisfied such that the 
right hand side of (1) is also defined [16]. 

{ } { }1 1 0 0 1 1, ,n n n n n n n nPr X x X x X x Pr X x X x− − − −= = = = = =            (1) 

Equation (1) indicates a relation of dependence between the RVs nX  and intuitively it means that given the 
present state of the system, the future state is independent of that of the past. The conditional probability 

{ }1n nPr X k X j−= = , gives the transition probability from state j to state k [10] [12] [14] as denoted by 
Equation (2) 

{ }1jk n np Pr X k X j−= = =                                    (2) 

Given that the state space S  satisfies the Markov chain property of Equation (1), then if we let ( )( )F x s  
denote all the information with respect to the history of x up to the time s  and let j S∈  such that s t≤  then 
Equation (3) is a Markov chain known as continuous time Markov chain. Apart from Equation (3) if the Markov 
property also satisfies Equation (4) then the process becomes time-homogeneous. Thus we  

( ) ( )( ){ } ( ) ( ){ }Pr X t j F x s Pr X s t j X s= = − =                    (3) 

have a time homogeneous continuous Markov Chain. A discrete time Markov chain in which transitions can 
happen at any time is known as continuous time Markov chain [13]. Now given the non-deterministic nature of 
the observed vehicular traffic, such stochastic description of the queuing build-up is realistic and appropriate for 
dynamics of the traffic congestion as a queuing system. 

( ) ( ){ } ( ) ( ){ }0Pr X t j X s Pr X s t j X= = − =                       (4) 

2.4. Time Dependent Transitions for M/M/1 Queue 
Suppose that ( )N t  gives the number of vehicles in the system (in this case the number in the queue plus the 
number being served, if any) at time t  measured from a fixed initial moment ( )0t =  and its probability dis- 
tribution given by Equations (5). This implies initially the number of arriving vehicles is i  

( ) ( ){ }
( ) ( )

, 0,1, 2,

0 1 0 0,
n

i j

p t Pr N t M n

P p j i

= = =

= = ∀ ≠



                            (5) 

where 0,1,2,i =  . For this practical problem of vehicular traffic congestion a complete description of 
( ){ }, 0N t t ≥  is necessary in order to find a time-dependent solution ( ) , 0np t n ≥  for equilibrium state the 

system after a sufficiently long period of operation. In other words we seek the limiting behaviour of ( )np t  as  
t →∞  and so if we denote np  by ( )lim , 0,1,2,nt

p t n
→∞

= 
 whenever the limit exists, then np  gives the li-  

miting probability that there are n  vehicles in the system, irrespective of the number at time 0. Whenever the 
limit exists, the system is said to reach a steady state, and np  is called the steady-state probability at which 
there are n  vehicles in the congestion [12] [13]. At this state { }np  is independent of time and so has a steady- 
state distribution, given us the long-run proportion of time that the system contains exactly n  vehicles [3] [13]. 
Thus we say that 0p  denotes the proportion of time when the system is empty from which it follows that 
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00 1n p∞

=
=∑  thereby satisfying probability law [17]. 

If we consider two sets of limiting probabilities { }0na ≥  and { }0nd ≥  such that na  be the probability 
that arriving vehicles find n other units in the congestion when they arrive and also nd  be the probability that 
departing vehicles leave n units in the system when they depart, then it implies that na  is the long-run pro- 
portion of vehicles which, when they arrive, find n  other vehicles in the congestion queues system, while nd  
is the long-run proportion of vehicles who, when they depart, leave n  other vehicles in the system. Intuitively, 
the three quantities , , andn n np a d  may not always be all equal and so for such vehicular queue system in 
equilibrium in which arrivals and departures occur one by one independently, n na d=  for all 0n ≥  [12] [13]. 

For a queuing system of many vehicles and one server, suppose ( )N t  is the number of individual vehicless 
at time t , in front of a server waiting to be served. Let ( )N t  has two possible states of 1 and 0 respectively for 
the states of being served and completed being served. As such ( ) 1N t =  implies a vehicles is being served and 

( ) 0N t =  implies the vehicles has been served. This system exhibits a Markov Chain property. To obtain the  

time-dependent transition probabilities for this Markov chain, let 
( )
( )t

p t
q t
 

=  
 

X  be the time-dependent distribu-  

tion vector for the states “being served” and “finished being served” so that ( ) ( )( )1p t P N t= =  and  
( ) ( )( )0q t P N t= = . Then it follows that ( ) ( )1q t p t= −  and so ( ) 0lim t p t→∞ = . Thus the time dependent  

distribution vector becomes 
0

lim
1tt→∞

 
=  
 

X  

If we let ( )served inP t tµ∆ = ∆  and ( )not served in 1P t tµ∆ = − ∆ , then the transition matrix for each t∆   

time step is given by 
1 0

1
t

t
µ

µ
− ∆ 

=  ∆ 
A  which in compact form becomes t t t+∆ =X AX  from which we obtain  

the corresponding matrix equation in (6).  

( )
( )

( )
( )

1 0
1

p t t p tt
q t t q tt

µ
µ

 + ∆   − ∆ 
=    + ∆ ∆    

                                  (6) 

Performing matrix multiplication then we have ( ) ( ) ( )1p t t t p tµ+ ∆ = − ∆  from which 
( ) ( )

p t t
p t

t
µ

+ ∆
= −

∆
.  

Applying differential calculus and taking limits so that 0t∆ →  yields a differential Equation in (7b) and con- 
sidered as an initial value problem [18] [19]. 

( ) ( )
lim
t

p t t
p t

t∆ →∞

+ ∆′⇒ =
∆

                                (7a) 

( )p tµ= −                                             (7b) 

and whose solution using Initial Value Prblem approach, is given by Equation (8b). 

( ) ( ) 1p t P N t= =                                        (8a) 

0e tp µ−=                                           (8b) 

Since we assumed that there is an individual initially being served, then for initial conditions  
( ) ( )0 1 0 1N p= ⇒ = . This means that 0 1p =  and substituting 0p  as the initial value into Equation (8b) 

yields (9b)  

( ) ( ) 1p t P N t= =                                        (9a) 

e tµ−=                                             (9b) 
Also since ( ) ( )1q t p t= −  then it follows, from total probability law, that to complete the service we would 

have a corresponding probability of ( ) 1 e tq t µ−= − . 

2.4.1. Service Time 
Let T denote the time at which service is completed. This is considered to be the time taken for making a transi- 
tion from one state to another, then T is a continuous random variable with range 0 T< < ∞ . Secondly 



J. D. Lartey 
 

 
62 

[ ] ( ) 1Pr T t Pr N t> = =    and so from total probability law we have [ ] 1 e tT t µ−≥ = − , of which the right hand 
side gives the cumulative distribution function of the continuous random variable T  while the left hand side 
gives the associated exponential distribution. Therefore ( ) [ ]P T s t T s P T t > + > = >   and thus a memory- 
less property , 0s t∀ ≥ . We therefore differentiate the cumulative distribution to obtain the density function in 
Equation (10b) from which we subsequently find the expected value to obtain the mean service time, τ  in 
Equation (10f) 

( )
[ ]( )d
d

P T t
f t

t
≤

=                                       (10a) 

e 0tµ−=                                            (10b) 

( )τ⇒ = E T                                        (10c) 

( )
0

dtf t t
∞

= ∫                                        (10d) 

0
e dtt tµµ

∞ −= ∫                                        (10e) 

1
µ

=                                               (10f) 

Thus the reciprocal of Equation (10f) gives 
( )
1

E T
µ =  as the service rate of the queue system. 

2.4.2. Unbounded Queue 
Suppose at each instant of time, the queue is in a certain state k  so that k  takes the values ( )0,1,2,3,  re- 
presenting respectively the systems states when the queue is empty and contains no item; in state 1 and contains 
one item; in State 2 and contains two items; and so on. Given that items arrive at the server at random and depart 
from the server at random, at each instant of time there is some likelihood that the queue will be in each possible 
state [ ]queue is in statekP Pr k= . The queue is in equilibrium when each state probability kP  remains un- 
changed. Suppose the queue is in state k  and an item arrives; then the queue does a state transition from state 
k  to state 1k + . Also suppose the queue is now in state 1k +  and an item departs, then the queue transits 
from state 1k +  to state k . Let λ  be the mean arrival rate and µ  also be the mean service rate. Then the 
rate at which the queue transits from state k  to state 1k +  is equal to the product of the mean arrival rate and 
that of the probability of being in state k : i.e kPλ . Similarly the rate at which the queue transits from state 

1k +  to state k  is equal the product of the mean service rate and that of the probability of being in state 1k +  
i.e. 1kPµ + . Since these must be equal for all k  given equilibrium state, we have Equation (11) describing the 
equilibrium state dynamics of the system.  

1 0

2 1

3 2

P P
P P
P P

µ λ
µ λ
µ λ

=

=
=



                                           (11) 

If we let the traffic intensity ρ  be the ratio λρ
µ

= , so that when λ µ=  then 0ρ → . As the mean arrival 

1
1 0 0

2
2 1 0

3
3 2 0

0 0,1, 2, ,k
k k

P P P

P P P

P P P

P P P k

ρ ρ

ρ ρ

ρ ρ

ρ ρ

= =

= =

= =

= = =





                          (12) 

rate increases and approaches the mean service rate, the 1ρ → . Now at equilibrium dividing both sides of Equ- 
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ation (11) by µ  results in Equation (12). Since the state probabilities must add up to 1, we can compute 0P  
such that when the queue is unbounded we sum from 0k =  to ∞  as in Equation (13a) which subsequently 
results in (13b) 

0
1k

k
P

∞

=

⇒ =∑                                          (13a) 

0
0

1k

k
Pρ

∞

=

⇒ =∑  

0
1 1, 1

1
P ρ

ρ
⇒ = <

−
 

0 1P ρ∴ = −                                          (13b) 
Therefore substituting Equations (13b) into Equation (12), gives Equation (14) the probability that the queue 

is in state k  and which implies that λ µ<  
( )1 , 1k

kP ρ ρ ρ= − <                                  (14) 

2.4.3. Computing the Mean Queue Size N 
Now to compute the mean queue size N , we find the sum for the product of each queue size k  and its corre- 
sponding probability that the queue is in state k : 

( ) ( )

( )

0 0
1 from 14

, 1
1

k
k

k k
N kP kρ ρ

ρ ρ
ρ

∞ ∞

= =

= = −

= <
−

∑ ∑
                    (16) 

2.4.4. Computing the Mean Wait Time T 
Suppose the queue is empty (state 0) when an item arrives, then the server will begin processing the item im-  

mediately, and the item will spend the mean service time 1
µ

 in the queue before departing. However if the  

queue is in State 1 when an item arrives, the item will spend twice the mean service time in the queue before de-  

parting and this will have a value of 2
µ

. So the overall mean waiting time T  is the sum for the product given 

by 1k
µ
+  and the corresponding probability that the queue is in state k . Equation (17) gives T  in terms of  

µ  and λ   

( ) ( )0 0

1 1 11
1

k
k

k k

k kT P ρ ρ
µ µ µ ρ

∞ ∞

= =

+ +
⇒ = = − =

−∑ ∑  

1 , for 1T ρ
µ λ

∴ = <
−

                                          (17) 

3. Application 
In this section, we apply the theory to data we collected for the traffic flow through Dansoman junction, on 
Malam-Kaneshie urban road. The junction is signalised with traffic lights and so constitutes a queuing system. 
We consider the application to traffic stream of vehicular movement and in this case the road vehicles constitute 
our arrivals process, the traffic light signal at the intersection is the server and the controlled passage gives the 
service process, with the green light as the service mechanism. The population in this case is of the infinite type. 
Table 1 gives the number of vehicles arriving at the queue in the Dansoman intersection for six days during 
which the arrivals were noted every 5 minutes from 07:30 hours to 08:00 hours. We also observed the green  
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Table 1. Six day-week vehicle traffic count for dansoman junction intersection.                                      

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Sum 

07:30 - 07:35 106 140 170 16 59 87 578 

07:35 - 07:40 102 90 85 84 140 99 600 

07:40 - 07:45 82 73 90 112 88 120 565 

07:45 - 07:50 88 66 64 180 69 113 580 

07:50 - 07:55 60 44 120 69 75 36 404 

07:55 - 08:00 72 55 60 68 51 50 356 

Total 510 468 589 529 482 505 3083 

Vehicles/sec 0.28 0.26 0.33 0.29 0.27 0.28 1.71 

 
light duration when vehicles flow through the intersection, given by Table 2 and this allows the service time to 
be obtained. 

We also found out from observation that each vehicle spends an average of 240 second to traverse a distance 
of 0.6 kilometres which accommodates 65 vehicles on the average. We therefore have the waiting time and the 
queue length as 240 seconds and 65 vehicles respectively. 

Accordingly we obtained the average arrival rate for the period as 1.17 0.2855
6

λ = = . Using this value and  

Figure 1, observe the random nature of the arrival counts and thus we assume Markovian arrival rate. 
We then determine the service rate µ , as the average number of vehicles through the intersection divided the 

average time taken. So from Table 2 we have the service rate as 0.2895µ =  vehicles per second. Here ob-  

served that the average service time 304 3.4545
88

=  is in agreement with the theoretical mean service time,  

( )E Tτ = , using the value of 1µ− . With the values of λ  and µ  calculated, we determine traffic intensity,  

ρ , of the system by the ratio 0.9861λ
µ
= . This indicates high traffic intensity, which also implies an increasing  

queue length and therefore waiting time that can spelling catastrophic condition such as those perpetual con- 
gestions observed during the morning rash hour period. Also note the observed queue size of 65 vehicles as well 
as an average waiting time of 240 seconds. These values respectively compares with the theoretical values of 

71.17N =  and 249.33T =  when λ  and ρ  are used in Equations (16) and (17) respectively. 
For a fixed mean service rate, when 0λ →  then the queue traffic, 0ρ → . As such the queue is lightly 

loaded and the mean queue size 0N → . This is what we expect; under light load, the queue should be empty  

most of the time. Also the mean wait time 1T
µ

→ . This is also what we expect since if an item arrives when  

the queue is empty, the item will wait in the queue for one mean service time. As the load on the queue increases, 
the mean queue size and the mean wait time will increase. When items arrive in the queue as fast as there are 
departing ones then λ µ→  and so 1ρ →  and the mean queue size N →∞  and so also does T →∞ .  

4. Conclusion 
We have in this work, measured the traffic flow at the Dansoman Junction of Malam-Kaneshie urban road 
during the morning rush hours and have demonstrated features of the queue built up at the signalised inter- 
section with data and modeled the traffic flow there as a M/M/1. We have shown that the current queue system 
will continue to develop heavy traffic, evident by the growing queue length and waiting time, during the peak 
hours. This obviously has quality of service (QoS) implications for the system at the moment evident from the 
traffic intensity estimates from the data collected. This work therefore gives insight into possible undesirable le- 
vels of vehicular traffic congestion and the obvious question is how to minimise or at least contain these unde- 
sirable levels in order to optimise waiting time at the intersection. Possible line of attack includes the use of  
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Table 2. Observed green light duration for vehicles served.  

Time Served Vehicles Light Duration (sec) 

:48 18 60 

:51 19 62 

:54 17 59 

:57 18 63 

:00 16 60 

Total 88 304 

Average 17.6 60.8 

 

 
Figure 1. Plots of Dansoman junction sampled morning rush hour traffic count.                         

 
signal time adjustments or increase in the road infrastructure. We explore this in our further work from which 
we report on realistic approach of mitigating the problem thereby improving the QoS performance. 
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